/** ****************************************************************************** * @file stm32l152xb.h * @author MCD Application Team * @version 21-April-2017 * @date V2.2.1 * @brief CMSIS Cortex-M3 Device Peripheral Access Layer Header File. * This file contains all the peripheral register's definitions, bits * definitions and memory mapping for STM32L1xx devices. * * This file contains: * - Data structures and the address mapping for all peripherals * - Peripheral's registers declarations and bits definition * - Macros to access peripherals registers hardware * ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2017 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32l152xb * @{ */ #ifndef __STM32L152xB_H #define __STM32L152xB_H #ifdef __cplusplus extern "C" { #endif /** @addtogroup Configuration_section_for_CMSIS * @{ */ /** * @brief Configuration of the Cortex-M3 Processor and Core Peripherals */ #define __CM3_REV 0x200U /*!< Cortex-M3 Revision r2p0 */ #define __MPU_PRESENT 1U /*!< STM32L1xx provides MPU */ #define __NVIC_PRIO_BITS 4U /*!< STM32L1xx uses 4 Bits for the Priority Levels */ #define __Vendor_SysTickConfig 0U /*!< Set to 1 if different SysTick Config is used */ /** * @} */ /** @addtogroup Peripheral_interrupt_number_definition * @{ */ /** * @brief STM32L1xx Interrupt Number Definition, according to the selected device * in @ref Library_configuration_section */ /*!< Interrupt Number Definition */ typedef enum { /****** Cortex-M3 Processor Exceptions Numbers ******************************************************/ NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */ HardFault_IRQn = -13, /*!< 3 Cortex-M3 Hard Fault Interrupt */ MemoryManagement_IRQn = -12, /*!< 4 Cortex-M3 Memory Management Interrupt */ BusFault_IRQn = -11, /*!< 5 Cortex-M3 Bus Fault Interrupt */ UsageFault_IRQn = -10, /*!< 6 Cortex-M3 Usage Fault Interrupt */ SVC_IRQn = -5, /*!< 11 Cortex-M3 SV Call Interrupt */ DebugMonitor_IRQn = -4, /*!< 12 Cortex-M3 Debug Monitor Interrupt */ PendSV_IRQn = -2, /*!< 14 Cortex-M3 Pend SV Interrupt */ SysTick_IRQn = -1, /*!< 15 Cortex-M3 System Tick Interrupt */ /****** STM32L specific Interrupt Numbers ***********************************************************/ WWDG_IRQn = 0, /*!< Window WatchDog Interrupt */ PVD_IRQn = 1, /*!< PVD through EXTI Line detection Interrupt */ TAMPER_STAMP_IRQn = 2, /*!< Tamper and TimeStamp interrupts through the EXTI line */ RTC_WKUP_IRQn = 3, /*!< RTC Wakeup Timer through EXTI Line Interrupt */ FLASH_IRQn = 4, /*!< FLASH global Interrupt */ RCC_IRQn = 5, /*!< RCC global Interrupt */ EXTI0_IRQn = 6, /*!< EXTI Line0 Interrupt */ EXTI1_IRQn = 7, /*!< EXTI Line1 Interrupt */ EXTI2_IRQn = 8, /*!< EXTI Line2 Interrupt */ EXTI3_IRQn = 9, /*!< EXTI Line3 Interrupt */ EXTI4_IRQn = 10, /*!< EXTI Line4 Interrupt */ DMA1_Channel1_IRQn = 11, /*!< DMA1 Channel 1 global Interrupt */ DMA1_Channel2_IRQn = 12, /*!< DMA1 Channel 2 global Interrupt */ DMA1_Channel3_IRQn = 13, /*!< DMA1 Channel 3 global Interrupt */ DMA1_Channel4_IRQn = 14, /*!< DMA1 Channel 4 global Interrupt */ DMA1_Channel5_IRQn = 15, /*!< DMA1 Channel 5 global Interrupt */ DMA1_Channel6_IRQn = 16, /*!< DMA1 Channel 6 global Interrupt */ DMA1_Channel7_IRQn = 17, /*!< DMA1 Channel 7 global Interrupt */ ADC1_IRQn = 18, /*!< ADC1 global Interrupt */ USB_HP_IRQn = 19, /*!< USB High Priority Interrupt */ USB_LP_IRQn = 20, /*!< USB Low Priority Interrupt */ DAC_IRQn = 21, /*!< DAC Interrupt */ COMP_IRQn = 22, /*!< Comparator through EXTI Line Interrupt */ EXTI9_5_IRQn = 23, /*!< External Line[9:5] Interrupts */ LCD_IRQn = 24, /*!< LCD Interrupt */ TIM9_IRQn = 25, /*!< TIM9 global Interrupt */ TIM10_IRQn = 26, /*!< TIM10 global Interrupt */ TIM11_IRQn = 27, /*!< TIM11 global Interrupt */ TIM2_IRQn = 28, /*!< TIM2 global Interrupt */ TIM3_IRQn = 29, /*!< TIM3 global Interrupt */ TIM4_IRQn = 30, /*!< TIM4 global Interrupt */ I2C1_EV_IRQn = 31, /*!< I2C1 Event Interrupt */ I2C1_ER_IRQn = 32, /*!< I2C1 Error Interrupt */ I2C2_EV_IRQn = 33, /*!< I2C2 Event Interrupt */ I2C2_ER_IRQn = 34, /*!< I2C2 Error Interrupt */ SPI1_IRQn = 35, /*!< SPI1 global Interrupt */ SPI2_IRQn = 36, /*!< SPI2 global Interrupt */ USART1_IRQn = 37, /*!< USART1 global Interrupt */ USART2_IRQn = 38, /*!< USART2 global Interrupt */ USART3_IRQn = 39, /*!< USART3 global Interrupt */ EXTI15_10_IRQn = 40, /*!< External Line[15:10] Interrupts */ RTC_Alarm_IRQn = 41, /*!< RTC Alarm through EXTI Line Interrupt */ USB_FS_WKUP_IRQn = 42, /*!< USB FS WakeUp from suspend through EXTI Line Interrupt */ TIM6_IRQn = 43, /*!< TIM6 global Interrupt */ TIM7_IRQn = 44, /*!< TIM7 global Interrupt */ } IRQn_Type; /** * @} */ #include "core_cm3.h" #include "system_stm32l1xx.h" #include /** @addtogroup Peripheral_registers_structures * @{ */ /** * @brief Analog to Digital Converter */ typedef struct { __IO uint32_t SR; /*!< ADC status register, Address offset: 0x00 */ __IO uint32_t CR1; /*!< ADC control register 1, Address offset: 0x04 */ __IO uint32_t CR2; /*!< ADC control register 2, Address offset: 0x08 */ __IO uint32_t SMPR1; /*!< ADC sample time register 1, Address offset: 0x0C */ __IO uint32_t SMPR2; /*!< ADC sample time register 2, Address offset: 0x10 */ __IO uint32_t SMPR3; /*!< ADC sample time register 3, Address offset: 0x14 */ __IO uint32_t JOFR1; /*!< ADC injected channel data offset register 1, Address offset: 0x18 */ __IO uint32_t JOFR2; /*!< ADC injected channel data offset register 2, Address offset: 0x1C */ __IO uint32_t JOFR3; /*!< ADC injected channel data offset register 3, Address offset: 0x20 */ __IO uint32_t JOFR4; /*!< ADC injected channel data offset register 4, Address offset: 0x24 */ __IO uint32_t HTR; /*!< ADC watchdog higher threshold register, Address offset: 0x28 */ __IO uint32_t LTR; /*!< ADC watchdog lower threshold register, Address offset: 0x2C */ __IO uint32_t SQR1; /*!< ADC regular sequence register 1, Address offset: 0x30 */ __IO uint32_t SQR2; /*!< ADC regular sequence register 2, Address offset: 0x34 */ __IO uint32_t SQR3; /*!< ADC regular sequence register 3, Address offset: 0x38 */ __IO uint32_t SQR4; /*!< ADC regular sequence register 4, Address offset: 0x3C */ __IO uint32_t SQR5; /*!< ADC regular sequence register 5, Address offset: 0x40 */ __IO uint32_t JSQR; /*!< ADC injected sequence register, Address offset: 0x44 */ __IO uint32_t JDR1; /*!< ADC injected data register 1, Address offset: 0x48 */ __IO uint32_t JDR2; /*!< ADC injected data register 2, Address offset: 0x4C */ __IO uint32_t JDR3; /*!< ADC injected data register 3, Address offset: 0x50 */ __IO uint32_t JDR4; /*!< ADC injected data register 4, Address offset: 0x54 */ __IO uint32_t DR; /*!< ADC regular data register, Address offset: 0x58 */ uint32_t RESERVED; /*!< Reserved, Address offset: 0x5C */ } ADC_TypeDef; typedef struct { __IO uint32_t CSR; /*!< ADC common status register, Address offset: ADC1 base address + 0x300 */ __IO uint32_t CCR; /*!< ADC common control register, Address offset: ADC1 base address + 0x304 */ } ADC_Common_TypeDef; /** * @brief Comparator */ typedef struct { __IO uint32_t CSR; /*!< COMP control and status register, Address offset: 0x00 */ } COMP_TypeDef; typedef struct { __IO uint32_t CSR; /*!< COMP control and status register, used for bits common to several COMP instances, Address offset: 0x00 */ } COMP_Common_TypeDef; /** * @brief CRC calculation unit */ typedef struct { __IO uint32_t DR; /*!< CRC Data register, Address offset: 0x00 */ __IO uint8_t IDR; /*!< CRC Independent data register, Address offset: 0x04 */ uint8_t RESERVED0; /*!< Reserved, Address offset: 0x05 */ uint16_t RESERVED1; /*!< Reserved, Address offset: 0x06 */ __IO uint32_t CR; /*!< CRC Control register, Address offset: 0x08 */ } CRC_TypeDef; /** * @brief Digital to Analog Converter */ typedef struct { __IO uint32_t CR; /*!< DAC control register, Address offset: 0x00 */ __IO uint32_t SWTRIGR; /*!< DAC software trigger register, Address offset: 0x04 */ __IO uint32_t DHR12R1; /*!< DAC channel1 12-bit right-aligned data holding register, Address offset: 0x08 */ __IO uint32_t DHR12L1; /*!< DAC channel1 12-bit left aligned data holding register, Address offset: 0x0C */ __IO uint32_t DHR8R1; /*!< DAC channel1 8-bit right aligned data holding register, Address offset: 0x10 */ __IO uint32_t DHR12R2; /*!< DAC channel2 12-bit right aligned data holding register, Address offset: 0x14 */ __IO uint32_t DHR12L2; /*!< DAC channel2 12-bit left aligned data holding register, Address offset: 0x18 */ __IO uint32_t DHR8R2; /*!< DAC channel2 8-bit right-aligned data holding register, Address offset: 0x1C */ __IO uint32_t DHR12RD; /*!< Dual DAC 12-bit right-aligned data holding register, Address offset: 0x20 */ __IO uint32_t DHR12LD; /*!< DUAL DAC 12-bit left aligned data holding register, Address offset: 0x24 */ __IO uint32_t DHR8RD; /*!< DUAL DAC 8-bit right aligned data holding register, Address offset: 0x28 */ __IO uint32_t DOR1; /*!< DAC channel1 data output register, Address offset: 0x2C */ __IO uint32_t DOR2; /*!< DAC channel2 data output register, Address offset: 0x30 */ __IO uint32_t SR; /*!< DAC status register, Address offset: 0x34 */ } DAC_TypeDef; /** * @brief Debug MCU */ typedef struct { __IO uint32_t IDCODE; /*!< MCU device ID code, Address offset: 0x00 */ __IO uint32_t CR; /*!< Debug MCU configuration register, Address offset: 0x04 */ __IO uint32_t APB1FZ; /*!< Debug MCU APB1 freeze register, Address offset: 0x08 */ __IO uint32_t APB2FZ; /*!< Debug MCU APB2 freeze register, Address offset: 0x0C */ }DBGMCU_TypeDef; /** * @brief DMA Controller */ typedef struct { __IO uint32_t CCR; /*!< DMA channel x configuration register */ __IO uint32_t CNDTR; /*!< DMA channel x number of data register */ __IO uint32_t CPAR; /*!< DMA channel x peripheral address register */ __IO uint32_t CMAR; /*!< DMA channel x memory address register */ } DMA_Channel_TypeDef; typedef struct { __IO uint32_t ISR; /*!< DMA interrupt status register, Address offset: 0x00 */ __IO uint32_t IFCR; /*!< DMA interrupt flag clear register, Address offset: 0x04 */ } DMA_TypeDef; /** * @brief External Interrupt/Event Controller */ typedef struct { __IO uint32_t IMR; /*!`EXPECT_CALL()` is executed. Just tell Google Mock that it should save a reference to `bar`, instead of a copy of it. Here's how: ``` using ::testing::Eq; using ::testing::ByRef; using ::testing::Lt; ... // Expects that Foo()'s argument == bar. EXPECT_CALL(mock_obj, Foo(Eq(ByRef(bar)))); // Expects that Foo()'s argument < bar. EXPECT_CALL(mock_obj, Foo(Lt(ByRef(bar)))); ``` Remember: if you do this, don't change `bar` after the `EXPECT_CALL()`, or the result is undefined. ## Validating a Member of an Object ## Often a mock function takes a reference to object as an argument. When matching the argument, you may not want to compare the entire object against a fixed object, as that may be over-specification. Instead, you may need to validate a certain member variable or the result of a certain getter method of the object. You can do this with `Field()` and `Property()`. More specifically, ``` Field(&Foo::bar, m) ``` is a matcher that matches a `Foo` object whose `bar` member variable satisfies matcher `m`. ``` Property(&Foo::baz, m) ``` is a matcher that matches a `Foo` object whose `baz()` method returns a value that satisfies matcher `m`. For example: > | `Field(&Foo::number, Ge(3))` | Matches `x` where `x.number >= 3`. | |:-----------------------------|:-----------------------------------| > | `Property(&Foo::name, StartsWith("John "))` | Matches `x` where `x.name()` starts with `"John "`. | Note that in `Property(&Foo::baz, ...)`, method `baz()` must take no argument and be declared as `const`. BTW, `Field()` and `Property()` can also match plain pointers to objects. For instance, ``` Field(&Foo::number, Ge(3)) ``` matches a plain pointer `p` where `p->number >= 3`. If `p` is `NULL`, the match will always fail regardless of the inner matcher. What if you want to validate more than one members at the same time? Remember that there is `AllOf()`. ## Validating the Value Pointed to by a Pointer Argument ## C++ functions often take pointers as arguments. You can use matchers like `IsNull()`, `NotNull()`, and other comparison matchers to match a pointer, but what if you want to make sure the value _pointed to_ by the pointer, instead of the pointer itself, has a certain property? Well, you can use the `Pointee(m)` matcher. `Pointee(m)` matches a pointer iff `m` matches the value the pointer points to. For example: ``` using ::testing::Ge; using ::testing::Pointee; ... EXPECT_CALL(foo, Bar(Pointee(Ge(3)))); ``` expects `foo.Bar()` to be called with a pointer that points to a value greater than or equal to 3. One nice thing about `Pointee()` is that it treats a `NULL` pointer as a match failure, so you can write `Pointee(m)` instead of ``` AllOf(NotNull(), Pointee(m)) ``` without worrying that a `NULL` pointer will crash your test. Also, did we tell you that `Pointee()` works with both raw pointers **and** smart pointers (`linked_ptr`, `shared_ptr`, `scoped_ptr`, and etc)? What if you have a pointer to pointer? You guessed it - you can use nested `Pointee()` to probe deeper inside the value. For example, `Pointee(Pointee(Lt(3)))` matches a pointer that points to a pointer that points to a number less than 3 (what a mouthful...). ## Testing a Certain Property of an Object ## Sometimes you want to specify that an object argument has a certain property, but there is no existing matcher that does this. If you want good error messages, you should define a matcher. If you want to do it quick and dirty, you could get away with writing an ordinary function. Let's say you have a mock function that takes an object of type `Foo`, which has an `int bar()` method and an `int baz()` method, and you want to constrain that the argument's `bar()` value plus its `baz()` value is a given number. Here's how you can define a matcher to do it: ``` using ::testing::MatcherInterface; using ::testing::MatchResultListener; class BarPlusBazEqMatcher : public MatcherInterface<const Foo&> { public: explicit BarPlusBazEqMatcher(int expected_sum) : expected_sum_(expected_sum) {} virtual bool MatchAndExplain(const Foo& foo, MatchResultListener* listener) const { return (foo.bar() + foo.baz()) == expected_sum_; } virtual void DescribeTo(::std::ostream* os) const { *os << "bar() + baz() equals " << expected_sum_; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "bar() + baz() does not equal " << expected_sum_; } private: const int expected_sum_; }; inline Matcher<const Foo&> BarPlusBazEq(int expected_sum) { return MakeMatcher(new BarPlusBazEqMatcher(expected_sum)); } ... EXPECT_CALL(..., DoThis(BarPlusBazEq(5)))...; ``` ## Matching Containers ## Sometimes an STL container (e.g. list, vector, map, ...) is passed to a mock function and you may want to validate it. Since most STL containers support the `==` operator, you can write `Eq(expected_container)` or simply `expected_container` to match a container exactly. Sometimes, though, you may want to be more flexible (for example, the first element must be an exact match, but the second element can be any positive number, and so on). Also, containers used in tests often have a small number of elements, and having to define the expected container out-of-line is a bit of a hassle. You can use the `ElementsAre()` or `UnorderedElementsAre()` matcher in such cases: ``` using ::testing::_; using ::testing::ElementsAre; using ::testing::Gt; ... MOCK_METHOD1(Foo, void(const vector<int>& numbers)); ... EXPECT_CALL(mock, Foo(ElementsAre(1, Gt(0), _, 5))); ``` The above matcher says that the container must have 4 elements, which must be 1, greater than 0, anything, and 5 respectively. If you instead write: ``` using ::testing::_; using ::testing::Gt; using ::testing::UnorderedElementsAre; ... MOCK_METHOD1(Foo, void(const vector<int>& numbers)); ... EXPECT_CALL(mock, Foo(UnorderedElementsAre(1, Gt(0), _, 5))); ``` It means that the container must have 4 elements, which under some permutation must be 1, greater than 0, anything, and 5 respectively. `ElementsAre()` and `UnorderedElementsAre()` are overloaded to take 0 to 10 arguments. If more are needed, you can place them in a C-style array and use `ElementsAreArray()` or `UnorderedElementsAreArray()` instead: ``` using ::testing::ElementsAreArray; ... // ElementsAreArray accepts an array of element values. const int expected_vector1[] = { 1, 5, 2, 4, ... }; EXPECT_CALL(mock, Foo(ElementsAreArray(expected_vector1))); // Or, an array of element matchers. Matcher<int> expected_vector2 = { 1, Gt(2), _, 3, ... }; EXPECT_CALL(mock, Foo(ElementsAreArray(expected_vector2))); ``` In case the array needs to be dynamically created (and therefore the array size cannot be inferred by the compiler), you can give `ElementsAreArray()` an additional argument to specify the array size: ``` using ::testing::ElementsAreArray; ... int* const expected_vector3 = new int[count]; ... fill expected_vector3 with values ... EXPECT_CALL(mock, Foo(ElementsAreArray(expected_vector3, count))); ``` **Tips:** * `ElementsAre*()` can be used to match _any_ container that implements the STL iterator pattern (i.e. it has a `const_iterator` type and supports `begin()/end()`), not just the ones defined in STL. It will even work with container types yet to be written - as long as they follows the above pattern. * You can use nested `ElementsAre*()` to match nested (multi-dimensional) containers. * If the container is passed by pointer instead of by reference, just write `Pointee(ElementsAre*(...))`. * The order of elements _matters_ for `ElementsAre*()`. Therefore don't use it with containers whose element order is undefined (e.g. `hash_map`). ## Sharing Matchers ## Under the hood, a Google Mock matcher object consists of a pointer to a ref-counted implementation object. Copying matchers is allowed and very efficient, as only the pointer is copied. When the last matcher that references the implementation object dies, the implementation object will be deleted. Therefore, if you have some complex matcher that you want to use again and again, there is no need to build it everytime. Just assign it to a matcher variable and use that variable repeatedly! For example, ``` Matcher<int> in_range = AllOf(Gt(5), Le(10)); ... use in_range as a matcher in multiple EXPECT_CALLs ... ``` # Setting Expectations # ## Knowing When to Expect ## `ON_CALL` is likely the single most under-utilized construct in Google Mock. There are basically two constructs for defining the behavior of a mock object: `ON_CALL` and `EXPECT_CALL`. The difference? `ON_CALL` defines what happens when a mock method is called, but _doesn't imply any expectation on the method being called._ `EXPECT_CALL` not only defines the behavior, but also sets an expectation that _the method will be called with the given arguments, for the given number of times_ (and _in the given order_ when you specify the order too). Since `EXPECT_CALL` does more, isn't it better than `ON_CALL`? Not really. Every `EXPECT_CALL` adds a constraint on the behavior of the code under test. Having more constraints than necessary is _baaad_ - even worse than not having enough constraints. This may be counter-intuitive. How could tests that verify more be worse than tests that verify less? Isn't verification the whole point of tests? The answer, lies in _what_ a test should verify. **A good test verifies the contract of the code.** If a test over-specifies, it doesn't leave enough freedom to the implementation. As a result, changing the implementation without breaking the contract (e.g. refactoring and optimization), which should be perfectly fine to do, can break such tests. Then you have to spend time fixing them, only to see them broken again the next time the implementation is changed. Keep in mind that one doesn't have to verify more than one property in one test. In fact, **it's a good style to verify only one thing in one test.** If you do that, a bug will likely break only one or two tests instead of dozens (which case would you rather debug?). If you are also in the habit of giving tests descriptive names that tell what they verify, you can often easily guess what's wrong just from the test log itself. So use `ON_CALL` by default, and only use `EXPECT_CALL` when you actually intend to verify that the call is made. For example, you may have a bunch of `ON_CALL`s in your test fixture to set the common mock behavior shared by all tests in the same group, and write (scarcely) different `EXPECT_CALL`s in different `TEST_F`s to verify different aspects of the code's behavior. Compared with the style where each `TEST` has many `EXPECT_CALL`s, this leads to tests that are more resilient to implementational changes (and thus less likely to require maintenance) and makes the intent of the tests more obvious (so they are easier to maintain when you do need to maintain them). If you are bothered by the "Uninteresting mock function call" message printed when a mock method without an `EXPECT_CALL` is called, you may use a `NiceMock` instead to suppress all such messages for the mock object, or suppress the message for specific methods by adding `EXPECT_CALL(...).Times(AnyNumber())`. DO NOT suppress it by blindly adding an `EXPECT_CALL(...)`, or you'll have a test that's a pain to maintain. ## Ignoring Uninteresting Calls ## If you are not interested in how a mock method is called, just don't say anything about it. In this case, if the method is ever called, Google Mock will perform its default action to allow the test program to continue. If you are not happy with the default action taken by Google Mock, you can override it using `DefaultValue<T>::Set()` (described later in this document) or `ON_CALL()`. Please note that once you expressed interest in a particular mock method (via `EXPECT_CALL()`), all invocations to it must match some expectation. If this function is called but the arguments don't match any `EXPECT_CALL()` statement, it will be an error. ## Disallowing Unexpected Calls ## If a mock method shouldn't be called at all, explicitly say so: ``` using ::testing::_; ... EXPECT_CALL(foo, Bar(_)) .Times(0); ``` If some calls to the method are allowed, but the rest are not, just list all the expected calls: ``` using ::testing::AnyNumber; using ::testing::Gt; ... EXPECT_CALL(foo, Bar(5)); EXPECT_CALL(foo, Bar(Gt(10))) .Times(AnyNumber()); ``` A call to `foo.Bar()` that doesn't match any of the `EXPECT_CALL()` statements will be an error. ## Understanding Uninteresting vs Unexpected Calls ## _Uninteresting_ calls and _unexpected_ calls are different concepts in Google Mock. _Very_ different. A call `x.Y(...)` is **uninteresting** if there's _not even a single_ `EXPECT_CALL(x, Y(...))` set. In other words, the test isn't interested in the `x.Y()` method at all, as evident in that the test doesn't care to say anything about it. A call `x.Y(...)` is **unexpected** if there are some `EXPECT_CALL(x, Y(...))s` set, but none of them matches the call. Put another way, the test is interested in the `x.Y()` method (therefore it _explicitly_ sets some `EXPECT_CALL` to verify how it's called); however, the verification fails as the test doesn't expect this particular call to happen. **An unexpected call is always an error,** as the code under test doesn't behave the way the test expects it to behave. **By default, an uninteresting call is not an error,** as it violates no constraint specified by the test. (Google Mock's philosophy is that saying nothing means there is no constraint.) However, it leads to a warning, as it _might_ indicate a problem (e.g. the test author might have forgotten to specify a constraint). In Google Mock, `NiceMock` and `StrictMock` can be used to make a mock class "nice" or "strict". How does this affect uninteresting calls and unexpected calls? A **nice mock** suppresses uninteresting call warnings. It is less chatty than the default mock, but otherwise is the same. If a test fails with a default mock, it will also fail using a nice mock instead. And vice versa. Don't expect making a mock nice to change the test's result. A **strict mock** turns uninteresting call warnings into errors. So making a mock strict may change the test's result. Let's look at an example: ``` TEST(...) { NiceMock<MockDomainRegistry> mock_registry; EXPECT_CALL(mock_registry, GetDomainOwner("google.com")) .WillRepeatedly(Return("Larry Page")); // Use mock_registry in code under test. ... &mock_registry ... } ``` The sole `EXPECT_CALL` here says that all calls to `GetDomainOwner()` must have `"google.com"` as the argument. If `GetDomainOwner("yahoo.com")` is called, it will be an unexpected call, and thus an error. Having a nice mock doesn't change the severity of an unexpected call. So how do we tell Google Mock that `GetDomainOwner()` can be called with some other arguments as well? The standard technique is to add a "catch all" `EXPECT_CALL`: ``` EXPECT_CALL(mock_registry, GetDomainOwner(_)) .Times(AnyNumber()); // catches all other calls to this method. EXPECT_CALL(mock_registry, GetDomainOwner("google.com")) .WillRepeatedly(Return("Larry Page")); ``` Remember that `_` is the wildcard matcher that matches anything. With this, if `GetDomainOwner("google.com")` is called, it will do what the second `EXPECT_CALL` says; if it is called with a different argument, it will do what the first `EXPECT_CALL` says. Note that the order of the two `EXPECT_CALLs` is important, as a newer `EXPECT_CALL` takes precedence over an older one. For more on uninteresting calls, nice mocks, and strict mocks, read ["The Nice, the Strict, and the Naggy"](#the-nice-the-strict-and-the-naggy). ## Expecting Ordered Calls ## Although an `EXPECT_CALL()` statement defined earlier takes precedence when Google Mock tries to match a function call with an expectation, by default calls don't have to happen in the order `EXPECT_CALL()` statements are written. For example, if the arguments match the matchers in the third `EXPECT_CALL()`, but not those in the first two, then the third expectation will be used. If you would rather have all calls occur in the order of the expectations, put the `EXPECT_CALL()` statements in a block where you define a variable of type `InSequence`: ``` using ::testing::_; using ::testing::InSequence; { InSequence s; EXPECT_CALL(foo, DoThis(5)); EXPECT_CALL(bar, DoThat(_)) .Times(2); EXPECT_CALL(foo, DoThis(6)); } ``` In this example, we expect a call to `foo.DoThis(5)`, followed by two calls to `bar.DoThat()` where the argument can be anything, which are in turn followed by a call to `foo.DoThis(6)`. If a call occurred out-of-order, Google Mock will report an error. ## Expecting Partially Ordered Calls ## Sometimes requiring everything to occur in a predetermined order can lead to brittle tests. For example, we may care about `A` occurring before both `B` and `C`, but aren't interested in the relative order of `B` and `C`. In this case, the test should reflect our real intent, instead of being overly constraining. Google Mock allows you to impose an arbitrary DAG (directed acyclic graph) on the calls. One way to express the DAG is to use the [After](CheatSheet.md#the-after-clause) clause of `EXPECT_CALL`. Another way is via the `InSequence()` clause (not the same as the `InSequence` class), which we borrowed from jMock 2. It's less flexible than `After()`, but more convenient when you have long chains of sequential calls, as it doesn't require you to come up with different names for the expectations in the chains. Here's how it works: If we view `EXPECT_CALL()` statements as nodes in a graph, and add an edge from node A to node B wherever A must occur before B, we can get a DAG. We use the term "sequence" to mean a directed path in this DAG. Now, if we decompose the DAG into sequences, we just need to know which sequences each `EXPECT_CALL()` belongs to in order to be able to reconstruct the orginal DAG. So, to specify the partial order on the expectations we need to do two things: first to define some `Sequence` objects, and then for each `EXPECT_CALL()` say which `Sequence` objects it is part of. Expectations in the same sequence must occur in the order they are written. For example, ``` using ::testing::Sequence; Sequence s1, s2; EXPECT_CALL(foo, A()) .InSequence(s1, s2); EXPECT_CALL(bar, B()) .InSequence(s1); EXPECT_CALL(bar, C()) .InSequence(s2); EXPECT_CALL(foo, D()) .InSequence(s2); ``` specifies the following DAG (where `s1` is `A -> B`, and `s2` is `A -> C -> D`): ``` +---> B | A ---| | +---> C ---> D ``` This means that A must occur before B and C, and C must occur before D. There's no restriction about the order other than these. ## Controlling When an Expectation Retires ## When a mock method is called, Google Mock only consider expectations that are still active. An expectation is active when created, and becomes inactive (aka _retires_) when a call that has to occur later has occurred. For example, in ``` using ::testing::_; using ::testing::Sequence; Sequence s1, s2; EXPECT_CALL(log, Log(WARNING, _, "File too large.")) // #1 .Times(AnyNumber()) .InSequence(s1, s2); EXPECT_CALL(log, Log(WARNING, _, "Data set is empty.")) // #2 .InSequence(s1); EXPECT_CALL(log, Log(WARNING, _, "User not found.")) // #3 .InSequence(s2); ``` as soon as either #2 or #3 is matched, #1 will retire. If a warning `"File too large."` is logged after this, it will be an error. Note that an expectation doesn't retire automatically when it's saturated. For example, ``` using ::testing::_; ... EXPECT_CALL(log, Log(WARNING, _, _)); // #1 EXPECT_CALL(log, Log(WARNING, _, "File too large.")); // #2 ``` says that there will be exactly one warning with the message `"File too large."`. If the second warning contains this message too, #2 will match again and result in an upper-bound-violated error. If this is not what you want, you can ask an expectation to retire as soon as it becomes saturated: ``` using ::testing::_; ... EXPECT_CALL(log, Log(WARNING, _, _)); // #1 EXPECT_CALL(log, Log(WARNING, _, "File too large.")) // #2 .RetiresOnSaturation(); ``` Here #2 can be used only once, so if you have two warnings with the message `"File too large."`, the first will match #2 and the second will match #1 - there will be no error. # Using Actions # ## Returning References from Mock Methods ## If a mock function's return type is a reference, you need to use `ReturnRef()` instead of `Return()` to return a result: ``` using ::testing::ReturnRef; class MockFoo : public Foo { public: MOCK_METHOD0(GetBar, Bar&()); }; ... MockFoo foo; Bar bar; EXPECT_CALL(foo, GetBar()) .WillOnce(ReturnRef(bar)); ``` ## Returning Live Values from Mock Methods ## The `Return(x)` action saves a copy of `x` when the action is _created_, and always returns the same value whenever it's executed. Sometimes you may want to instead return the _live_ value of `x` (i.e. its value at the time when the action is _executed_.). If the mock function's return type is a reference, you can do it using `ReturnRef(x)`, as shown in the previous recipe ("Returning References from Mock Methods"). However, Google Mock doesn't let you use `ReturnRef()` in a mock function whose return type is not a reference, as doing that usually indicates a user error. So, what shall you do? You may be tempted to try `ByRef()`: ``` using testing::ByRef; using testing::Return; class MockFoo : public Foo { public: MOCK_METHOD0(GetValue, int()); }; ... int x = 0; MockFoo foo; EXPECT_CALL(foo, GetValue()) .WillRepeatedly(Return(ByRef(x))); x = 42; EXPECT_EQ(42, foo.GetValue()); ``` Unfortunately, it doesn't work here. The above code will fail with error: ``` Value of: foo.GetValue() Actual: 0 Expected: 42 ``` The reason is that `Return(value)` converts `value` to the actual return type of the mock function at the time when the action is _created_, not when it is _executed_. (This behavior was chosen for the action to be safe when `value` is a proxy object that references some temporary objects.) As a result, `ByRef(x)` is converted to an `int` value (instead of a `const int&`) when the expectation is set, and `Return(ByRef(x))` will always return 0. `ReturnPointee(pointer)` was provided to solve this problem specifically. It returns the value pointed to by `pointer` at the time the action is _executed_: ``` using testing::ReturnPointee; ... int x = 0; MockFoo foo; EXPECT_CALL(foo, GetValue()) .WillRepeatedly(ReturnPointee(&x)); // Note the & here. x = 42; EXPECT_EQ(42, foo.GetValue()); // This will succeed now. ``` ## Combining Actions ## Want to do more than one thing when a function is called? That's fine. `DoAll()` allow you to do sequence of actions every time. Only the return value of the last action in the sequence will be used. ``` using ::testing::DoAll; class MockFoo : public Foo { public: MOCK_METHOD1(Bar, bool(int n)); }; ... EXPECT_CALL(foo, Bar(_)) .WillOnce(DoAll(action_1, action_2, ... action_n)); ``` ## Mocking Side Effects ## Sometimes a method exhibits its effect not via returning a value but via side effects. For example, it may change some global state or modify an output argument. To mock side effects, in general you can define your own action by implementing `::testing::ActionInterface`. If all you need to do is to change an output argument, the built-in `SetArgPointee()` action is convenient: ``` using ::testing::SetArgPointee; class MockMutator : public Mutator { public: MOCK_METHOD2(Mutate, void(bool mutate, int* value)); ... }; ... MockMutator mutator; EXPECT_CALL(mutator, Mutate(true, _)) .WillOnce(SetArgPointee<1>(5)); ``` In this example, when `mutator.Mutate()` is called, we will assign 5 to the `int` variable pointed to by argument #1 (0-based). `SetArgPointee()` conveniently makes an internal copy of the value you pass to it, removing the need to keep the value in scope and alive. The implication however is that the value must have a copy constructor and assignment operator. If the mock method also needs to return a value as well, you can chain `SetArgPointee()` with `Return()` using `DoAll()`: ``` using ::testing::_; using ::testing::Return; using ::testing::SetArgPointee; class MockMutator : public Mutator { public: ... MOCK_METHOD1(MutateInt, bool(int* value)); }; ... MockMutator mutator; EXPECT_CALL(mutator, MutateInt(_)) .WillOnce(DoAll(SetArgPointee<0>(5), Return(true))); ``` If the output argument is an array, use the `SetArrayArgument<N>(first, last)` action instead. It copies the elements in source range `[first, last)` to the array pointed to by the `N`-th (0-based) argument: ``` using ::testing::NotNull; using ::testing::SetArrayArgument; class MockArrayMutator : public ArrayMutator { public: MOCK_METHOD2(Mutate, void(int* values, int num_values)); ... }; ... MockArrayMutator mutator; int values[5] = { 1, 2, 3, 4, 5 }; EXPECT_CALL(mutator, Mutate(NotNull(), 5)) .WillOnce(SetArrayArgument<0>(values, values + 5)); ``` This also works when the argument is an output iterator: ``` using ::testing::_; using ::testing::SeArrayArgument; class MockRolodex : public Rolodex { public: MOCK_METHOD1(GetNames, void(std::back_insert_iterator<vector<string> >)); ... }; ... MockRolodex rolodex; vector<string> names; names.push_back("George"); names.push_back("John"); names.push_back("Thomas"); EXPECT_CALL(rolodex, GetNames(_)) .WillOnce(SetArrayArgument<0>(names.begin(), names.end())); ``` ## Changing a Mock Object's Behavior Based on the State ## If you expect a call to change the behavior of a mock object, you can use `::testing::InSequence` to specify different behaviors before and after the call: ``` using ::testing::InSequence; using ::testing::Return; ... { InSequence seq; EXPECT_CALL(my_mock, IsDirty()) .WillRepeatedly(Return(true)); EXPECT_CALL(my_mock, Flush()); EXPECT_CALL(my_mock, IsDirty()) .WillRepeatedly(Return(false)); } my_mock.FlushIfDirty(); ``` This makes `my_mock.IsDirty()` return `true` before `my_mock.Flush()` is called and return `false` afterwards. If the behavior change is more complex, you can store the effects in a variable and make a mock method get its return value from that variable: ``` using ::testing::_; using ::testing::SaveArg; using ::testing::Return; ACTION_P(ReturnPointee, p) { return *p; } ... int previous_value = 0; EXPECT_CALL(my_mock, GetPrevValue()) .WillRepeatedly(ReturnPointee(&previous_value)); EXPECT_CALL(my_mock, UpdateValue(_)) .WillRepeatedly(SaveArg<0>(&previous_value)); my_mock.DoSomethingToUpdateValue(); ``` Here `my_mock.GetPrevValue()` will always return the argument of the last `UpdateValue()` call. ## Setting the Default Value for a Return Type ## If a mock method's return type is a built-in C++ type or pointer, by default it will return 0 when invoked. Also, in C++ 11 and above, a mock method whose return type has a default constructor will return a default-constructed value by default. You only need to specify an action if this default value doesn't work for you. Sometimes, you may want to change this default value, or you may want to specify a default value for types Google Mock doesn't know about. You can do this using the `::testing::DefaultValue` class template: ``` class MockFoo : public Foo { public: MOCK_METHOD0(CalculateBar, Bar()); }; ... Bar default_bar; // Sets the default return value for type Bar. DefaultValue<Bar>::Set(default_bar); MockFoo foo; // We don't need to specify an action here, as the default // return value works for us. EXPECT_CALL(foo, CalculateBar()); foo.CalculateBar(); // This should return default_bar. // Unsets the default return value. DefaultValue<Bar>::Clear(); ``` Please note that changing the default value for a type can make you tests hard to understand. We recommend you to use this feature judiciously. For example, you may want to make sure the `Set()` and `Clear()` calls are right next to the code that uses your mock. ## Setting the Default Actions for a Mock Method ## You've learned how to change the default value of a given type. However, this may be too coarse for your purpose: perhaps you have two mock methods with the same return type and you want them to have different behaviors. The `ON_CALL()` macro allows you to customize your mock's behavior at the method level: ``` using ::testing::_; using ::testing::AnyNumber; using ::testing::Gt; using ::testing::Return; ... ON_CALL(foo, Sign(_)) .WillByDefault(Return(-1)); ON_CALL(foo, Sign(0)) .WillByDefault(Return(0)); ON_CALL(foo, Sign(Gt(0))) .WillByDefault(Return(1)); EXPECT_CALL(foo, Sign(_)) .Times(AnyNumber()); foo.Sign(5); // This should return 1. foo.Sign(-9); // This should return -1. foo.Sign(0); // This should return 0. ``` As you may have guessed, when there are more than one `ON_CALL()` statements, the news order take precedence over the older ones. In other words, the **last** one that matches the function arguments will be used. This matching order allows you to set up the common behavior in a mock object's constructor or the test fixture's set-up phase and specialize the mock's behavior later. ## Using Functions/Methods/Functors as Actions ## If the built-in actions don't suit you, you can easily use an existing function, method, or functor as an action: ``` using ::testing::_; using ::testing::Invoke; class MockFoo : public Foo { public: MOCK_METHOD2(Sum, int(int x, int y)); MOCK_METHOD1(ComplexJob, bool(int x)); }; int CalculateSum(int x, int y) { return x + y; } class Helper { public: bool ComplexJob(int x); }; ... MockFoo foo; Helper helper; EXPECT_CALL(foo, Sum(_, _)) .WillOnce(Invoke(CalculateSum)); EXPECT_CALL(foo, ComplexJob(_)) .WillOnce(Invoke(&helper, &Helper::ComplexJob)); foo.Sum(5, 6); // Invokes CalculateSum(5, 6). foo.ComplexJob(10); // Invokes helper.ComplexJob(10); ``` The only requirement is that the type of the function, etc must be _compatible_ with the signature of the mock function, meaning that the latter's arguments can be implicitly converted to the corresponding arguments of the former, and the former's return type can be implicitly converted to that of the latter. So, you can invoke something whose type is _not_ exactly the same as the mock function, as long as it's safe to do so - nice, huh? ## Invoking a Function/Method/Functor Without Arguments ## `Invoke()` is very useful for doing actions that are more complex. It passes the mock function's arguments to the function or functor being invoked such that the callee has the full context of the call to work with. If the invoked function is not interested in some or all of the arguments, it can simply ignore them. Yet, a common pattern is that a test author wants to invoke a function without the arguments of the mock function. `Invoke()` allows her to do that using a wrapper function that throws away the arguments before invoking an underlining nullary function. Needless to say, this can be tedious and obscures the intent of the test. `InvokeWithoutArgs()` solves this problem. It's like `Invoke()` except that it doesn't pass the mock function's arguments to the callee. Here's an example: ``` using ::testing::_; using ::testing::InvokeWithoutArgs; class MockFoo : public Foo { public: MOCK_METHOD1(ComplexJob, bool(int n)); }; bool Job1() { ... } ... MockFoo foo; EXPECT_CALL(foo, ComplexJob(_)) .WillOnce(InvokeWithoutArgs(Job1)); foo.ComplexJob(10); // Invokes Job1(). ``` ## Invoking an Argument of the Mock Function ## Sometimes a mock function will receive a function pointer or a functor (in other words, a "callable") as an argument, e.g. ``` class MockFoo : public Foo { public: MOCK_METHOD2(DoThis, bool(int n, bool (*fp)(int))); }; ``` and you may want to invoke this callable argument: ``` using ::testing::_; ... MockFoo foo; EXPECT_CALL(foo, DoThis(_, _)) .WillOnce(...); // Will execute (*fp)(5), where fp is the // second argument DoThis() receives. ``` Arghh, you need to refer to a mock function argument but C++ has no lambda (yet), so you have to define your own action. :-( Or do you really? Well, Google Mock has an action to solve _exactly_ this problem: ``` InvokeArgument<N>(arg_1, arg_2, ..., arg_m) ``` will invoke the `N`-th (0-based) argument the mock function receives, with `arg_1`, `arg_2`, ..., and `arg_m`. No matter if the argument is a function pointer or a functor, Google Mock handles them both. With that, you could write: ``` using ::testing::_; using ::testing::InvokeArgument; ... EXPECT_CALL(foo, DoThis(_, _)) .WillOnce(InvokeArgument<1>(5)); // Will execute (*fp)(5), where fp is the // second argument DoThis() receives. ``` What if the callable takes an argument by reference? No problem - just wrap it inside `ByRef()`: ``` ... MOCK_METHOD1(Bar, bool(bool (*fp)(int, const Helper&))); ... using ::testing::_; using ::testing::ByRef; using ::testing::InvokeArgument; ... MockFoo foo; Helper helper; ... EXPECT_CALL(foo, Bar(_)) .WillOnce(InvokeArgument<0>(5, ByRef(helper))); // ByRef(helper) guarantees that a reference to helper, not a copy of it, // will be passed to the callable. ``` What if the callable takes an argument by reference and we do **not** wrap the argument in `ByRef()`? Then `InvokeArgument()` will _make a copy_ of the argument, and pass a _reference to the copy_, instead of a reference to the original value, to the callable. This is especially handy when the argument is a temporary value: ``` ... MOCK_METHOD1(DoThat, bool(bool (*f)(const double& x, const string& s))); ... using ::testing::_; using ::testing::InvokeArgument; ... MockFoo foo; ... EXPECT_CALL(foo, DoThat(_)) .WillOnce(InvokeArgument<0>(5.0, string("Hi"))); // Will execute (*f)(5.0, string("Hi")), where f is the function pointer // DoThat() receives. Note that the values 5.0 and string("Hi") are // temporary and dead once the EXPECT_CALL() statement finishes. Yet // it's fine to perform this action later, since a copy of the values // are kept inside the InvokeArgument action. ``` ## Ignoring an Action's Result ## Sometimes you have an action that returns _something_, but you need an action that returns `void` (perhaps you want to use it in a mock function that returns `void`, or perhaps it needs to be used in `DoAll()` and it's not the last in the list). `IgnoreResult()` lets you do that. For example: ``` using ::testing::_; using ::testing::Invoke; using ::testing::Return; int Process(const MyData& data); string DoSomething(); class MockFoo : public Foo { public: MOCK_METHOD1(Abc, void(const MyData& data)); MOCK_METHOD0(Xyz, bool()); }; ... MockFoo foo; EXPECT_CALL(foo, Abc(_)) // .WillOnce(Invoke(Process)); // The above line won't compile as Process() returns int but Abc() needs // to return void. .WillOnce(IgnoreResult(Invoke(Process))); EXPECT_CALL(foo, Xyz()) .WillOnce(DoAll(IgnoreResult(Invoke(DoSomething)), // Ignores the string DoSomething() returns. Return(true))); ``` Note that you **cannot** use `IgnoreResult()` on an action that already returns `void`. Doing so will lead to ugly compiler errors. ## Selecting an Action's Arguments ## Say you have a mock function `Foo()` that takes seven arguments, and you have a custom action that you want to invoke when `Foo()` is called. Trouble is, the custom action only wants three arguments: ``` using ::testing::_; using ::testing::Invoke; ... MOCK_METHOD7(Foo, bool(bool visible, const string& name, int x, int y, const map<pair<int, int>, double>& weight, double min_weight, double max_wight)); ... bool IsVisibleInQuadrant1(bool visible, int x, int y) { return visible && x >= 0 && y >= 0; } ... EXPECT_CALL(mock, Foo(_, _, _, _, _, _, _)) .WillOnce(Invoke(IsVisibleInQuadrant1)); // Uh, won't compile. :-( ``` To please the compiler God, you can to define an "adaptor" that has the same signature as `Foo()` and calls the custom action with the right arguments: ``` using ::testing::_; using ::testing::Invoke; bool MyIsVisibleInQuadrant1(bool visible, const string& name, int x, int y, const map<pair<int, int>, double>& weight, double min_weight, double max_wight) { return IsVisibleInQuadrant1(visible, x, y); } ... EXPECT_CALL(mock, Foo(_, _, _, _, _, _, _)) .WillOnce(Invoke(MyIsVisibleInQuadrant1)); // Now it works. ``` But isn't this awkward? Google Mock provides a generic _action adaptor_, so you can spend your time minding more important business than writing your own adaptors. Here's the syntax: ``` WithArgs<N1, N2, ..., Nk>(action) ``` creates an action that passes the arguments of the mock function at the given indices (0-based) to the inner `action` and performs it. Using `WithArgs`, our original example can be written as: ``` using ::testing::_; using ::testing::Invoke; using ::testing::WithArgs; ... EXPECT_CALL(mock, Foo(_, _, _, _, _, _, _)) .WillOnce(WithArgs<0, 2, 3>(Invoke(IsVisibleInQuadrant1))); // No need to define your own adaptor. ``` For better readability, Google Mock also gives you: * `WithoutArgs(action)` when the inner `action` takes _no_ argument, and * `WithArg<N>(action)` (no `s` after `Arg`) when the inner `action` takes _one_ argument. As you may have realized, `InvokeWithoutArgs(...)` is just syntactic sugar for `WithoutArgs(Invoke(...))`. Here are more tips: * The inner action used in `WithArgs` and friends does not have to be `Invoke()` -- it can be anything. * You can repeat an argument in the argument list if necessary, e.g. `WithArgs<2, 3, 3, 5>(...)`. * You can change the order of the arguments, e.g. `WithArgs<3, 2, 1>(...)`. * The types of the selected arguments do _not_ have to match the signature of the inner action exactly. It works as long as they can be implicitly converted to the corresponding arguments of the inner action. For example, if the 4-th argument of the mock function is an `int` and `my_action` takes a `double`, `WithArg<4>(my_action)` will work. ## Ignoring Arguments in Action Functions ## The selecting-an-action's-arguments recipe showed us one way to make a mock function and an action with incompatible argument lists fit together. The downside is that wrapping the action in `WithArgs<...>()` can get tedious for people writing the tests. If you are defining a function, method, or functor to be used with `Invoke*()`, and you are not interested in some of its arguments, an alternative to `WithArgs` is to declare the uninteresting arguments as `Unused`. This makes the definition less cluttered and less fragile in case the types of the uninteresting arguments change. It could also increase the chance the action function can be reused. For example, given ``` MOCK_METHOD3(Foo, double(const string& label, double x, double y)); MOCK_METHOD3(Bar, double(int index, double x, double y)); ``` instead of ``` using ::testing::_; using ::testing::Invoke; double DistanceToOriginWithLabel(const string& label, double x, double y) { return sqrt(x*x + y*y); } double DistanceToOriginWithIndex(int index, double x, double y) { return sqrt(x*x + y*y); } ... EXEPCT_CALL(mock, Foo("abc", _, _)) .WillOnce(Invoke(DistanceToOriginWithLabel)); EXEPCT_CALL(mock, Bar(5, _, _)) .WillOnce(Invoke(DistanceToOriginWithIndex)); ``` you could write ``` using ::testing::_; using ::testing::Invoke; using ::testing::Unused; double DistanceToOrigin(Unused, double x, double y) { return sqrt(x*x + y*y); } ... EXEPCT_CALL(mock, Foo("abc", _, _)) .WillOnce(Invoke(DistanceToOrigin)); EXEPCT_CALL(mock, Bar(5, _, _)) .WillOnce(Invoke(DistanceToOrigin)); ``` ## Sharing Actions ## Just like matchers, a Google Mock action object consists of a pointer to a ref-counted implementation object. Therefore copying actions is also allowed and very efficient. When the last action that references the implementation object dies, the implementation object will be deleted. If you have some complex action that you want to use again and again, you may not have to build it from scratch everytime. If the action doesn't have an internal state (i.e. if it always does the same thing no matter how many times it has been called), you can assign it to an action variable and use that variable repeatedly. For example: ``` Action<bool(int*)> set_flag = DoAll(SetArgPointee<0>(5), Return(true)); ... use set_flag in .WillOnce() and .WillRepeatedly() ... ``` However, if the action has its own state, you may be surprised if you share the action object. Suppose you have an action factory `IncrementCounter(init)` which creates an action that increments and returns a counter whose initial value is `init`, using two actions created from the same expression and using a shared action will exihibit different behaviors. Example: ``` EXPECT_CALL(foo, DoThis()) .WillRepeatedly(IncrementCounter(0)); EXPECT_CALL(foo, DoThat()) .WillRepeatedly(IncrementCounter(0)); foo.DoThis(); // Returns 1. foo.DoThis(); // Returns 2. foo.DoThat(); // Returns 1 - Blah() uses a different // counter than Bar()'s. ``` versus ``` Action<int()> increment = IncrementCounter(0); EXPECT_CALL(foo, DoThis()) .WillRepeatedly(increment); EXPECT_CALL(foo, DoThat()) .WillRepeatedly(increment); foo.DoThis(); // Returns 1. foo.DoThis(); // Returns 2. foo.DoThat(); // Returns 3 - the counter is shared. ``` # Misc Recipes on Using Google Mock # ## Mocking Methods That Use Move-Only Types ## C++11 introduced <em>move-only types</em>. A move-only-typed value can be moved from one object to another, but cannot be copied. `std::unique_ptr<T>` is probably the most commonly used move-only type. Mocking a method that takes and/or returns move-only types presents some challenges, but nothing insurmountable. This recipe shows you how you can do it. Let’s say we are working on a fictional project that lets one post and share snippets called “buzzes”. Your code uses these types: ``` enum class AccessLevel { kInternal, kPublic }; class Buzz { public: explicit Buzz(AccessLevel access) { … } ... }; class Buzzer { public: virtual ~Buzzer() {} virtual std::unique_ptr<Buzz> MakeBuzz(const std::string& text) = 0; virtual bool ShareBuzz(std::unique_ptr<Buzz> buzz, Time timestamp) = 0; ... }; ``` A `Buzz` object represents a snippet being posted. A class that implements the `Buzzer` interface is capable of creating and sharing `Buzz`. Methods in `Buzzer` may return a `unique_ptr<Buzz>` or take a `unique_ptr<Buzz>`. Now we need to mock `Buzzer` in our tests. To mock a method that returns a move-only type, you just use the familiar `MOCK_METHOD` syntax as usual: ``` class MockBuzzer : public Buzzer { public: MOCK_METHOD1(MakeBuzz, std::unique_ptr<Buzz>(const std::string& text)); }; ``` However, if you attempt to use the same `MOCK_METHOD` pattern to mock a method that takes a move-only parameter, you’ll get a compiler error currently: ``` // Does NOT compile! MOCK_METHOD2(ShareBuzz, bool(std::unique_ptr<Buzz> buzz, Time timestamp)); ``` While it’s highly desirable to make this syntax just work, it’s not trivial and the work hasn’t been done yet. Fortunately, there is a trick you can apply today to get something that works nearly as well as this. The trick, is to delegate the `ShareBuzz()` method to a mock method (let’s call it `DoShareBuzz()`) that does not take move-only parameters: ``` class MockBuzzer : public Buzzer { public: MOCK_METHOD1(MakeBuzz, std::unique_ptr<Buzz>(const std::string& text)); MOCK_METHOD2(DoShareBuzz, bool(Buzz* buzz, Time timestamp)); bool ShareBuzz(std::unique_ptr<Buzz> buzz, Time timestamp) { return DoShareBuzz(buzz.get(), timestamp); } }; ``` Note that there's no need to define or declare `DoShareBuzz()` in a base class. You only need to define it as a `MOCK_METHOD` in the mock class. Now that we have the mock class defined, we can use it in tests. In the following code examples, we assume that we have defined a `MockBuzzer` object named `mock_buzzer_`: ``` MockBuzzer mock_buzzer_; ``` First let’s see how we can set expectations on the `MakeBuzz()` method, which returns a `unique_ptr<Buzz>`. As usual, if you set an expectation without an action (i.e. the `.WillOnce()` or `.WillRepeated()` clause), when that expectation fires, the default action for that method will be taken. Since `unique_ptr<>` has a default constructor that returns a null `unique_ptr`, that’s what you’ll get if you don’t specify an action: ``` // Use the default action. EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")); // Triggers the previous EXPECT_CALL. EXPECT_EQ(nullptr, mock_buzzer_.MakeBuzz("hello")); ``` If you are not happy with the default action, you can tweak it. Depending on what you need, you may either tweak the default action for a specific (mock object, mock method) combination using `ON_CALL()`, or you may tweak the default action for all mock methods that return a specific type. The usage of `ON_CALL()` is similar to `EXPECT_CALL()`, so we’ll skip it and just explain how to do the latter (tweaking the default action for a specific return type). You do this via the `DefaultValue<>::SetFactory()` and `DefaultValue<>::Clear()` API: ``` // Sets the default action for return type std::unique_ptr<Buzz> to // creating a new Buzz every time. DefaultValue<std::unique_ptr<Buzz>>::SetFactory( [] { return MakeUnique<Buzz>(AccessLevel::kInternal); }); // When this fires, the default action of MakeBuzz() will run, which // will return a new Buzz object. EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")).Times(AnyNumber()); auto buzz1 = mock_buzzer_.MakeBuzz("hello"); auto buzz2 = mock_buzzer_.MakeBuzz("hello"); EXPECT_NE(nullptr, buzz1); EXPECT_NE(nullptr, buzz2); EXPECT_NE(buzz1, buzz2); // Resets the default action for return type std::unique_ptr<Buzz>, // to avoid interfere with other tests. DefaultValue<std::unique_ptr<Buzz>>::Clear(); ``` What if you want the method to do something other than the default action? If you just need to return a pre-defined move-only value, you can use the `Return(ByMove(...))` action: ``` // When this fires, the unique_ptr<> specified by ByMove(...) will // be returned. EXPECT_CALL(mock_buzzer_, MakeBuzz("world")) .WillOnce(Return(ByMove(MakeUnique<Buzz>(AccessLevel::kInternal)))); EXPECT_NE(nullptr, mock_buzzer_.MakeBuzz("world")); ``` Note that `ByMove()` is essential here - if you drop it, the code won’t compile. Quiz time! What do you think will happen if a `Return(ByMove(...))` action is performed more than once (e.g. you write `….WillRepeatedly(Return(ByMove(...)));`)? Come think of it, after the first time the action runs, the source value will be consumed (since it’s a move-only value), so the next time around, there’s no value to move from -- you’ll get a run-time error that `Return(ByMove(...))` can only be run once. If you need your mock method to do more than just moving a pre-defined value, remember that you can always use `Invoke()` to call a lambda or a callable object, which can do pretty much anything you want: ``` EXPECT_CALL(mock_buzzer_, MakeBuzz("x")) .WillRepeatedly(Invoke([](const std::string& text) { return std::make_unique<Buzz>(AccessLevel::kInternal); })); EXPECT_NE(nullptr, mock_buzzer_.MakeBuzz("x")); EXPECT_NE(nullptr, mock_buzzer_.MakeBuzz("x")); ``` Every time this `EXPECT_CALL` fires, a new `unique_ptr<Buzz>` will be created and returned. You cannot do this with `Return(ByMove(...))`. Now there’s one topic we haven’t covered: how do you set expectations on `ShareBuzz()`, which takes a move-only-typed parameter? The answer is you don’t. Instead, you set expectations on the `DoShareBuzz()` mock method (remember that we defined a `MOCK_METHOD` for `DoShareBuzz()`, not `ShareBuzz()`): ``` EXPECT_CALL(mock_buzzer_, DoShareBuzz(NotNull(), _)); // When one calls ShareBuzz() on the MockBuzzer like this, the call is // forwarded to DoShareBuzz(), which is mocked. Therefore this statement // will trigger the above EXPECT_CALL. mock_buzzer_.ShareBuzz(MakeUnique&lt;Buzz&gt;(AccessLevel::kInternal), ::base::Now()); ``` Some of you may have spotted one problem with this approach: the `DoShareBuzz()` mock method differs from the real `ShareBuzz()` method in that it cannot take ownership of the buzz parameter - `ShareBuzz()` will always delete buzz after `DoShareBuzz()` returns. What if you need to save the buzz object somewhere for later use when `ShareBuzz()` is called? Indeed, you'd be stuck. Another problem with the `DoShareBuzz()` we had is that it can surprise people reading or maintaining the test, as one would expect that `DoShareBuzz()` has (logically) the same contract as `ShareBuzz()`. Fortunately, these problems can be fixed with a bit more code. Let's try to get it right this time: ``` class MockBuzzer : public Buzzer { public: MockBuzzer() { // Since DoShareBuzz(buzz, time) is supposed to take ownership of // buzz, define a default behavior for DoShareBuzz(buzz, time) to // delete buzz. ON_CALL(*this, DoShareBuzz(_, _)) .WillByDefault(Invoke([](Buzz* buzz, Time timestamp) { delete buzz; return true; })); } MOCK_METHOD1(MakeBuzz, std::unique_ptr<Buzz>(const std::string& text)); // Takes ownership of buzz. MOCK_METHOD2(DoShareBuzz, bool(Buzz* buzz, Time timestamp)); bool ShareBuzz(std::unique_ptr<Buzz> buzz, Time timestamp) { return DoShareBuzz(buzz.release(), timestamp); } }; ``` Now, the mock `DoShareBuzz()` method is free to save the buzz argument for later use if this is what you want: ``` std::unique_ptr<Buzz> intercepted_buzz; EXPECT_CALL(mock_buzzer_, DoShareBuzz(NotNull(), _)) .WillOnce(Invoke([&amp;intercepted_buzz](Buzz* buzz, Time timestamp) { // Save buzz in intercepted_buzz for analysis later. intercepted_buzz.reset(buzz); return false; })); mock_buzzer_.ShareBuzz(std::make_unique<Buzz>(AccessLevel::kInternal), Now()); EXPECT_NE(nullptr, intercepted_buzz); ``` Using the tricks covered in this recipe, you are now able to mock methods that take and/or return move-only types. Put your newly-acquired power to good use - when you design a new API, you can now feel comfortable using `unique_ptrs` as appropriate, without fearing that doing so will compromise your tests. ## Making the Compilation Faster ## Believe it or not, the _vast majority_ of the time spent on compiling a mock class is in generating its constructor and destructor, as they perform non-trivial tasks (e.g. verification of the expectations). What's more, mock methods with different signatures have different types and thus their constructors/destructors need to be generated by the compiler separately. As a result, if you mock many different types of methods, compiling your mock class can get really slow. If you are experiencing slow compilation, you can move the definition of your mock class' constructor and destructor out of the class body and into a `.cpp` file. This way, even if you `#include` your mock class in N files, the compiler only needs to generate its constructor and destructor once, resulting in a much faster compilation. Let's illustrate the idea using an example. Here's the definition of a mock class before applying this recipe: ``` // File mock_foo.h. ... class MockFoo : public Foo { public: // Since we don't declare the constructor or the destructor, // the compiler will generate them in every translation unit // where this mock class is used. MOCK_METHOD0(DoThis, int()); MOCK_METHOD1(DoThat, bool(const char* str)); ... more mock methods ... }; ``` After the change, it would look like: ``` // File mock_foo.h. ... class MockFoo : public Foo { public: // The constructor and destructor are declared, but not defined, here. MockFoo(); virtual ~MockFoo(); MOCK_METHOD0(DoThis, int()); MOCK_METHOD1(DoThat, bool(const char* str)); ... more mock methods ... }; ``` and ``` // File mock_foo.cpp. #include "path/to/mock_foo.h" // The definitions may appear trivial, but the functions actually do a // lot of things through the constructors/destructors of the member // variables used to implement the mock methods. MockFoo::MockFoo() {} MockFoo::~MockFoo() {} ``` ## Forcing a Verification ## When it's being destoyed, your friendly mock object will automatically verify that all expectations on it have been satisfied, and will generate [Google Test](../../googletest/) failures if not. This is convenient as it leaves you with one less thing to worry about. That is, unless you are not sure if your mock object will be destoyed. How could it be that your mock object won't eventually be destroyed? Well, it might be created on the heap and owned by the code you are testing. Suppose there's a bug in that code and it doesn't delete the mock object properly - you could end up with a passing test when there's actually a bug. Using a heap checker is a good idea and can alleviate the concern, but its implementation may not be 100% reliable. So, sometimes you do want to _force_ Google Mock to verify a mock object before it is (hopefully) destructed. You can do this with `Mock::VerifyAndClearExpectations(&mock_object)`: ``` TEST(MyServerTest, ProcessesRequest) { using ::testing::Mock; MockFoo* const foo = new MockFoo; EXPECT_CALL(*foo, ...)...; // ... other expectations ... // server now owns foo. MyServer server(foo); server.ProcessRequest(...); // In case that server's destructor will forget to delete foo, // this will verify the expectations anyway. Mock::VerifyAndClearExpectations(foo); } // server is destroyed when it goes out of scope here. ``` **Tip:** The `Mock::VerifyAndClearExpectations()` function returns a `bool` to indicate whether the verification was successful (`true` for yes), so you can wrap that function call inside a `ASSERT_TRUE()` if there is no point going further when the verification has failed. ## Using Check Points ## Sometimes you may want to "reset" a mock object at various check points in your test: at each check point, you verify that all existing expectations on the mock object have been satisfied, and then you set some new expectations on it as if it's newly created. This allows you to work with a mock object in "phases" whose sizes are each manageable. One such scenario is that in your test's `SetUp()` function, you may want to put the object you are testing into a certain state, with the help from a mock object. Once in the desired state, you want to clear all expectations on the mock, such that in the `TEST_F` body you can set fresh expectations on it. As you may have figured out, the `Mock::VerifyAndClearExpectations()` function we saw in the previous recipe can help you here. Or, if you are using `ON_CALL()` to set default actions on the mock object and want to clear the default actions as well, use `Mock::VerifyAndClear(&mock_object)` instead. This function does what `Mock::VerifyAndClearExpectations(&mock_object)` does and returns the same `bool`, **plus** it clears the `ON_CALL()` statements on `mock_object` too. Another trick you can use to achieve the same effect is to put the expectations in sequences and insert calls to a dummy "check-point" function at specific places. Then you can verify that the mock function calls do happen at the right time. For example, if you are exercising code: ``` Foo(1); Foo(2); Foo(3); ``` and want to verify that `Foo(1)` and `Foo(3)` both invoke `mock.Bar("a")`, but `Foo(2)` doesn't invoke anything. You can write: ``` using ::testing::MockFunction; TEST(FooTest, InvokesBarCorrectly) { MyMock mock; // Class MockFunction<F> has exactly one mock method. It is named // Call() and has type F. MockFunction<void(string check_point_name)> check; { InSequence s; EXPECT_CALL(mock, Bar("a")); EXPECT_CALL(check, Call("1")); EXPECT_CALL(check, Call("2")); EXPECT_CALL(mock, Bar("a")); } Foo(1); check.Call("1"); Foo(2); check.Call("2"); Foo(3); } ``` The expectation spec says that the first `Bar("a")` must happen before check point "1", the second `Bar("a")` must happen after check point "2", and nothing should happen between the two check points. The explicit check points make it easy to tell which `Bar("a")` is called by which call to `Foo()`. ## Mocking Destructors ## Sometimes you want to make sure a mock object is destructed at the right time, e.g. after `bar->A()` is called but before `bar->B()` is called. We already know that you can specify constraints on the order of mock function calls, so all we need to do is to mock the destructor of the mock function. This sounds simple, except for one problem: a destructor is a special function with special syntax and special semantics, and the `MOCK_METHOD0` macro doesn't work for it: ``` MOCK_METHOD0(~MockFoo, void()); // Won't compile! ``` The good news is that you can use a simple pattern to achieve the same effect. First, add a mock function `Die()` to your mock class and call it in the destructor, like this: ``` class MockFoo : public Foo { ... // Add the following two lines to the mock class. MOCK_METHOD0(Die, void()); virtual ~MockFoo() { Die(); } }; ``` (If the name `Die()` clashes with an existing symbol, choose another name.) Now, we have translated the problem of testing when a `MockFoo` object dies to testing when its `Die()` method is called: ``` MockFoo* foo = new MockFoo; MockBar* bar = new MockBar; ... { InSequence s; // Expects *foo to die after bar->A() and before bar->B(). EXPECT_CALL(*bar, A()); EXPECT_CALL(*foo, Die()); EXPECT_CALL(*bar, B()); } ``` And that's that. ## Using Google Mock and Threads ## **IMPORTANT NOTE:** What we describe in this recipe is **ONLY** true on platforms where Google Mock is thread-safe. Currently these are only platforms that support the pthreads library (this includes Linux and Mac). To make it thread-safe on other platforms we only need to implement some synchronization operations in `"gtest/internal/gtest-port.h"`. In a **unit** test, it's best if you could isolate and test a piece of code in a single-threaded context. That avoids race conditions and dead locks, and makes debugging your test much easier. Yet many programs are multi-threaded, and sometimes to test something we need to pound on it from more than one thread. Google Mock works for this purpose too. Remember the steps for using a mock: 1. Create a mock object `foo`. 1. Set its default actions and expectations using `ON_CALL()` and `EXPECT_CALL()`. 1. The code under test calls methods of `foo`. 1. Optionally, verify and reset the mock. 1. Destroy the mock yourself, or let the code under test destroy it. The destructor will automatically verify it. If you follow the following simple rules, your mocks and threads can live happily together: * Execute your _test code_ (as opposed to the code being tested) in _one_ thread. This makes your test easy to follow. * Obviously, you can do step #1 without locking. * When doing step #2 and #5, make sure no other thread is accessing `foo`. Obvious too, huh? * #3 and #4 can be done either in one thread or in multiple threads - anyway you want. Google Mock takes care of the locking, so you don't have to do any - unless required by your test logic. If you violate the rules (for example, if you set expectations on a mock while another thread is calling its methods), you get undefined behavior. That's not fun, so don't do it. Google Mock guarantees that the action for a mock function is done in the same thread that called the mock function. For example, in ``` EXPECT_CALL(mock, Foo(1)) .WillOnce(action1); EXPECT_CALL(mock, Foo(2)) .WillOnce(action2); ``` if `Foo(1)` is called in thread 1 and `Foo(2)` is called in thread 2, Google Mock will execute `action1` in thread 1 and `action2` in thread 2. Google Mock does _not_ impose a sequence on actions performed in different threads (doing so may create deadlocks as the actions may need to cooperate). This means that the execution of `action1` and `action2` in the above example _may_ interleave. If this is a problem, you should add proper synchronization logic to `action1` and `action2` to make the test thread-safe. Also, remember that `DefaultValue<T>` is a global resource that potentially affects _all_ living mock objects in your program. Naturally, you won't want to mess with it from multiple threads or when there still are mocks in action. ## Controlling How Much Information Google Mock Prints ## When Google Mock sees something that has the potential of being an error (e.g. a mock function with no expectation is called, a.k.a. an uninteresting call, which is allowed but perhaps you forgot to explicitly ban the call), it prints some warning messages, including the arguments of the function and the return value. Hopefully this will remind you to take a look and see if there is indeed a problem. Sometimes you are confident that your tests are correct and may not appreciate such friendly messages. Some other times, you are debugging your tests or learning about the behavior of the code you are testing, and wish you could observe every mock call that happens (including argument values and the return value). Clearly, one size doesn't fit all. You can control how much Google Mock tells you using the `--gmock_verbose=LEVEL` command-line flag, where `LEVEL` is a string with three possible values: * `info`: Google Mock will print all informational messages, warnings, and errors (most verbose). At this setting, Google Mock will also log any calls to the `ON_CALL/EXPECT_CALL` macros. * `warning`: Google Mock will print both warnings and errors (less verbose). This is the default. * `error`: Google Mock will print errors only (least verbose). Alternatively, you can adjust the value of that flag from within your tests like so: ``` ::testing::FLAGS_gmock_verbose = "error"; ``` Now, judiciously use the right flag to enable Google Mock serve you better! ## Gaining Super Vision into Mock Calls ## You have a test using Google Mock. It fails: Google Mock tells you that some expectations aren't satisfied. However, you aren't sure why: Is there a typo somewhere in the matchers? Did you mess up the order of the `EXPECT_CALL`s? Or is the code under test doing something wrong? How can you find out the cause? Won't it be nice if you have X-ray vision and can actually see the trace of all `EXPECT_CALL`s and mock method calls as they are made? For each call, would you like to see its actual argument values and which `EXPECT_CALL` Google Mock thinks it matches? You can unlock this power by running your test with the `--gmock_verbose=info` flag. For example, given the test program: ``` using testing::_; using testing::HasSubstr; using testing::Return; class MockFoo { public: MOCK_METHOD2(F, void(const string& x, const string& y)); }; TEST(Foo, Bar) { MockFoo mock; EXPECT_CALL(mock, F(_, _)).WillRepeatedly(Return()); EXPECT_CALL(mock, F("a", "b")); EXPECT_CALL(mock, F("c", HasSubstr("d"))); mock.F("a", "good"); mock.F("a", "b"); } ``` if you run it with `--gmock_verbose=info`, you will see this output: ``` [ RUN ] Foo.Bar foo_test.cc:14: EXPECT_CALL(mock, F(_, _)) invoked foo_test.cc:15: EXPECT_CALL(mock, F("a", "b")) invoked foo_test.cc:16: EXPECT_CALL(mock, F("c", HasSubstr("d"))) invoked foo_test.cc:14: Mock function call matches EXPECT_CALL(mock, F(_, _))... Function call: F(@0x7fff7c8dad40"a", @0x7fff7c8dad10"good") foo_test.cc:15: Mock function call matches EXPECT_CALL(mock, F("a", "b"))... Function call: F(@0x7fff7c8dada0"a", @0x7fff7c8dad70"b") foo_test.cc:16: Failure Actual function call count doesn't match EXPECT_CALL(mock, F("c", HasSubstr("d")))... Expected: to be called once Actual: never called - unsatisfied and active [ FAILED ] Foo.Bar ``` Suppose the bug is that the `"c"` in the third `EXPECT_CALL` is a typo and should actually be `"a"`. With the above message, you should see that the actual `F("a", "good")` call is matched by the first `EXPECT_CALL`, not the third as you thought. From that it should be obvious that the third `EXPECT_CALL` is written wrong. Case solved. ## Running Tests in Emacs ## If you build and run your tests in Emacs, the source file locations of Google Mock and [Google Test](../../googletest/) errors will be highlighted. Just press `<Enter>` on one of them and you'll be taken to the offending line. Or, you can just type `C-x `` to jump to the next error. To make it even easier, you can add the following lines to your `~/.emacs` file: ``` (global-set-key "\M-m" 'compile) ; m is for make (global-set-key [M-down] 'next-error) (global-set-key [M-up] '(lambda () (interactive) (next-error -1))) ``` Then you can type `M-m` to start a build, or `M-up`/`M-down` to move back and forth between errors. ## Fusing Google Mock Source Files ## Google Mock's implementation consists of dozens of files (excluding its own tests). Sometimes you may want them to be packaged up in fewer files instead, such that you can easily copy them to a new machine and start hacking there. For this we provide an experimental Python script `fuse_gmock_files.py` in the `scripts/` directory (starting with release 1.2.0). Assuming you have Python 2.4 or above installed on your machine, just go to that directory and run ``` python fuse_gmock_files.py OUTPUT_DIR ``` and you should see an `OUTPUT_DIR` directory being created with files `gtest/gtest.h`, `gmock/gmock.h`, and `gmock-gtest-all.cc` in it. These three files contain everything you need to use Google Mock (and Google Test). Just copy them to anywhere you want and you are ready to write tests and use mocks. You can use the [scrpts/test/Makefile](../scripts/test/Makefile) file as an example on how to compile your tests against them. # Extending Google Mock # ## Writing New Matchers Quickly ## The `MATCHER*` family of macros can be used to define custom matchers easily. The syntax: ``` MATCHER(name, description_string_expression) { statements; } ``` will define a matcher with the given name that executes the statements, which must return a `bool` to indicate if the match succeeds. Inside the statements, you can refer to the value being matched by `arg`, and refer to its type by `arg_type`. The description string is a `string`-typed expression that documents what the matcher does, and is used to generate the failure message when the match fails. It can (and should) reference the special `bool` variable `negation`, and should evaluate to the description of the matcher when `negation` is `false`, or that of the matcher's negation when `negation` is `true`. For convenience, we allow the description string to be empty (`""`), in which case Google Mock will use the sequence of words in the matcher name as the description. For example: ``` MATCHER(IsDivisibleBy7, "") { return (arg % 7) == 0; } ``` allows you to write ``` // Expects mock_foo.Bar(n) to be called where n is divisible by 7. EXPECT_CALL(mock_foo, Bar(IsDivisibleBy7())); ``` or, ``` using ::testing::Not; ... EXPECT_THAT(some_expression, IsDivisibleBy7()); EXPECT_THAT(some_other_expression, Not(IsDivisibleBy7())); ``` If the above assertions fail, they will print something like: ``` Value of: some_expression Expected: is divisible by 7 Actual: 27 ... Value of: some_other_expression Expected: not (is divisible by 7) Actual: 21 ``` where the descriptions `"is divisible by 7"` and `"not (is divisible by 7)"` are automatically calculated from the matcher name `IsDivisibleBy7`. As you may have noticed, the auto-generated descriptions (especially those for the negation) may not be so great. You can always override them with a string expression of your own: ``` MATCHER(IsDivisibleBy7, std::string(negation ? "isn't" : "is") + " divisible by 7") { return (arg % 7) == 0; } ``` Optionally, you can stream additional information to a hidden argument named `result_listener` to explain the match result. For example, a better definition of `IsDivisibleBy7` is: ``` MATCHER(IsDivisibleBy7, "") { if ((arg % 7) == 0) return true; *result_listener << "the remainder is " << (arg % 7); return false; } ``` With this definition, the above assertion will give a better message: ``` Value of: some_expression Expected: is divisible by 7 Actual: 27 (the remainder is 6) ``` You should let `MatchAndExplain()` print _any additional information_ that can help a user understand the match result. Note that it should explain why the match succeeds in case of a success (unless it's obvious) - this is useful when the matcher is used inside `Not()`. There is no need to print the argument value itself, as Google Mock already prints it for you. **Notes:** 1. The type of the value being matched (`arg_type`) is determined by the context in which you use the matcher and is supplied to you by the compiler, so you don't need to worry about declaring it (nor can you). This allows the matcher to be polymorphic. For example, `IsDivisibleBy7()` can be used to match any type where the value of `(arg % 7) == 0` can be implicitly converted to a `bool`. In the `Bar(IsDivisibleBy7())` example above, if method `Bar()` takes an `int`, `arg_type` will be `int`; if it takes an `unsigned long`, `arg_type` will be `unsigned long`; and so on. 1. Google Mock doesn't guarantee when or how many times a matcher will be invoked. Therefore the matcher logic must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters). This requirement must be satisfied no matter how you define the matcher (e.g. using one of the methods described in the following recipes). In particular, a matcher can never call a mock function, as that will affect the state of the mock object and Google Mock. ## Writing New Parameterized Matchers Quickly ## Sometimes you'll want to define a matcher that has parameters. For that you can use the macro: ``` MATCHER_P(name, param_name, description_string) { statements; } ``` where the description string can be either `""` or a string expression that references `negation` and `param_name`. For example: ``` MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } ``` will allow you to write: ``` EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); ``` which may lead to this message (assuming `n` is 10): ``` Value of: Blah("a") Expected: has absolute value 10 Actual: -9 ``` Note that both the matcher description and its parameter are printed, making the message human-friendly. In the matcher definition body, you can write `foo_type` to reference the type of a parameter named `foo`. For example, in the body of `MATCHER_P(HasAbsoluteValue, value)` above, you can write `value_type` to refer to the type of `value`. Google Mock also provides `MATCHER_P2`, `MATCHER_P3`, ..., up to `MATCHER_P10` to support multi-parameter matchers: ``` MATCHER_Pk(name, param_1, ..., param_k, description_string) { statements; } ``` Please note that the custom description string is for a particular **instance** of the matcher, where the parameters have been bound to actual values. Therefore usually you'll want the parameter values to be part of the description. Google Mock lets you do that by referencing the matcher parameters in the description string expression. For example, ``` using ::testing::PrintToString; MATCHER_P2(InClosedRange, low, hi, std::string(negation ? "isn't" : "is") + " in range [" + PrintToString(low) + ", " + PrintToString(hi) + "]") { return low <= arg && arg <= hi; } ... EXPECT_THAT(3, InClosedRange(4, 6)); ``` would generate a failure that contains the message: ``` Expected: is in range [4, 6] ``` If you specify `""` as the description, the failure message will contain the sequence of words in the matcher name followed by the parameter values printed as a tuple. For example, ``` MATCHER_P2(InClosedRange, low, hi, "") { ... } ... EXPECT_THAT(3, InClosedRange(4, 6)); ``` would generate a failure that contains the text: ``` Expected: in closed range (4, 6) ``` For the purpose of typing, you can view ``` MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } ``` as shorthand for ``` template <typename p1_type, ..., typename pk_type> FooMatcherPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } ``` When you write `Foo(v1, ..., vk)`, the compiler infers the types of the parameters `v1`, ..., and `vk` for you. If you are not happy with the result of the type inference, you can specify the types by explicitly instantiating the template, as in `Foo<long, bool>(5, false)`. As said earlier, you don't get to (or need to) specify `arg_type` as that's determined by the context in which the matcher is used. You can assign the result of expression `Foo(p1, ..., pk)` to a variable of type `FooMatcherPk<p1_type, ..., pk_type>`. This can be useful when composing matchers. Matchers that don't have a parameter or have only one parameter have special types: you can assign `Foo()` to a `FooMatcher`-typed variable, and assign `Foo(p)` to a `FooMatcherP<p_type>`-typed variable. While you can instantiate a matcher template with reference types, passing the parameters by pointer usually makes your code more readable. If, however, you still want to pass a parameter by reference, be aware that in the failure message generated by the matcher you will see the value of the referenced object but not its address. You can overload matchers with different numbers of parameters: ``` MATCHER_P(Blah, a, description_string_1) { ... } MATCHER_P2(Blah, a, b, description_string_2) { ... } ``` While it's tempting to always use the `MATCHER*` macros when defining a new matcher, you should also consider implementing `MatcherInterface` or using `MakePolymorphicMatcher()` instead (see the recipes that follow), especially if you need to use the matcher a lot. While these approaches require more work, they give you more control on the types of the value being matched and the matcher parameters, which in general leads to better compiler error messages that pay off in the long run. They also allow overloading matchers based on parameter types (as opposed to just based on the number of parameters). ## Writing New Monomorphic Matchers ## A matcher of argument type `T` implements `::testing::MatcherInterface<T>` and does two things: it tests whether a value of type `T` matches the matcher, and can describe what kind of values it matches. The latter ability is used for generating readable error messages when expectations are violated. The interface looks like this: ``` class MatchResultListener { public: ... // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template <typename T> MatchResultListener& operator<<(const T& x); // Returns the underlying ostream. ::std::ostream* stream(); }; template <typename T> class MatcherInterface { public: virtual ~MatcherInterface(); // Returns true iff the matcher matches x; also explains the match // result to 'listener'. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Describes this matcher to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. virtual void DescribeNegationTo(::std::ostream* os) const; }; ``` If you need a custom matcher but `Truly()` is not a good option (for example, you may not be happy with the way `Truly(predicate)` describes itself, or you may want your matcher to be polymorphic as `Eq(value)` is), you can define a matcher to do whatever you want in two steps: first implement the matcher interface, and then define a factory function to create a matcher instance. The second step is not strictly needed but it makes the syntax of using the matcher nicer. For example, you can define a matcher to test whether an `int` is divisible by 7 and then use it like this: ``` using ::testing::MakeMatcher; using ::testing::Matcher; using ::testing::MatcherInterface; using ::testing::MatchResultListener; class DivisibleBy7Matcher : public MatcherInterface<int> { public: virtual bool MatchAndExplain(int n, MatchResultListener* listener) const { return (n % 7) == 0; } virtual void DescribeTo(::std::ostream* os) const { *os << "is divisible by 7"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "is not divisible by 7"; } }; inline Matcher<int> DivisibleBy7() { return MakeMatcher(new DivisibleBy7Matcher); } ... EXPECT_CALL(foo, Bar(DivisibleBy7())); ``` You may improve the matcher message by streaming additional information to the `listener` argument in `MatchAndExplain()`: ``` class DivisibleBy7Matcher : public MatcherInterface<int> { public: virtual bool MatchAndExplain(int n, MatchResultListener* listener) const { const int remainder = n % 7; if (remainder != 0) { *listener << "the remainder is " << remainder; } return remainder == 0; } ... }; ``` Then, `EXPECT_THAT(x, DivisibleBy7());` may general a message like this: ``` Value of: x Expected: is divisible by 7 Actual: 23 (the remainder is 2) ``` ## Writing New Polymorphic Matchers ## You've learned how to write your own matchers in the previous recipe. Just one problem: a matcher created using `MakeMatcher()` only works for one particular type of arguments. If you want a _polymorphic_ matcher that works with arguments of several types (for instance, `Eq(x)` can be used to match a `value` as long as `value` == `x` compiles -- `value` and `x` don't have to share the same type), you can learn the trick from `"gmock/gmock-matchers.h"` but it's a bit involved. Fortunately, most of the time you can define a polymorphic matcher easily with the help of `MakePolymorphicMatcher()`. Here's how you can define `NotNull()` as an example: ``` using ::testing::MakePolymorphicMatcher; using ::testing::MatchResultListener; using ::testing::NotNull; using ::testing::PolymorphicMatcher; class NotNullMatcher { public: // To implement a polymorphic matcher, first define a COPYABLE class // that has three members MatchAndExplain(), DescribeTo(), and // DescribeNegationTo(), like the following. // In this example, we want to use NotNull() with any pointer, so // MatchAndExplain() accepts a pointer of any type as its first argument. // In general, you can define MatchAndExplain() as an ordinary method or // a method template, or even overload it. template <typename T> bool MatchAndExplain(T* p, MatchResultListener* /* listener */) const { return p != NULL; } // Describes the property of a value matching this matcher. void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; } // Describes the property of a value NOT matching this matcher. void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // To construct a polymorphic matcher, pass an instance of the class // to MakePolymorphicMatcher(). Note the return type. inline PolymorphicMatcher<NotNullMatcher> NotNull() { return MakePolymorphicMatcher(NotNullMatcher()); } ... EXPECT_CALL(foo, Bar(NotNull())); // The argument must be a non-NULL pointer. ``` **Note:** Your polymorphic matcher class does **not** need to inherit from `MatcherInterface` or any other class, and its methods do **not** need to be virtual. Like in a monomorphic matcher, you may explain the match result by streaming additional information to the `listener` argument in `MatchAndExplain()`. ## Writing New Cardinalities ## A cardinality is used in `Times()` to tell Google Mock how many times you expect a call to occur. It doesn't have to be exact. For example, you can say `AtLeast(5)` or `Between(2, 4)`. If the built-in set of cardinalities doesn't suit you, you are free to define your own by implementing the following interface (in namespace `testing`): ``` class CardinalityInterface { public: virtual ~CardinalityInterface(); // Returns true iff call_count calls will satisfy this cardinality. virtual bool IsSatisfiedByCallCount(int call_count) const = 0; // Returns true iff call_count calls will saturate this cardinality. virtual bool IsSaturatedByCallCount(int call_count) const = 0; // Describes self to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; }; ``` For example, to specify that a call must occur even number of times, you can write ``` using ::testing::Cardinality; using ::testing::CardinalityInterface; using ::testing::MakeCardinality; class EvenNumberCardinality : public CardinalityInterface { public: virtual bool IsSatisfiedByCallCount(int call_count) const { return (call_count % 2) == 0; } virtual bool IsSaturatedByCallCount(int call_count) const { return false; } virtual void DescribeTo(::std::ostream* os) const { *os << "called even number of times"; } }; Cardinality EvenNumber() { return MakeCardinality(new EvenNumberCardinality); } ... EXPECT_CALL(foo, Bar(3)) .Times(EvenNumber()); ``` ## Writing New Actions Quickly ## If the built-in actions don't work for you, and you find it inconvenient to use `Invoke()`, you can use a macro from the `ACTION*` family to quickly define a new action that can be used in your code as if it's a built-in action. By writing ``` ACTION(name) { statements; } ``` in a namespace scope (i.e. not inside a class or function), you will define an action with the given name that executes the statements. The value returned by `statements` will be used as the return value of the action. Inside the statements, you can refer to the K-th (0-based) argument of the mock function as `argK`. For example: ``` ACTION(IncrementArg1) { return ++(*arg1); } ``` allows you to write ``` ... WillOnce(IncrementArg1()); ``` Note that you don't need to specify the types of the mock function arguments. Rest assured that your code is type-safe though: you'll get a compiler error if `*arg1` doesn't support the `++` operator, or if the type of `++(*arg1)` isn't compatible with the mock function's return type. Another example: ``` ACTION(Foo) { (*arg2)(5); Blah(); *arg1 = 0; return arg0; } ``` defines an action `Foo()` that invokes argument #2 (a function pointer) with 5, calls function `Blah()`, sets the value pointed to by argument #1 to 0, and returns argument #0. For more convenience and flexibility, you can also use the following pre-defined symbols in the body of `ACTION`: | `argK_type` | The type of the K-th (0-based) argument of the mock function | |:------------|:-------------------------------------------------------------| | `args` | All arguments of the mock function as a tuple | | `args_type` | The type of all arguments of the mock function as a tuple | | `return_type` | The return type of the mock function | | `function_type` | The type of the mock function | For example, when using an `ACTION` as a stub action for mock function: ``` int DoSomething(bool flag, int* ptr); ``` we have: | **Pre-defined Symbol** | **Is Bound To** | |:-----------------------|:----------------| | `arg0` | the value of `flag` | | `arg0_type` | the type `bool` | | `arg1` | the value of `ptr` | | `arg1_type` | the type `int*` | | `args` | the tuple `(flag, ptr)` | | `args_type` | the type `::testing::tuple<bool, int*>` | | `return_type` | the type `int` | | `function_type` | the type `int(bool, int*)` | ## Writing New Parameterized Actions Quickly ## Sometimes you'll want to parameterize an action you define. For that we have another macro ``` ACTION_P(name, param) { statements; } ``` For example, ``` ACTION_P(Add, n) { return arg0 + n; } ``` will allow you to write ``` // Returns argument #0 + 5. ... WillOnce(Add(5)); ``` For convenience, we use the term _arguments_ for the values used to invoke the mock function, and the term _parameters_ for the values used to instantiate an action. Note that you don't need to provide the type of the parameter either. Suppose the parameter is named `param`, you can also use the Google-Mock-defined symbol `param_type` to refer to the type of the parameter as inferred by the compiler. For example, in the body of `ACTION_P(Add, n)` above, you can write `n_type` for the type of `n`. Google Mock also provides `ACTION_P2`, `ACTION_P3`, and etc to support multi-parameter actions. For example, ``` ACTION_P2(ReturnDistanceTo, x, y) { double dx = arg0 - x; double dy = arg1 - y; return sqrt(dx*dx + dy*dy); } ``` lets you write ``` ... WillOnce(ReturnDistanceTo(5.0, 26.5)); ``` You can view `ACTION` as a degenerated parameterized action where the number of parameters is 0. You can also easily define actions overloaded on the number of parameters: ``` ACTION_P(Plus, a) { ... } ACTION_P2(Plus, a, b) { ... } ``` ## Restricting the Type of an Argument or Parameter in an ACTION ## For maximum brevity and reusability, the `ACTION*` macros don't ask you to provide the types of the mock function arguments and the action parameters. Instead, we let the compiler infer the types for us. Sometimes, however, we may want to be more explicit about the types. There are several tricks to do that. For example: ``` ACTION(Foo) { // Makes sure arg0 can be converted to int. int n = arg0; ... use n instead of arg0 here ... } ACTION_P(Bar, param) { // Makes sure the type of arg1 is const char*. ::testing::StaticAssertTypeEq<const char*, arg1_type>(); // Makes sure param can be converted to bool. bool flag = param; } ``` where `StaticAssertTypeEq` is a compile-time assertion in Google Test that verifies two types are the same. ## Writing New Action Templates Quickly ## Sometimes you want to give an action explicit template parameters that cannot be inferred from its value parameters. `ACTION_TEMPLATE()` supports that and can be viewed as an extension to `ACTION()` and `ACTION_P*()`. The syntax: ``` ACTION_TEMPLATE(ActionName, HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } ``` defines an action template that takes _m_ explicit template parameters and _n_ value parameters, where _m_ is between 1 and 10, and _n_ is between 0 and 10. `name_i` is the name of the i-th template parameter, and `kind_i` specifies whether it's a `typename`, an integral constant, or a template. `p_i` is the name of the i-th value parameter. Example: ``` // DuplicateArg<k, T>(output) converts the k-th argument of the mock // function to type T and copies it to *output. ACTION_TEMPLATE(DuplicateArg, // Note the comma between int and k: HAS_2_TEMPLATE_PARAMS(int, k, typename, T), AND_1_VALUE_PARAMS(output)) { *output = T(::testing::get<k>(args)); } ``` To create an instance of an action template, write: ``` ActionName<t1, ..., t_m>(v1, ..., v_n) ``` where the `t`s are the template arguments and the `v`s are the value arguments. The value argument types are inferred by the compiler. For example: ``` using ::testing::_; ... int n; EXPECT_CALL(mock, Foo(_, _)) .WillOnce(DuplicateArg<1, unsigned char>(&n)); ``` If you want to explicitly specify the value argument types, you can provide additional template arguments: ``` ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) ``` where `u_i` is the desired type of `v_i`. `ACTION_TEMPLATE` and `ACTION`/`ACTION_P*` can be overloaded on the number of value parameters, but not on the number of template parameters. Without the restriction, the meaning of the following is unclear: ``` OverloadedAction<int, bool>(x); ``` Are we using a single-template-parameter action where `bool` refers to the type of `x`, or a two-template-parameter action where the compiler is asked to infer the type of `x`? ## Using the ACTION Object's Type ## If you are writing a function that returns an `ACTION` object, you'll need to know its type. The type depends on the macro used to define the action and the parameter types. The rule is relatively simple: | **Given Definition** | **Expression** | **Has Type** | |:---------------------|:---------------|:-------------| | `ACTION(Foo)` | `Foo()` | `FooAction` | | `ACTION_TEMPLATE(Foo, HAS_m_TEMPLATE_PARAMS(...), AND_0_VALUE_PARAMS())` | `Foo<t1, ..., t_m>()` | `FooAction<t1, ..., t_m>` | | `ACTION_P(Bar, param)` | `Bar(int_value)` | `BarActionP<int>` | | `ACTION_TEMPLATE(Bar, HAS_m_TEMPLATE_PARAMS(...), AND_1_VALUE_PARAMS(p1))` | `Bar<t1, ..., t_m>(int_value)` | `FooActionP<t1, ..., t_m, int>` | | `ACTION_P2(Baz, p1, p2)` | `Baz(bool_value, int_value)` | `BazActionP2<bool, int>` | | `ACTION_TEMPLATE(Baz, HAS_m_TEMPLATE_PARAMS(...), AND_2_VALUE_PARAMS(p1, p2))` | `Baz<t1, ..., t_m>(bool_value, int_value)` | `FooActionP2<t1, ..., t_m, bool, int>` | | ... | ... | ... | Note that we have to pick different suffixes (`Action`, `ActionP`, `ActionP2`, and etc) for actions with different numbers of value parameters, or the action definitions cannot be overloaded on the number of them. ## Writing New Monomorphic Actions ## While the `ACTION*` macros are very convenient, sometimes they are inappropriate. For example, despite the tricks shown in the previous recipes, they don't let you directly specify the types of the mock function arguments and the action parameters, which in general leads to unoptimized compiler error messages that can baffle unfamiliar users. They also don't allow overloading actions based on parameter types without jumping through some hoops. An alternative to the `ACTION*` macros is to implement `::testing::ActionInterface<F>`, where `F` is the type of the mock function in which the action will be used. For example: ``` template <typename F>class ActionInterface { public: virtual ~ActionInterface(); // Performs the action. Result is the return type of function type // F, and ArgumentTuple is the tuple of arguments of F. // // For example, if F is int(bool, const string&), then Result would // be int, and ArgumentTuple would be ::testing::tuple<bool, const string&>. virtual Result Perform(const ArgumentTuple& args) = 0; }; using ::testing::_; using ::testing::Action; using ::testing::ActionInterface; using ::testing::MakeAction; typedef int IncrementMethod(int*); class IncrementArgumentAction : public ActionInterface<IncrementMethod> { public: virtual int Perform(const ::testing::tuple<int*>& args) { int* p = ::testing::get<0>(args); // Grabs the first argument. return *p++; } }; Action<IncrementMethod> IncrementArgument() { return MakeAction(new IncrementArgumentAction); } ... EXPECT_CALL(foo, Baz(_)) .WillOnce(IncrementArgument()); int n = 5; foo.Baz(&n); // Should return 5 and change n to 6. ``` ## Writing New Polymorphic Actions ## The previous recipe showed you how to define your own action. This is all good, except that you need to know the type of the function in which the action will be used. Sometimes that can be a problem. For example, if you want to use the action in functions with _different_ types (e.g. like `Return()` and `SetArgPointee()`). If an action can be used in several types of mock functions, we say it's _polymorphic_. The `MakePolymorphicAction()` function template makes it easy to define such an action: ``` namespace testing { template <typename Impl> PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl); } // namespace testing ``` As an example, let's define an action that returns the second argument in the mock function's argument list. The first step is to define an implementation class: ``` class ReturnSecondArgumentAction { public: template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& args) const { // To get the i-th (0-based) argument, use ::testing::get<i>(args). return ::testing::get<1>(args); } }; ``` This implementation class does _not_ need to inherit from any particular class. What matters is that it must have a `Perform()` method template. This method template takes the mock function's arguments as a tuple in a **single** argument, and returns the result of the action. It can be either `const` or not, but must be invokable with exactly one template argument, which is the result type. In other words, you must be able to call `Perform<R>(args)` where `R` is the mock function's return type and `args` is its arguments in a tuple. Next, we use `MakePolymorphicAction()` to turn an instance of the implementation class into the polymorphic action we need. It will be convenient to have a wrapper for this: ``` using ::testing::MakePolymorphicAction; using ::testing::PolymorphicAction; PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() { return MakePolymorphicAction(ReturnSecondArgumentAction()); } ``` Now, you can use this polymorphic action the same way you use the built-in ones: ``` using ::testing::_; class MockFoo : public Foo { public: MOCK_METHOD2(DoThis, int(bool flag, int n)); MOCK_METHOD3(DoThat, string(int x, const char* str1, const char* str2)); }; ... MockFoo foo; EXPECT_CALL(foo, DoThis(_, _)) .WillOnce(ReturnSecondArgument()); EXPECT_CALL(foo, DoThat(_, _, _)) .WillOnce(ReturnSecondArgument()); ... foo.DoThis(true, 5); // Will return 5. foo.DoThat(1, "Hi", "Bye"); // Will return "Hi". ``` ## Teaching Google Mock How to Print Your Values ## When an uninteresting or unexpected call occurs, Google Mock prints the argument values and the stack trace to help you debug. Assertion macros like `EXPECT_THAT` and `EXPECT_EQ` also print the values in question when the assertion fails. Google Mock and Google Test do this using Google Test's user-extensible value printer. This printer knows how to print built-in C++ types, native arrays, STL containers, and any type that supports the `<<` operator. For other types, it prints the raw bytes in the value and hopes that you the user can figure it out. [Google Test's advanced guide](../../googletest/docs/AdvancedGuide.md#teaching-google-test-how-to-print-your-values) explains how to extend the printer to do a better job at printing your particular type than to dump the bytes. HSICAL_Msk /*!< Internal High Speed clock Calibration */ #define RCC_ICSCR_HSITRIM_Pos (8U) #define RCC_ICSCR_HSITRIM_Msk (0x1FU << RCC_ICSCR_HSITRIM_Pos) /*!< 0x00001F00 */ #define RCC_ICSCR_HSITRIM RCC_ICSCR_HSITRIM_Msk /*!< Internal High Speed clock trimming */ #define RCC_ICSCR_MSIRANGE_Pos (13U) #define RCC_ICSCR_MSIRANGE_Msk (0x7U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x0000E000 */ #define RCC_ICSCR_MSIRANGE RCC_ICSCR_MSIRANGE_Msk /*!< Internal Multi Speed clock Range */ #define RCC_ICSCR_MSIRANGE_0 (0x0U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x00000000 */ #define RCC_ICSCR_MSIRANGE_1 (0x1U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x00002000 */ #define RCC_ICSCR_MSIRANGE_2 (0x2U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x00004000 */ #define RCC_ICSCR_MSIRANGE_3 (0x3U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x00006000 */ #define RCC_ICSCR_MSIRANGE_4 (0x4U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x00008000 */ #define RCC_ICSCR_MSIRANGE_5 (0x5U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x0000A000 */ #define RCC_ICSCR_MSIRANGE_6 (0x6U << RCC_ICSCR_MSIRANGE_Pos) /*!< 0x0000C000 */ #define RCC_ICSCR_MSICAL_Pos (16U) #define RCC_ICSCR_MSICAL_Msk (0xFFU << RCC_ICSCR_MSICAL_Pos) /*!< 0x00FF0000 */ #define RCC_ICSCR_MSICAL RCC_ICSCR_MSICAL_Msk /*!< Internal Multi Speed clock Calibration */ #define RCC_ICSCR_MSITRIM_Pos (24U) #define RCC_ICSCR_MSITRIM_Msk (0xFFU << RCC_ICSCR_MSITRIM_Pos) /*!< 0xFF000000 */ #define RCC_ICSCR_MSITRIM RCC_ICSCR_MSITRIM_Msk /*!< Internal Multi Speed clock trimming */ /******************** Bit definition for RCC_CFGR register ******************/ #define RCC_CFGR_SW_Pos (0U) #define RCC_CFGR_SW_Msk (0x3U << RCC_CFGR_SW_Pos) /*!< 0x00000003 */ #define RCC_CFGR_SW RCC_CFGR_SW_Msk /*!< SW[1:0] bits (System clock Switch) */ #define RCC_CFGR_SW_0 (0x1U << RCC_CFGR_SW_Pos) /*!< 0x00000001 */ #define RCC_CFGR_SW_1 (0x2U << RCC_CFGR_SW_Pos) /*!< 0x00000002 */ /*!< SW configuration */ #define RCC_CFGR_SW_MSI (0x00000000U) /*!< MSI selected as system clock */ #define RCC_CFGR_SW_HSI (0x00000001U) /*!< HSI selected as system clock */ #define RCC_CFGR_SW_HSE (0x00000002U) /*!< HSE selected as system clock */ #define RCC_CFGR_SW_PLL (0x00000003U) /*!< PLL selected as system clock */ #define RCC_CFGR_SWS_Pos (2U) #define RCC_CFGR_SWS_Msk (0x3U << RCC_CFGR_SWS_Pos) /*!< 0x0000000C */ #define RCC_CFGR_SWS RCC_CFGR_SWS_Msk /*!< SWS[1:0] bits (System Clock Switch Status) */ #define RCC_CFGR_SWS_0 (0x1U << RCC_CFGR_SWS_Pos) /*!< 0x00000004 */ #define RCC_CFGR_SWS_1 (0x2U << RCC_CFGR_SWS_Pos) /*!< 0x00000008 */ /*!< SWS configuration */ #define RCC_CFGR_SWS_MSI (0x00000000U) /*!< MSI oscillator used as system clock */ #define RCC_CFGR_SWS_HSI (0x00000004U) /*!< HSI oscillator used as system clock */ #define RCC_CFGR_SWS_HSE (0x00000008U) /*!< HSE oscillator used as system clock */ #define RCC_CFGR_SWS_PLL (0x0000000CU) /*!< PLL used as system clock */ #define RCC_CFGR_HPRE_Pos (4U) #define RCC_CFGR_HPRE_Msk (0xFU << RCC_CFGR_HPRE_Pos) /*!< 0x000000F0 */ #define RCC_CFGR_HPRE RCC_CFGR_HPRE_Msk /*!< HPRE[3:0] bits (AHB prescaler) */ #define RCC_CFGR_HPRE_0 (0x1U << RCC_CFGR_HPRE_Pos) /*!< 0x00000010 */ #define RCC_CFGR_HPRE_1 (0x2U << RCC_CFGR_HPRE_Pos) /*!< 0x00000020 */ #define RCC_CFGR_HPRE_2 (0x4U << RCC_CFGR_HPRE_Pos) /*!< 0x00000040 */ #define RCC_CFGR_HPRE_3 (0x8U << RCC_CFGR_HPRE_Pos) /*!< 0x00000080 */ /*!< HPRE configuration */ #define RCC_CFGR_HPRE_DIV1 (0x00000000U) /*!< SYSCLK not divided */ #define RCC_CFGR_HPRE_DIV2 (0x00000080U) /*!< SYSCLK divided by 2 */ #define RCC_CFGR_HPRE_DIV4 (0x00000090U) /*!< SYSCLK divided by 4 */ #define RCC_CFGR_HPRE_DIV8 (0x000000A0U) /*!< SYSCLK divided by 8 */ #define RCC_CFGR_HPRE_DIV16 (0x000000B0U) /*!< SYSCLK divided by 16 */ #define RCC_CFGR_HPRE_DIV64 (0x000000C0U) /*!< SYSCLK divided by 64 */ #define RCC_CFGR_HPRE_DIV128 (0x000000D0U) /*!< SYSCLK divided by 128 */ #define RCC_CFGR_HPRE_DIV256 (0x000000E0U) /*!< SYSCLK divided by 256 */ #define RCC_CFGR_HPRE_DIV512 (0x000000F0U) /*!< SYSCLK divided by 512 */ #define RCC_CFGR_PPRE1_Pos (8U) #define RCC_CFGR_PPRE1_Msk (0x7U << RCC_CFGR_PPRE1_Pos) /*!< 0x00000700 */ #define RCC_CFGR_PPRE1 RCC_CFGR_PPRE1_Msk /*!< PRE1[2:0] bits (APB1 prescaler) */ #define RCC_CFGR_PPRE1_0 (0x1U << RCC_CFGR_PPRE1_Pos) /*!< 0x00000100 */ #define RCC_CFGR_PPRE1_1 (0x2U << RCC_CFGR_PPRE1_Pos) /*!< 0x00000200 */ #define RCC_CFGR_PPRE1_2 (0x4U << RCC_CFGR_PPRE1_Pos) /*!< 0x00000400 */ /*!< PPRE1 configuration */ #define RCC_CFGR_PPRE1_DIV1 (0x00000000U) /*!< HCLK not divided */ #define RCC_CFGR_PPRE1_DIV2 (0x00000400U) /*!< HCLK divided by 2 */ #define RCC_CFGR_PPRE1_DIV4 (0x00000500U) /*!< HCLK divided by 4 */ #define RCC_CFGR_PPRE1_DIV8 (0x00000600U) /*!< HCLK divided by 8 */ #define RCC_CFGR_PPRE1_DIV16 (0x00000700U) /*!< HCLK divided by 16 */ #define RCC_CFGR_PPRE2_Pos (11U) #define RCC_CFGR_PPRE2_Msk (0x7U << RCC_CFGR_PPRE2_Pos) /*!< 0x00003800 */ #define RCC_CFGR_PPRE2 RCC_CFGR_PPRE2_Msk /*!< PRE2[2:0] bits (APB2 prescaler) */ #define RCC_CFGR_PPRE2_0 (0x1U << RCC_CFGR_PPRE2_Pos) /*!< 0x00000800 */ #define RCC_CFGR_PPRE2_1 (0x2U << RCC_CFGR_PPRE2_Pos) /*!< 0x00001000 */ #define RCC_CFGR_PPRE2_2 (0x4U << RCC_CFGR_PPRE2_Pos) /*!< 0x00002000 */ /*!< PPRE2 configuration */ #define RCC_CFGR_PPRE2_DIV1 (0x00000000U) /*!< HCLK not divided */ #define RCC_CFGR_PPRE2_DIV2 (0x00002000U) /*!< HCLK divided by 2 */ #define RCC_CFGR_PPRE2_DIV4 (0x00002800U) /*!< HCLK divided by 4 */ #define RCC_CFGR_PPRE2_DIV8 (0x00003000U) /*!< HCLK divided by 8 */ #define RCC_CFGR_PPRE2_DIV16 (0x00003800U) /*!< HCLK divided by 16 */ /*!< PLL entry clock source*/ #define RCC_CFGR_PLLSRC_Pos (16U) #define RCC_CFGR_PLLSRC_Msk (0x1U << RCC_CFGR_PLLSRC_Pos) /*!< 0x00010000 */ #define RCC_CFGR_PLLSRC RCC_CFGR_PLLSRC_Msk /*!< PLL entry clock source */ #define RCC_CFGR_PLLSRC_HSI (0x00000000U) /*!< HSI as PLL entry clock source */ #define RCC_CFGR_PLLSRC_HSE (0x00010000U) /*!< HSE as PLL entry clock source */ /*!< PLLMUL configuration */ #define RCC_CFGR_PLLMUL_Pos (18U) #define RCC_CFGR_PLLMUL_Msk (0xFU << RCC_CFGR_PLLMUL_Pos) /*!< 0x003C0000 */ #define RCC_CFGR_PLLMUL RCC_CFGR_PLLMUL_Msk /*!< PLLMUL[3:0] bits (PLL multiplication factor) */ #define RCC_CFGR_PLLMUL_0 (0x1U << RCC_CFGR_PLLMUL_Pos) /*!< 0x00040000 */ #define RCC_CFGR_PLLMUL_1 (0x2U << RCC_CFGR_PLLMUL_Pos) /*!< 0x00080000 */ #define RCC_CFGR_PLLMUL_2 (0x4U << RCC_CFGR_PLLMUL_Pos) /*!< 0x00100000 */ #define RCC_CFGR_PLLMUL_3 (0x8U << RCC_CFGR_PLLMUL_Pos) /*!< 0x00200000 */ /*!< PLLMUL configuration */ #define RCC_CFGR_PLLMUL3 (0x00000000U) /*!< PLL input clock * 3 */ #define RCC_CFGR_PLLMUL4 (0x00040000U) /*!< PLL input clock * 4 */ #define RCC_CFGR_PLLMUL6 (0x00080000U) /*!< PLL input clock * 6 */ #define RCC_CFGR_PLLMUL8 (0x000C0000U) /*!< PLL input clock * 8 */ #define RCC_CFGR_PLLMUL12 (0x00100000U) /*!< PLL input clock * 12 */ #define RCC_CFGR_PLLMUL16 (0x00140000U) /*!< PLL input clock * 16 */ #define RCC_CFGR_PLLMUL24 (0x00180000U) /*!< PLL input clock * 24 */ #define RCC_CFGR_PLLMUL32 (0x001C0000U) /*!< PLL input clock * 32 */ #define RCC_CFGR_PLLMUL48 (0x00200000U) /*!< PLL input clock * 48 */ /*!< PLLDIV configuration */ #define RCC_CFGR_PLLDIV_Pos (22U) #define RCC_CFGR_PLLDIV_Msk (0x3U << RCC_CFGR_PLLDIV_Pos) /*!< 0x00C00000 */ #define RCC_CFGR_PLLDIV RCC_CFGR_PLLDIV_Msk /*!< PLLDIV[1:0] bits (PLL Output Division) */ #define RCC_CFGR_PLLDIV_0 (0x1U << RCC_CFGR_PLLDIV_Pos) /*!< 0x00400000 */ #define RCC_CFGR_PLLDIV_1 (0x2U << RCC_CFGR_PLLDIV_Pos) /*!< 0x00800000 */ /*!< PLLDIV configuration */ #define RCC_CFGR_PLLDIV1 (0x00000000U) /*!< PLL clock output = CKVCO / 1 */ #define RCC_CFGR_PLLDIV2_Pos (22U) #define RCC_CFGR_PLLDIV2_Msk (0x1U << RCC_CFGR_PLLDIV2_Pos) /*!< 0x00400000 */ #define RCC_CFGR_PLLDIV2 RCC_CFGR_PLLDIV2_Msk /*!< PLL clock output = CKVCO / 2 */ #define RCC_CFGR_PLLDIV3_Pos (23U) #define RCC_CFGR_PLLDIV3_Msk (0x1U << RCC_CFGR_PLLDIV3_Pos) /*!< 0x00800000 */ #define RCC_CFGR_PLLDIV3 RCC_CFGR_PLLDIV3_Msk /*!< PLL clock output = CKVCO / 3 */ #define RCC_CFGR_PLLDIV4_Pos (22U) #define RCC_CFGR_PLLDIV4_Msk (0x3U << RCC_CFGR_PLLDIV4_Pos) /*!< 0x00C00000 */ #define RCC_CFGR_PLLDIV4 RCC_CFGR_PLLDIV4_Msk /*!< PLL clock output = CKVCO / 4 */ #define RCC_CFGR_MCOSEL_Pos (24U) #define RCC_CFGR_MCOSEL_Msk (0x7U << RCC_CFGR_MCOSEL_Pos) /*!< 0x07000000 */ #define RCC_CFGR_MCOSEL RCC_CFGR_MCOSEL_Msk /*!< MCO[2:0] bits (Microcontroller Clock Output) */ #define RCC_CFGR_MCOSEL_0 (0x1U << RCC_CFGR_MCOSEL_Pos) /*!< 0x01000000 */ #define RCC_CFGR_MCOSEL_1 (0x2U << RCC_CFGR_MCOSEL_Pos) /*!< 0x02000000 */ #define RCC_CFGR_MCOSEL_2 (0x4U << RCC_CFGR_MCOSEL_Pos) /*!< 0x04000000 */ /*!< MCO configuration */ #define RCC_CFGR_MCOSEL_NOCLOCK (0x00000000U) /*!< No clock */ #define RCC_CFGR_MCOSEL_SYSCLK_Pos (24U) #define RCC_CFGR_MCOSEL_SYSCLK_Msk (0x1U << RCC_CFGR_MCOSEL_SYSCLK_Pos) /*!< 0x01000000 */ #define RCC_CFGR_MCOSEL_SYSCLK RCC_CFGR_MCOSEL_SYSCLK_Msk /*!< System clock selected */ #define RCC_CFGR_MCOSEL_HSI_Pos (25U) #define RCC_CFGR_MCOSEL_HSI_Msk (0x1U << RCC_CFGR_MCOSEL_HSI_Pos) /*!< 0x02000000 */ #define RCC_CFGR_MCOSEL_HSI RCC_CFGR_MCOSEL_HSI_Msk /*!< Internal 16 MHz RC oscillator clock selected */ #define RCC_CFGR_MCOSEL_MSI_Pos (24U) #define RCC_CFGR_MCOSEL_MSI_Msk (0x3U << RCC_CFGR_MCOSEL_MSI_Pos) /*!< 0x03000000 */ #define RCC_CFGR_MCOSEL_MSI RCC_CFGR_MCOSEL_MSI_Msk /*!< Internal Medium Speed RC oscillator clock selected */ #define RCC_CFGR_MCOSEL_HSE_Pos (26U) #define RCC_CFGR_MCOSEL_HSE_Msk (0x1U << RCC_CFGR_MCOSEL_HSE_Pos) /*!< 0x04000000 */ #define RCC_CFGR_MCOSEL_HSE RCC_CFGR_MCOSEL_HSE_Msk /*!< External 1-25 MHz oscillator clock selected */ #define RCC_CFGR_MCOSEL_PLL_Pos (24U) #define RCC_CFGR_MCOSEL_PLL_Msk (0x5U << RCC_CFGR_MCOSEL_PLL_Pos) /*!< 0x05000000 */ #define RCC_CFGR_MCOSEL_PLL RCC_CFGR_MCOSEL_PLL_Msk /*!< PLL clock divided */ #define RCC_CFGR_MCOSEL_LSI_Pos (25U) #define RCC_CFGR_MCOSEL_LSI_Msk (0x3U << RCC_CFGR_MCOSEL_LSI_Pos) /*!< 0x06000000 */ #define RCC_CFGR_MCOSEL_LSI RCC_CFGR_MCOSEL_LSI_Msk /*!< LSI selected */ #define RCC_CFGR_MCOSEL_LSE_Pos (24U) #define RCC_CFGR_MCOSEL_LSE_Msk (0x7U << RCC_CFGR_MCOSEL_LSE_Pos) /*!< 0x07000000 */ #define RCC_CFGR_MCOSEL_LSE RCC_CFGR_MCOSEL_LSE_Msk /*!< LSE selected */ #define RCC_CFGR_MCOPRE_Pos (28U) #define RCC_CFGR_MCOPRE_Msk (0x7U << RCC_CFGR_MCOPRE_Pos) /*!< 0x70000000 */ #define RCC_CFGR_MCOPRE RCC_CFGR_MCOPRE_Msk /*!< MCOPRE[2:0] bits (Microcontroller Clock Output Prescaler) */ #define RCC_CFGR_MCOPRE_0 (0x1U << RCC_CFGR_MCOPRE_Pos) /*!< 0x10000000 */ #define RCC_CFGR_MCOPRE_1 (0x2U << RCC_CFGR_MCOPRE_Pos) /*!< 0x20000000 */ #define RCC_CFGR_MCOPRE_2 (0x4U << RCC_CFGR_MCOPRE_Pos) /*!< 0x40000000 */ /*!< MCO Prescaler configuration */ #define RCC_CFGR_MCOPRE_DIV1 (0x00000000U) /*!< MCO is divided by 1 */ #define RCC_CFGR_MCOPRE_DIV2 (0x10000000U) /*!< MCO is divided by 2 */ #define RCC_CFGR_MCOPRE_DIV4 (0x20000000U) /*!< MCO is divided by 4 */ #define RCC_CFGR_MCOPRE_DIV8 (0x30000000U) /*!< MCO is divided by 8 */ #define RCC_CFGR_MCOPRE_DIV16 (0x40000000U) /*!< MCO is divided by 16 */ /* Legacy aliases */ #define RCC_CFGR_MCO_DIV1 RCC_CFGR_MCOPRE_DIV1 #define RCC_CFGR_MCO_DIV2 RCC_CFGR_MCOPRE_DIV2 #define RCC_CFGR_MCO_DIV4 RCC_CFGR_MCOPRE_DIV4 #define RCC_CFGR_MCO_DIV8 RCC_CFGR_MCOPRE_DIV8 #define RCC_CFGR_MCO_DIV16 RCC_CFGR_MCOPRE_DIV16 #define RCC_CFGR_MCO_NOCLOCK RCC_CFGR_MCOSEL_NOCLOCK #define RCC_CFGR_MCO_SYSCLK RCC_CFGR_MCOSEL_SYSCLK #define RCC_CFGR_MCO_HSI RCC_CFGR_MCOSEL_HSI #define RCC_CFGR_MCO_MSI RCC_CFGR_MCOSEL_MSI #define RCC_CFGR_MCO_HSE RCC_CFGR_MCOSEL_HSE #define RCC_CFGR_MCO_PLL RCC_CFGR_MCOSEL_PLL #define RCC_CFGR_MCO_LSI RCC_CFGR_MCOSEL_LSI #define RCC_CFGR_MCO_LSE RCC_CFGR_MCOSEL_LSE /*!<****************** Bit definition for RCC_CIR register ********************/ #define RCC_CIR_LSIRDYF_Pos (0U) #define RCC_CIR_LSIRDYF_Msk (0x1U << RCC_CIR_LSIRDYF_Pos) /*!< 0x00000001 */ #define RCC_CIR_LSIRDYF RCC_CIR_LSIRDYF_Msk /*!< LSI Ready Interrupt flag */ #define RCC_CIR_LSERDYF_Pos (1U) #define RCC_CIR_LSERDYF_Msk (0x1U << RCC_CIR_LSERDYF_Pos) /*!< 0x00000002 */ #define RCC_CIR_LSERDYF RCC_CIR_LSERDYF_Msk /*!< LSE Ready Interrupt flag */ #define RCC_CIR_HSIRDYF_Pos (2U) #define RCC_CIR_HSIRDYF_Msk (0x1U << RCC_CIR_HSIRDYF_Pos) /*!< 0x00000004 */ #define RCC_CIR_HSIRDYF RCC_CIR_HSIRDYF_Msk /*!< HSI Ready Interrupt flag */ #define RCC_CIR_HSERDYF_Pos (3U) #define RCC_CIR_HSERDYF_Msk (0x1U << RCC_CIR_HSERDYF_Pos) /*!< 0x00000008 */ #define RCC_CIR_HSERDYF RCC_CIR_HSERDYF_Msk /*!< HSE Ready Interrupt flag */ #define RCC_CIR_PLLRDYF_Pos (4U) #define RCC_CIR_PLLRDYF_Msk (0x1U << RCC_CIR_PLLRDYF_Pos) /*!< 0x00000010 */ #define RCC_CIR_PLLRDYF RCC_CIR_PLLRDYF_Msk /*!< PLL Ready Interrupt flag */ #define RCC_CIR_MSIRDYF_Pos (5U) #define RCC_CIR_MSIRDYF_Msk (0x1U << RCC_CIR_MSIRDYF_Pos) /*!< 0x00000020 */ #define RCC_CIR_MSIRDYF RCC_CIR_MSIRDYF_Msk /*!< MSI Ready Interrupt flag */ #define RCC_CIR_CSSF_Pos (7U) #define RCC_CIR_CSSF_Msk (0x1U << RCC_CIR_CSSF_Pos) /*!< 0x00000080 */ #define RCC_CIR_CSSF RCC_CIR_CSSF_Msk /*!< Clock Security System Interrupt flag */ #define RCC_CIR_LSIRDYIE_Pos (8U) #define RCC_CIR_LSIRDYIE_Msk (0x1U << RCC_CIR_LSIRDYIE_Pos) /*!< 0x00000100 */ #define RCC_CIR_LSIRDYIE RCC_CIR_LSIRDYIE_Msk /*!< LSI Ready Interrupt Enable */ #define RCC_CIR_LSERDYIE_Pos (9U) #define RCC_CIR_LSERDYIE_Msk (0x1U << RCC_CIR_LSERDYIE_Pos) /*!< 0x00000200 */ #define RCC_CIR_LSERDYIE RCC_CIR_LSERDYIE_Msk /*!< LSE Ready Interrupt Enable */ #define RCC_CIR_HSIRDYIE_Pos (10U) #define RCC_CIR_HSIRDYIE_Msk (0x1U << RCC_CIR_HSIRDYIE_Pos) /*!< 0x00000400 */ #define RCC_CIR_HSIRDYIE RCC_CIR_HSIRDYIE_Msk /*!< HSI Ready Interrupt Enable */ #define RCC_CIR_HSERDYIE_Pos (11U) #define RCC_CIR_HSERDYIE_Msk (0x1U << RCC_CIR_HSERDYIE_Pos) /*!< 0x00000800 */ #define RCC_CIR_HSERDYIE RCC_CIR_HSERDYIE_Msk /*!< HSE Ready Interrupt Enable */ #define RCC_CIR_PLLRDYIE_Pos (12U) #define RCC_CIR_PLLRDYIE_Msk (0x1U << RCC_CIR_PLLRDYIE_Pos) /*!< 0x00001000 */ #define RCC_CIR_PLLRDYIE RCC_CIR_PLLRDYIE_Msk /*!< PLL Ready Interrupt Enable */ #define RCC_CIR_MSIRDYIE_Pos (13U) #define RCC_CIR_MSIRDYIE_Msk (0x1U << RCC_CIR_MSIRDYIE_Pos) /*!< 0x00002000 */ #define RCC_CIR_MSIRDYIE RCC_CIR_MSIRDYIE_Msk /*!< MSI Ready Interrupt Enable */ #define RCC_CIR_LSIRDYC_Pos (16U) #define RCC_CIR_LSIRDYC_Msk (0x1U << RCC_CIR_LSIRDYC_Pos) /*!< 0x00010000 */ #define RCC_CIR_LSIRDYC RCC_CIR_LSIRDYC_Msk /*!< LSI Ready Interrupt Clear */ #define RCC_CIR_LSERDYC_Pos (17U) #define RCC_CIR_LSERDYC_Msk (0x1U << RCC_CIR_LSERDYC_Pos) /*!< 0x00020000 */ #define RCC_CIR_LSERDYC RCC_CIR_LSERDYC_Msk /*!< LSE Ready Interrupt Clear */ #define RCC_CIR_HSIRDYC_Pos (18U) #define RCC_CIR_HSIRDYC_Msk (0x1U << RCC_CIR_HSIRDYC_Pos) /*!< 0x00040000 */ #define RCC_CIR_HSIRDYC RCC_CIR_HSIRDYC_Msk /*!< HSI Ready Interrupt Clear */ #define RCC_CIR_HSERDYC_Pos (19U) #define RCC_CIR_HSERDYC_Msk (0x1U << RCC_CIR_HSERDYC_Pos) /*!< 0x00080000 */ #define RCC_CIR_HSERDYC RCC_CIR_HSERDYC_Msk /*!< HSE Ready Interrupt Clear */ #define RCC_CIR_PLLRDYC_Pos (20U) #define RCC_CIR_PLLRDYC_Msk (0x1U << RCC_CIR_PLLRDYC_Pos) /*!< 0x00100000 */ #define RCC_CIR_PLLRDYC RCC_CIR_PLLRDYC_Msk /*!< PLL Ready Interrupt Clear */ #define RCC_CIR_MSIRDYC_Pos (21U) #define RCC_CIR_MSIRDYC_Msk (0x1U << RCC_CIR_MSIRDYC_Pos) /*!< 0x00200000 */ #define RCC_CIR_MSIRDYC RCC_CIR_MSIRDYC_Msk /*!< MSI Ready Interrupt Clear */ #define RCC_CIR_CSSC_Pos (23U) #define RCC_CIR_CSSC_Msk (0x1U << RCC_CIR_CSSC_Pos) /*!< 0x00800000 */ #define RCC_CIR_CSSC RCC_CIR_CSSC_Msk /*!< Clock Security System Interrupt Clear */ /***************** Bit definition for RCC_AHBRSTR register ******************/ #define RCC_AHBRSTR_GPIOARST_Pos (0U) #define RCC_AHBRSTR_GPIOARST_Msk (0x1U << RCC_AHBRSTR_GPIOARST_Pos) /*!< 0x00000001 */ #define RCC_AHBRSTR_GPIOARST RCC_AHBRSTR_GPIOARST_Msk /*!< GPIO port A reset */ #define RCC_AHBRSTR_GPIOBRST_Pos (1U) #define RCC_AHBRSTR_GPIOBRST_Msk (0x1U << RCC_AHBRSTR_GPIOBRST_Pos) /*!< 0x00000002 */ #define RCC_AHBRSTR_GPIOBRST RCC_AHBRSTR_GPIOBRST_Msk /*!< GPIO port B reset */ #define RCC_AHBRSTR_GPIOCRST_Pos (2U) #define RCC_AHBRSTR_GPIOCRST_Msk (0x1U << RCC_AHBRSTR_GPIOCRST_Pos) /*!< 0x00000004 */ #define RCC_AHBRSTR_GPIOCRST RCC_AHBRSTR_GPIOCRST_Msk /*!< GPIO port C reset */ #define RCC_AHBRSTR_GPIODRST_Pos (3U) #define RCC_AHBRSTR_GPIODRST_Msk (0x1U << RCC_AHBRSTR_GPIODRST_Pos) /*!< 0x00000008 */ #define RCC_AHBRSTR_GPIODRST RCC_AHBRSTR_GPIODRST_Msk /*!< GPIO port D reset */ #define RCC_AHBRSTR_GPIOERST_Pos (4U) #define RCC_AHBRSTR_GPIOERST_Msk (0x1U << RCC_AHBRSTR_GPIOERST_Pos) /*!< 0x00000010 */ #define RCC_AHBRSTR_GPIOERST RCC_AHBRSTR_GPIOERST_Msk /*!< GPIO port E reset */ #define RCC_AHBRSTR_GPIOHRST_Pos (5U) #define RCC_AHBRSTR_GPIOHRST_Msk (0x1U << RCC_AHBRSTR_GPIOHRST_Pos) /*!< 0x00000020 */ #define RCC_AHBRSTR_GPIOHRST RCC_AHBRSTR_GPIOHRST_Msk /*!< GPIO port H reset */ #define RCC_AHBRSTR_CRCRST_Pos (12U) #define RCC_AHBRSTR_CRCRST_Msk (0x1U << RCC_AHBRSTR_CRCRST_Pos) /*!< 0x00001000 */ #define RCC_AHBRSTR_CRCRST RCC_AHBRSTR_CRCRST_Msk /*!< CRC reset */ #define RCC_AHBRSTR_FLITFRST_Pos (15U) #define RCC_AHBRSTR_FLITFRST_Msk (0x1U << RCC_AHBRSTR_FLITFRST_Pos) /*!< 0x00008000 */ #define RCC_AHBRSTR_FLITFRST RCC_AHBRSTR_FLITFRST_Msk /*!< FLITF reset */ #define RCC_AHBRSTR_DMA1RST_Pos (24U) #define RCC_AHBRSTR_DMA1RST_Msk (0x1U << RCC_AHBRSTR_DMA1RST_Pos) /*!< 0x01000000 */ #define RCC_AHBRSTR_DMA1RST RCC_AHBRSTR_DMA1RST_Msk /*!< DMA1 reset */ /***************** Bit definition for RCC_APB2RSTR register *****************/ #define RCC_APB2RSTR_SYSCFGRST_Pos (0U) #define RCC_APB2RSTR_SYSCFGRST_Msk (0x1U << RCC_APB2RSTR_SYSCFGRST_Pos) /*!< 0x00000001 */ #define RCC_APB2RSTR_SYSCFGRST RCC_APB2RSTR_SYSCFGRST_Msk /*!< System Configuration SYSCFG reset */ #define RCC_APB2RSTR_TIM9RST_Pos (2U) #define RCC_APB2RSTR_TIM9RST_Msk (0x1U << RCC_APB2RSTR_TIM9RST_Pos) /*!< 0x00000004 */ #define RCC_APB2RSTR_TIM9RST RCC_APB2RSTR_TIM9RST_Msk /*!< TIM9 reset */ #define RCC_APB2RSTR_TIM10RST_Pos (3U) #define RCC_APB2RSTR_TIM10RST_Msk (0x1U << RCC_APB2RSTR_TIM10RST_Pos) /*!< 0x00000008 */ #define RCC_APB2RSTR_TIM10RST RCC_APB2RSTR_TIM10RST_Msk /*!< TIM10 reset */ #define RCC_APB2RSTR_TIM11RST_Pos (4U) #define RCC_APB2RSTR_TIM11RST_Msk (0x1U << RCC_APB2RSTR_TIM11RST_Pos) /*!< 0x00000010 */ #define RCC_APB2RSTR_TIM11RST RCC_APB2RSTR_TIM11RST_Msk /*!< TIM11 reset */ #define RCC_APB2RSTR_ADC1RST_Pos (9U) #define RCC_APB2RSTR_ADC1RST_Msk (0x1U << RCC_APB2RSTR_ADC1RST_Pos) /*!< 0x00000200 */ #define RCC_APB2RSTR_ADC1RST RCC_APB2RSTR_ADC1RST_Msk /*!< ADC1 reset */ #define RCC_APB2RSTR_SPI1RST_Pos (12U) #define RCC_APB2RSTR_SPI1RST_Msk (0x1U << RCC_APB2RSTR_SPI1RST_Pos) /*!< 0x00001000 */ #define RCC_APB2RSTR_SPI1RST RCC_APB2RSTR_SPI1RST_Msk /*!< SPI1 reset */ #define RCC_APB2RSTR_USART1RST_Pos (14U) #define RCC_APB2RSTR_USART1RST_Msk (0x1U << RCC_APB2RSTR_USART1RST_Pos) /*!< 0x00004000 */ #define RCC_APB2RSTR_USART1RST RCC_APB2RSTR_USART1RST_Msk /*!< USART1 reset */ /***************** Bit definition for RCC_APB1RSTR register *****************/ #define RCC_APB1RSTR_TIM2RST_Pos (0U) #define RCC_APB1RSTR_TIM2RST_Msk (0x1U << RCC_APB1RSTR_TIM2RST_Pos) /*!< 0x00000001 */ #define RCC_APB1RSTR_TIM2RST RCC_APB1RSTR_TIM2RST_Msk /*!< Timer 2 reset */ #define RCC_APB1RSTR_TIM3RST_Pos (1U) #define RCC_APB1RSTR_TIM3RST_Msk (0x1U << RCC_APB1RSTR_TIM3RST_Pos) /*!< 0x00000002 */ #define RCC_APB1RSTR_TIM3RST RCC_APB1RSTR_TIM3RST_Msk /*!< Timer 3 reset */ #define RCC_APB1RSTR_TIM4RST_Pos (2U) #define RCC_APB1RSTR_TIM4RST_Msk (0x1U << RCC_APB1RSTR_TIM4RST_Pos) /*!< 0x00000004 */ #define RCC_APB1RSTR_TIM4RST RCC_APB1RSTR_TIM4RST_Msk /*!< Timer 4 reset */ #define RCC_APB1RSTR_TIM6RST_Pos (4U) #define RCC_APB1RSTR_TIM6RST_Msk (0x1U << RCC_APB1RSTR_TIM6RST_Pos) /*!< 0x00000010 */ #define RCC_APB1RSTR_TIM6RST RCC_APB1RSTR_TIM6RST_Msk /*!< Timer 6 reset */ #define RCC_APB1RSTR_TIM7RST_Pos (5U) #define RCC_APB1RSTR_TIM7RST_Msk (0x1U << RCC_APB1RSTR_TIM7RST_Pos) /*!< 0x00000020 */ #define RCC_APB1RSTR_TIM7RST RCC_APB1RSTR_TIM7RST_Msk /*!< Timer 7 reset */ #define RCC_APB1RSTR_LCDRST_Pos (9U) #define RCC_APB1RSTR_LCDRST_Msk (0x1U << RCC_APB1RSTR_LCDRST_Pos) /*!< 0x00000200 */ #define RCC_APB1RSTR_LCDRST RCC_APB1RSTR_LCDRST_Msk /*!< LCD reset */ #define RCC_APB1RSTR_WWDGRST_Pos (11U) #define RCC_APB1RSTR_WWDGRST_Msk (0x1U << RCC_APB1RSTR_WWDGRST_Pos) /*!< 0x00000800 */ #define RCC_APB1RSTR_WWDGRST RCC_APB1RSTR_WWDGRST_Msk /*!< Window Watchdog reset */ #define RCC_APB1RSTR_SPI2RST_Pos (14U) #define RCC_APB1RSTR_SPI2RST_Msk (0x1U << RCC_APB1RSTR_SPI2RST_Pos) /*!< 0x00004000 */ #define RCC_APB1RSTR_SPI2RST RCC_APB1RSTR_SPI2RST_Msk /*!< SPI 2 reset */ #define RCC_APB1RSTR_USART2RST_Pos (17U) #define RCC_APB1RSTR_USART2RST_Msk (0x1U << RCC_APB1RSTR_USART2RST_Pos) /*!< 0x00020000 */ #define RCC_APB1RSTR_USART2RST RCC_APB1RSTR_USART2RST_Msk /*!< USART 2 reset */ #define RCC_APB1RSTR_USART3RST_Pos (18U) #define RCC_APB1RSTR_USART3RST_Msk (0x1U << RCC_APB1RSTR_USART3RST_Pos) /*!< 0x00040000 */ #define RCC_APB1RSTR_USART3RST RCC_APB1RSTR_USART3RST_Msk /*!< USART 3 reset */ #define RCC_APB1RSTR_I2C1RST_Pos (21U) #define RCC_APB1RSTR_I2C1RST_Msk (0x1U << RCC_APB1RSTR_I2C1RST_Pos) /*!< 0x00200000 */ #define RCC_APB1RSTR_I2C1RST RCC_APB1RSTR_I2C1RST_Msk /*!< I2C 1 reset */ #define RCC_APB1RSTR_I2C2RST_Pos (22U) #define RCC_APB1RSTR_I2C2RST_Msk (0x1U << RCC_APB1RSTR_I2C2RST_Pos) /*!< 0x00400000 */ #define RCC_APB1RSTR_I2C2RST RCC_APB1RSTR_I2C2RST_Msk /*!< I2C 2 reset */ #define RCC_APB1RSTR_USBRST_Pos (23U) #define RCC_APB1RSTR_USBRST_Msk (0x1U << RCC_APB1RSTR_USBRST_Pos) /*!< 0x00800000 */ #define RCC_APB1RSTR_USBRST RCC_APB1RSTR_USBRST_Msk /*!< USB reset */ #define RCC_APB1RSTR_PWRRST_Pos (28U) #define RCC_APB1RSTR_PWRRST_Msk (0x1U << RCC_APB1RSTR_PWRRST_Pos) /*!< 0x10000000 */ #define RCC_APB1RSTR_PWRRST RCC_APB1RSTR_PWRRST_Msk /*!< Power interface reset */ #define RCC_APB1RSTR_DACRST_Pos (29U) #define RCC_APB1RSTR_DACRST_Msk (0x1U << RCC_APB1RSTR_DACRST_Pos) /*!< 0x20000000 */ #define RCC_APB1RSTR_DACRST RCC_APB1RSTR_DACRST_Msk /*!< DAC interface reset */ #define RCC_APB1RSTR_COMPRST_Pos (31U) #define RCC_APB1RSTR_COMPRST_Msk (0x1U << RCC_APB1RSTR_COMPRST_Pos) /*!< 0x80000000 */ #define RCC_APB1RSTR_COMPRST RCC_APB1RSTR_COMPRST_Msk /*!< Comparator interface reset */ /****************** Bit definition for RCC_AHBENR register ******************/ #define RCC_AHBENR_GPIOAEN_Pos (0U) #define RCC_AHBENR_GPIOAEN_Msk (0x1U << RCC_AHBENR_GPIOAEN_Pos) /*!< 0x00000001 */ #define RCC_AHBENR_GPIOAEN RCC_AHBENR_GPIOAEN_Msk /*!< GPIO port A clock enable */ #define RCC_AHBENR_GPIOBEN_Pos (1U) #define RCC_AHBENR_GPIOBEN_Msk (0x1U << RCC_AHBENR_GPIOBEN_Pos) /*!< 0x00000002 */ #define RCC_AHBENR_GPIOBEN RCC_AHBENR_GPIOBEN_Msk /*!< GPIO port B clock enable */ #define RCC_AHBENR_GPIOCEN_Pos (2U) #define RCC_AHBENR_GPIOCEN_Msk (0x1U << RCC_AHBENR_GPIOCEN_Pos) /*!< 0x00000004 */ #define RCC_AHBENR_GPIOCEN RCC_AHBENR_GPIOCEN_Msk /*!< GPIO port C clock enable */ #define RCC_AHBENR_GPIODEN_Pos (3U) #define RCC_AHBENR_GPIODEN_Msk (0x1U << RCC_AHBENR_GPIODEN_Pos) /*!< 0x00000008 */ #define RCC_AHBENR_GPIODEN RCC_AHBENR_GPIODEN_Msk /*!< GPIO port D clock enable */ #define RCC_AHBENR_GPIOEEN_Pos (4U) #define RCC_AHBENR_GPIOEEN_Msk (0x1U << RCC_AHBENR_GPIOEEN_Pos) /*!< 0x00000010 */ #define RCC_AHBENR_GPIOEEN RCC_AHBENR_GPIOEEN_Msk /*!< GPIO port E clock enable */ #define RCC_AHBENR_GPIOHEN_Pos (5U) #define RCC_AHBENR_GPIOHEN_Msk (0x1U << RCC_AHBENR_GPIOHEN_Pos) /*!< 0x00000020 */ #define RCC_AHBENR_GPIOHEN RCC_AHBENR_GPIOHEN_Msk /*!< GPIO port H clock enable */ #define RCC_AHBENR_CRCEN_Pos (12U) #define RCC_AHBENR_CRCEN_Msk (0x1U << RCC_AHBENR_CRCEN_Pos) /*!< 0x00001000 */ #define RCC_AHBENR_CRCEN RCC_AHBENR_CRCEN_Msk /*!< CRC clock enable */ #define RCC_AHBENR_FLITFEN_Pos (15U) #define RCC_AHBENR_FLITFEN_Msk (0x1U << RCC_AHBENR_FLITFEN_Pos) /*!< 0x00008000 */ #define RCC_AHBENR_FLITFEN RCC_AHBENR_FLITFEN_Msk /*!< FLITF clock enable (has effect only when the Flash memory is in power down mode) */ #define RCC_AHBENR_DMA1EN_Pos (24U) #define RCC_AHBENR_DMA1EN_Msk (0x1U << RCC_AHBENR_DMA1EN_Pos) /*!< 0x01000000 */ #define RCC_AHBENR_DMA1EN RCC_AHBENR_DMA1EN_Msk /*!< DMA1 clock enable */ /****************** Bit definition for RCC_APB2ENR register *****************/ #define RCC_APB2ENR_SYSCFGEN_Pos (0U) #define RCC_APB2ENR_SYSCFGEN_Msk (0x1U << RCC_APB2ENR_SYSCFGEN_Pos) /*!< 0x00000001 */ #define RCC_APB2ENR_SYSCFGEN RCC_APB2ENR_SYSCFGEN_Msk /*!< System Configuration SYSCFG clock enable */ #define RCC_APB2ENR_TIM9EN_Pos (2U) #define RCC_APB2ENR_TIM9EN_Msk (0x1U << RCC_APB2ENR_TIM9EN_Pos) /*!< 0x00000004 */ #define RCC_APB2ENR_TIM9EN RCC_APB2ENR_TIM9EN_Msk /*!< TIM9 interface clock enable */ #define RCC_APB2ENR_TIM10EN_Pos (3U) #define RCC_APB2ENR_TIM10EN_Msk (0x1U << RCC_APB2ENR_TIM10EN_Pos) /*!< 0x00000008 */ #define RCC_APB2ENR_TIM10EN RCC_APB2ENR_TIM10EN_Msk /*!< TIM10 interface clock enable */ #define RCC_APB2ENR_TIM11EN_Pos (4U) #define RCC_APB2ENR_TIM11EN_Msk (0x1U << RCC_APB2ENR_TIM11EN_Pos) /*!< 0x00000010 */ #define RCC_APB2ENR_TIM11EN RCC_APB2ENR_TIM11EN_Msk /*!< TIM11 Timer clock enable */ #define RCC_APB2ENR_ADC1EN_Pos (9U) #define RCC_APB2ENR_ADC1EN_Msk (0x1U << RCC_APB2ENR_ADC1EN_Pos) /*!< 0x00000200 */ #define RCC_APB2ENR_ADC1EN RCC_APB2ENR_ADC1EN_Msk /*!< ADC1 clock enable */ #define RCC_APB2ENR_SPI1EN_Pos (12U) #define RCC_APB2ENR_SPI1EN_Msk (0x1U << RCC_APB2ENR_SPI1EN_Pos) /*!< 0x00001000 */ #define RCC_APB2ENR_SPI1EN RCC_APB2ENR_SPI1EN_Msk /*!< SPI1 clock enable */ #define RCC_APB2ENR_USART1EN_Pos (14U) #define RCC_APB2ENR_USART1EN_Msk (0x1U << RCC_APB2ENR_USART1EN_Pos) /*!< 0x00004000 */ #define RCC_APB2ENR_USART1EN RCC_APB2ENR_USART1EN_Msk /*!< USART1 clock enable */ /***************** Bit definition for RCC_APB1ENR register ******************/ #define RCC_APB1ENR_TIM2EN_Pos (0U) #define RCC_APB1ENR_TIM2EN_Msk (0x1U << RCC_APB1ENR_TIM2EN_Pos) /*!< 0x00000001 */ #define RCC_APB1ENR_TIM2EN RCC_APB1ENR_TIM2EN_Msk /*!< Timer 2 clock enabled*/ #define RCC_APB1ENR_TIM3EN_Pos (1U) #define RCC_APB1ENR_TIM3EN_Msk (0x1U << RCC_APB1ENR_TIM3EN_Pos) /*!< 0x00000002 */ #define RCC_APB1ENR_TIM3EN RCC_APB1ENR_TIM3EN_Msk /*!< Timer 3 clock enable */ #define RCC_APB1ENR_TIM4EN_Pos (2U) #define RCC_APB1ENR_TIM4EN_Msk (0x1U << RCC_APB1ENR_TIM4EN_Pos) /*!< 0x00000004 */ #define RCC_APB1ENR_TIM4EN RCC_APB1ENR_TIM4EN_Msk /*!< Timer 4 clock enable */ #define RCC_APB1ENR_TIM6EN_Pos (4U) #define RCC_APB1ENR_TIM6EN_Msk (0x1U << RCC_APB1ENR_TIM6EN_Pos) /*!< 0x00000010 */ #define RCC_APB1ENR_TIM6EN RCC_APB1ENR_TIM6EN_Msk /*!< Timer 6 clock enable */ #define RCC_APB1ENR_TIM7EN_Pos (5U) #define RCC_APB1ENR_TIM7EN_Msk (0x1U << RCC_APB1ENR_TIM7EN_Pos) /*!< 0x00000020 */ #define RCC_APB1ENR_TIM7EN RCC_APB1ENR_TIM7EN_Msk /*!< Timer 7 clock enable */ #define RCC_APB1ENR_LCDEN_Pos (9U) #define RCC_APB1ENR_LCDEN_Msk (0x1U << RCC_APB1ENR_LCDEN_Pos) /*!< 0x00000200 */ #define RCC_APB1ENR_LCDEN RCC_APB1ENR_LCDEN_Msk /*!< LCD clock enable */ #define RCC_APB1ENR_WWDGEN_Pos (11U) #define RCC_APB1ENR_WWDGEN_Msk (0x1U << RCC_APB1ENR_WWDGEN_Pos) /*!< 0x00000800 */ #define RCC_APB1ENR_WWDGEN RCC_APB1ENR_WWDGEN_Msk /*!< Window Watchdog clock enable */ #define RCC_APB1ENR_SPI2EN_Pos (14U) #define RCC_APB1ENR_SPI2EN_Msk (0x1U << RCC_APB1ENR_SPI2EN_Pos) /*!< 0x00004000 */ #define RCC_APB1ENR_SPI2EN RCC_APB1ENR_SPI2EN_Msk /*!< SPI 2 clock enable */ #define RCC_APB1ENR_USART2EN_Pos (17U) #define RCC_APB1ENR_USART2EN_Msk (0x1U << RCC_APB1ENR_USART2EN_Pos) /*!< 0x00020000 */ #define RCC_APB1ENR_USART2EN RCC_APB1ENR_USART2EN_Msk /*!< USART 2 clock enable */ #define RCC_APB1ENR_USART3EN_Pos (18U) #define RCC_APB1ENR_USART3EN_Msk (0x1U << RCC_APB1ENR_USART3EN_Pos) /*!< 0x00040000 */ #define RCC_APB1ENR_USART3EN RCC_APB1ENR_USART3EN_Msk /*!< USART 3 clock enable */ #define RCC_APB1ENR_I2C1EN_Pos (21U) #define RCC_APB1ENR_I2C1EN_Msk (0x1U << RCC_APB1ENR_I2C1EN_Pos) /*!< 0x00200000 */ #define RCC_APB1ENR_I2C1EN RCC_APB1ENR_I2C1EN_Msk /*!< I2C 1 clock enable */ #define RCC_APB1ENR_I2C2EN_Pos (22U) #define RCC_APB1ENR_I2C2EN_Msk (0x1U << RCC_APB1ENR_I2C2EN_Pos) /*!< 0x00400000 */ #define RCC_APB1ENR_I2C2EN RCC_APB1ENR_I2C2EN_Msk /*!< I2C 2 clock enable */ #define RCC_APB1ENR_USBEN_Pos (23U) #define RCC_APB1ENR_USBEN_Msk (0x1U << RCC_APB1ENR_USBEN_Pos) /*!< 0x00800000 */ #define RCC_APB1ENR_USBEN RCC_APB1ENR_USBEN_Msk /*!< USB clock enable */ #define RCC_APB1ENR_PWREN_Pos (28U) #define RCC_APB1ENR_PWREN_Msk (0x1U << RCC_APB1ENR_PWREN_Pos) /*!< 0x10000000 */ #define RCC_APB1ENR_PWREN RCC_APB1ENR_PWREN_Msk /*!< Power interface clock enable */ #define RCC_APB1ENR_DACEN_Pos (29U) #define RCC_APB1ENR_DACEN_Msk (0x1U << RCC_APB1ENR_DACEN_Pos) /*!< 0x20000000 */ #define RCC_APB1ENR_DACEN RCC_APB1ENR_DACEN_Msk /*!< DAC interface clock enable */ #define RCC_APB1ENR_COMPEN_Pos (31U) #define RCC_APB1ENR_COMPEN_Msk (0x1U << RCC_APB1ENR_COMPEN_Pos) /*!< 0x80000000 */ #define RCC_APB1ENR_COMPEN RCC_APB1ENR_COMPEN_Msk /*!< Comparator interface clock enable */ /****************** Bit definition for RCC_AHBLPENR register ****************/ #define RCC_AHBLPENR_GPIOALPEN_Pos (0U) #define RCC_AHBLPENR_GPIOALPEN_Msk (0x1U << RCC_AHBLPENR_GPIOALPEN_Pos) /*!< 0x00000001 */ #define RCC_AHBLPENR_GPIOALPEN RCC_AHBLPENR_GPIOALPEN_Msk /*!< GPIO port A clock enabled in sleep mode */ #define RCC_AHBLPENR_GPIOBLPEN_Pos (1U) #define RCC_AHBLPENR_GPIOBLPEN_Msk (0x1U << RCC_AHBLPENR_GPIOBLPEN_Pos) /*!< 0x00000002 */ #define RCC_AHBLPENR_GPIOBLPEN RCC_AHBLPENR_GPIOBLPEN_Msk /*!< GPIO port B clock enabled in sleep mode */ #define RCC_AHBLPENR_GPIOCLPEN_Pos (2U) #define RCC_AHBLPENR_GPIOCLPEN_Msk (0x1U << RCC_AHBLPENR_GPIOCLPEN_Pos) /*!< 0x00000004 */ #define RCC_AHBLPENR_GPIOCLPEN RCC_AHBLPENR_GPIOCLPEN_Msk /*!< GPIO port C clock enabled in sleep mode */ #define RCC_AHBLPENR_GPIODLPEN_Pos (3U) #define RCC_AHBLPENR_GPIODLPEN_Msk (0x1U << RCC_AHBLPENR_GPIODLPEN_Pos) /*!< 0x00000008 */ #define RCC_AHBLPENR_GPIODLPEN RCC_AHBLPENR_GPIODLPEN_Msk /*!< GPIO port D clock enabled in sleep mode */ #define RCC_AHBLPENR_GPIOELPEN_Pos (4U) #define RCC_AHBLPENR_GPIOELPEN_Msk (0x1U << RCC_AHBLPENR_GPIOELPEN_Pos) /*!< 0x00000010 */ #define RCC_AHBLPENR_GPIOELPEN RCC_AHBLPENR_GPIOELPEN_Msk /*!< GPIO port E clock enabled in sleep mode */ #define RCC_AHBLPENR_GPIOHLPEN_Pos (5U) #define RCC_AHBLPENR_GPIOHLPEN_Msk (0x1U << RCC_AHBLPENR_GPIOHLPEN_Pos) /*!< 0x00000020 */ #define RCC_AHBLPENR_GPIOHLPEN RCC_AHBLPENR_GPIOHLPEN_Msk /*!< GPIO port H clock enabled in sleep mode */ #define RCC_AHBLPENR_CRCLPEN_Pos (12U) #define RCC_AHBLPENR_CRCLPEN_Msk (0x1U << RCC_AHBLPENR_CRCLPEN_Pos) /*!< 0x00001000 */ #define RCC_AHBLPENR_CRCLPEN RCC_AHBLPENR_CRCLPEN_Msk /*!< CRC clock enabled in sleep mode */ #define RCC_AHBLPENR_FLITFLPEN_Pos (15U) #define RCC_AHBLPENR_FLITFLPEN_Msk (0x1U << RCC_AHBLPENR_FLITFLPEN_Pos) /*!< 0x00008000 */ #define RCC_AHBLPENR_FLITFLPEN RCC_AHBLPENR_FLITFLPEN_Msk /*!< Flash Interface clock enabled in sleep mode (has effect only when the Flash memory is in power down mode) */ #define RCC_AHBLPENR_SRAMLPEN_Pos (16U) #define RCC_AHBLPENR_SRAMLPEN_Msk (0x1U << RCC_AHBLPENR_SRAMLPEN_Pos) /*!< 0x00010000 */ #define RCC_AHBLPENR_SRAMLPEN RCC_AHBLPENR_SRAMLPEN_Msk /*!< SRAM clock enabled in sleep mode */ #define RCC_AHBLPENR_DMA1LPEN_Pos (24U) #define RCC_AHBLPENR_DMA1LPEN_Msk (0x1U << RCC_AHBLPENR_DMA1LPEN_Pos) /*!< 0x01000000 */ #define RCC_AHBLPENR_DMA1LPEN RCC_AHBLPENR_DMA1LPEN_Msk /*!< DMA1 clock enabled in sleep mode */ /****************** Bit definition for RCC_APB2LPENR register ***************/ #define RCC_APB2LPENR_SYSCFGLPEN_Pos (0U) #define RCC_APB2LPENR_SYSCFGLPEN_Msk (0x1U << RCC_APB2LPENR_SYSCFGLPEN_Pos) /*!< 0x00000001 */ #define RCC_APB2LPENR_SYSCFGLPEN RCC_APB2LPENR_SYSCFGLPEN_Msk /*!< System Configuration SYSCFG clock enabled in sleep mode */ #define RCC_APB2LPENR_TIM9LPEN_Pos (2U) #define RCC_APB2LPENR_TIM9LPEN_Msk (0x1U << RCC_APB2LPENR_TIM9LPEN_Pos) /*!< 0x00000004 */ #define RCC_APB2LPENR_TIM9LPEN RCC_APB2LPENR_TIM9LPEN_Msk /*!< TIM9 interface clock enabled in sleep mode */ #define RCC_APB2LPENR_TIM10LPEN_Pos (3U) #define RCC_APB2LPENR_TIM10LPEN_Msk (0x1U << RCC_APB2LPENR_TIM10LPEN_Pos) /*!< 0x00000008 */ #define RCC_APB2LPENR_TIM10LPEN RCC_APB2LPENR_TIM10LPEN_Msk /*!< TIM10 interface clock enabled in sleep mode */ #define RCC_APB2LPENR_TIM11LPEN_Pos (4U) #define RCC_APB2LPENR_TIM11LPEN_Msk (0x1U << RCC_APB2LPENR_TIM11LPEN_Pos) /*!< 0x00000010 */ #define RCC_APB2LPENR_TIM11LPEN RCC_APB2LPENR_TIM11LPEN_Msk /*!< TIM11 Timer clock enabled in sleep mode */ #define RCC_APB2LPENR_ADC1LPEN_Pos (9U) #define RCC_APB2LPENR_ADC1LPEN_Msk (0x1U << RCC_APB2LPENR_ADC1LPEN_Pos) /*!< 0x00000200 */ #define RCC_APB2LPENR_ADC1LPEN RCC_APB2LPENR_ADC1LPEN_Msk /*!< ADC1 clock enabled in sleep mode */ #define RCC_APB2LPENR_SPI1LPEN_Pos (12U) #define RCC_APB2LPENR_SPI1LPEN_Msk (0x1U << RCC_APB2LPENR_SPI1LPEN_Pos) /*!< 0x00001000 */ #define RCC_APB2LPENR_SPI1LPEN RCC_APB2LPENR_SPI1LPEN_Msk /*!< SPI1 clock enabled in sleep mode */ #define RCC_APB2LPENR_USART1LPEN_Pos (14U) #define RCC_APB2LPENR_USART1LPEN_Msk (0x1U << RCC_APB2LPENR_USART1LPEN_Pos) /*!< 0x00004000 */ #define RCC_APB2LPENR_USART1LPEN RCC_APB2LPENR_USART1LPEN_Msk /*!< USART1 clock enabled in sleep mode */ /***************** Bit definition for RCC_APB1LPENR register ****************/ #define RCC_APB1LPENR_TIM2LPEN_Pos (0U) #define RCC_APB1LPENR_TIM2LPEN_Msk (0x1U << RCC_APB1LPENR_TIM2LPEN_Pos) /*!< 0x00000001 */ #define RCC_APB1LPENR_TIM2LPEN RCC_APB1LPENR_TIM2LPEN_Msk /*!< Timer 2 clock enabled in sleep mode */ #define RCC_APB1LPENR_TIM3LPEN_Pos (1U) #define RCC_APB1LPENR_TIM3LPEN_Msk (0x1U << RCC_APB1LPENR_TIM3LPEN_Pos) /*!< 0x00000002 */ #define RCC_APB1LPENR_TIM3LPEN RCC_APB1LPENR_TIM3LPEN_Msk /*!< Timer 3 clock enabled in sleep mode */ #define RCC_APB1LPENR_TIM4LPEN_Pos (2U) #define RCC_APB1LPENR_TIM4LPEN_Msk (0x1U << RCC_APB1LPENR_TIM4LPEN_Pos) /*!< 0x00000004 */ #define RCC_APB1LPENR_TIM4LPEN RCC_APB1LPENR_TIM4LPEN_Msk /*!< Timer 4 clock enabled in sleep mode */ #define RCC_APB1LPENR_TIM6LPEN_Pos (4U) #define RCC_APB1LPENR_TIM6LPEN_Msk (0x1U << RCC_APB1LPENR_TIM6LPEN_Pos) /*!< 0x00000010 */ #define RCC_APB1LPENR_TIM6LPEN RCC_APB1LPENR_TIM6LPEN_Msk /*!< Timer 6 clock enabled in sleep mode */ #define RCC_APB1LPENR_TIM7LPEN_Pos (5U) #define RCC_APB1LPENR_TIM7LPEN_Msk (0x1U << RCC_APB1LPENR_TIM7LPEN_Pos) /*!< 0x00000020 */ #define RCC_APB1LPENR_TIM7LPEN RCC_APB1LPENR_TIM7LPEN_Msk /*!< Timer 7 clock enabled in sleep mode */ #define RCC_APB1LPENR_LCDLPEN_Pos (9U) #define RCC_APB1LPENR_LCDLPEN_Msk (0x1U << RCC_APB1LPENR_LCDLPEN_Pos) /*!< 0x00000200 */ #define RCC_APB1LPENR_LCDLPEN RCC_APB1LPENR_LCDLPEN_Msk /*!< LCD clock enabled in sleep mode */ #define RCC_APB1LPENR_WWDGLPEN_Pos (11U) #define RCC_APB1LPENR_WWDGLPEN_Msk (0x1U << RCC_APB1LPENR_WWDGLPEN_Pos) /*!< 0x00000800 */ #define RCC_APB1LPENR_WWDGLPEN RCC_APB1LPENR_WWDGLPEN_Msk /*!< Window Watchdog clock enabled in sleep mode */ #define RCC_APB1LPENR_SPI2LPEN_Pos (14U) #define RCC_APB1LPENR_SPI2LPEN_Msk (0x1U << RCC_APB1LPENR_SPI2LPEN_Pos) /*!< 0x00004000 */ #define RCC_APB1LPENR_SPI2LPEN RCC_APB1LPENR_SPI2LPEN_Msk /*!< SPI 2 clock enabled in sleep mode */ #define RCC_APB1LPENR_USART2LPEN_Pos (17U) #define RCC_APB1LPENR_USART2LPEN_Msk (0x1U << RCC_APB1LPENR_USART2LPEN_Pos) /*!< 0x00020000 */ #define RCC_APB1LPENR_USART2LPEN RCC_APB1LPENR_USART2LPEN_Msk /*!< USART 2 clock enabled in sleep mode */ #define RCC_APB1LPENR_USART3LPEN_Pos (18U) #define RCC_APB1LPENR_USART3LPEN_Msk (0x1U << RCC_APB1LPENR_USART3LPEN_Pos) /*!< 0x00040000 */ #define RCC_APB1LPENR_USART3LPEN RCC_APB1LPENR_USART3LPEN_Msk /*!< USART 3 clock enabled in sleep mode */ #define RCC_APB1LPENR_I2C1LPEN_Pos (21U) #define RCC_APB1LPENR_I2C1LPEN_Msk (0x1U << RCC_APB1LPENR_I2C1LPEN_Pos) /*!< 0x00200000 */ #define RCC_APB1LPENR_I2C1LPEN RCC_APB1LPENR_I2C1LPEN_Msk /*!< I2C 1 clock enabled in sleep mode */ #define RCC_APB1LPENR_I2C2LPEN_Pos (22U) #define RCC_APB1LPENR_I2C2LPEN_Msk (0x1U << RCC_APB1LPENR_I2C2LPEN_Pos) /*!< 0x00400000 */ #define RCC_APB1LPENR_I2C2LPEN RCC_APB1LPENR_I2C2LPEN_Msk /*!< I2C 2 clock enabled in sleep mode */ #define RCC_APB1LPENR_USBLPEN_Pos (23U) #define RCC_APB1LPENR_USBLPEN_Msk (0x1U << RCC_APB1LPENR_USBLPEN_Pos) /*!< 0x00800000 */ #define RCC_APB1LPENR_USBLPEN RCC_APB1LPENR_USBLPEN_Msk /*!< USB clock enabled in sleep mode */ #define RCC_APB1LPENR_PWRLPEN_Pos (28U) #define RCC_APB1LPENR_PWRLPEN_Msk (0x1U << RCC_APB1LPENR_PWRLPEN_Pos) /*!< 0x10000000 */ #define RCC_APB1LPENR_PWRLPEN RCC_APB1LPENR_PWRLPEN_Msk /*!< Power interface clock enabled in sleep mode */ #define RCC_APB1LPENR_DACLPEN_Pos (29U) #define RCC_APB1LPENR_DACLPEN_Msk (0x1U << RCC_APB1LPENR_DACLPEN_Pos) /*!< 0x20000000 */ #define RCC_APB1LPENR_DACLPEN RCC_APB1LPENR_DACLPEN_Msk /*!< DAC interface clock enabled in sleep mode */ #define RCC_APB1LPENR_COMPLPEN_Pos (31U) #define RCC_APB1LPENR_COMPLPEN_Msk (0x1U << RCC_APB1LPENR_COMPLPEN_Pos) /*!< 0x80000000 */ #define RCC_APB1LPENR_COMPLPEN RCC_APB1LPENR_COMPLPEN_Msk /*!< Comparator interface clock enabled in sleep mode*/ /******************* Bit definition for RCC_CSR register ********************/ #define RCC_CSR_LSION_Pos (0U) #define RCC_CSR_LSION_Msk (0x1U << RCC_CSR_LSION_Pos) /*!< 0x00000001 */ #define RCC_CSR_LSION RCC_CSR_LSION_Msk /*!< Internal Low Speed oscillator enable */ #define RCC_CSR_LSIRDY_Pos (1U) #define RCC_CSR_LSIRDY_Msk (0x1U << RCC_CSR_LSIRDY_Pos) /*!< 0x00000002 */ #define RCC_CSR_LSIRDY RCC_CSR_LSIRDY_Msk /*!< Internal Low Speed oscillator Ready */ #define RCC_CSR_LSEON_Pos (8U) #define RCC_CSR_LSEON_Msk (0x1U << RCC_CSR_LSEON_Pos) /*!< 0x00000100 */ #define RCC_CSR_LSEON RCC_CSR_LSEON_Msk /*!< External Low Speed oscillator enable */ #define RCC_CSR_LSERDY_Pos (9U) #define RCC_CSR_LSERDY_Msk (0x1U << RCC_CSR_LSERDY_Pos) /*!< 0x00000200 */ #define RCC_CSR_LSERDY RCC_CSR_LSERDY_Msk /*!< External Low Speed oscillator Ready */ #define RCC_CSR_LSEBYP_Pos (10U) #define RCC_CSR_LSEBYP_Msk (0x1U << RCC_CSR_LSEBYP_Pos) /*!< 0x00000400 */ #define RCC_CSR_LSEBYP RCC_CSR_LSEBYP_Msk /*!< External Low Speed oscillator Bypass */ #define RCC_CSR_RTCSEL_Pos (16U) #define RCC_CSR_RTCSEL_Msk (0x3U << RCC_CSR_RTCSEL_Pos) /*!< 0x00030000 */ #define RCC_CSR_RTCSEL RCC_CSR_RTCSEL_Msk /*!< RTCSEL[1:0] bits (RTC clock source selection) */ #define RCC_CSR_RTCSEL_0 (0x1U << RCC_CSR_RTCSEL_Pos) /*!< 0x00010000 */ #define RCC_CSR_RTCSEL_1 (0x2U << RCC_CSR_RTCSEL_Pos) /*!< 0x00020000 */ /*!< RTC congiguration */ #define RCC_CSR_RTCSEL_NOCLOCK (0x00000000U) /*!< No clock */ #define RCC_CSR_RTCSEL_LSE_Pos (16U) #define RCC_CSR_RTCSEL_LSE_Msk (0x1U << RCC_CSR_RTCSEL_LSE_Pos) /*!< 0x00010000 */ #define RCC_CSR_RTCSEL_LSE RCC_CSR_RTCSEL_LSE_Msk /*!< LSE oscillator clock used as RTC clock */ #define RCC_CSR_RTCSEL_LSI_Pos (17U) #define RCC_CSR_RTCSEL_LSI_Msk (0x1U << RCC_CSR_RTCSEL_LSI_Pos) /*!< 0x00020000 */ #define RCC_CSR_RTCSEL_LSI RCC_CSR_RTCSEL_LSI_Msk /*!< LSI oscillator clock used as RTC clock */ #define RCC_CSR_RTCSEL_HSE_Pos (16U) #define RCC_CSR_RTCSEL_HSE_Msk (0x3U << RCC_CSR_RTCSEL_HSE_Pos) /*!< 0x00030000 */ #define RCC_CSR_RTCSEL_HSE RCC_CSR_RTCSEL_HSE_Msk /*!< HSE oscillator clock divided by 2, 4, 8 or 16 by RTCPRE used as RTC clock */ #define RCC_CSR_RTCEN_Pos (22U) #define RCC_CSR_RTCEN_Msk (0x1U << RCC_CSR_RTCEN_Pos) /*!< 0x00400000 */ #define RCC_CSR_RTCEN RCC_CSR_RTCEN_Msk /*!< RTC clock enable */ #define RCC_CSR_RTCRST_Pos (23U) #define RCC_CSR_RTCRST_Msk (0x1U << RCC_CSR_RTCRST_Pos) /*!< 0x00800000 */ #define RCC_CSR_RTCRST RCC_CSR_RTCRST_Msk /*!< RTC reset */ #define RCC_CSR_RMVF_Pos (24U) #define RCC_CSR_RMVF_Msk (0x1U << RCC_CSR_RMVF_Pos) /*!< 0x01000000 */ #define RCC_CSR_RMVF RCC_CSR_RMVF_Msk /*!< Remove reset flag */ #define RCC_CSR_OBLRSTF_Pos (25U) #define RCC_CSR_OBLRSTF_Msk (0x1U << RCC_CSR_OBLRSTF_Pos) /*!< 0x02000000 */ #define RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF_Msk /*!< Option Bytes Loader reset flag */ #define RCC_CSR_PINRSTF_Pos (26U) #define RCC_CSR_PINRSTF_Msk (0x1U << RCC_CSR_PINRSTF_Pos) /*!< 0x04000000 */ #define RCC_CSR_PINRSTF RCC_CSR_PINRSTF_Msk /*!< PIN reset flag */ #define RCC_CSR_PORRSTF_Pos (27U) #define RCC_CSR_PORRSTF_Msk (0x1U << RCC_CSR_PORRSTF_Pos) /*!< 0x08000000 */ #define RCC_CSR_PORRSTF RCC_CSR_PORRSTF_Msk /*!< POR/PDR reset flag */ #define RCC_CSR_SFTRSTF_Pos (28U) #define RCC_CSR_SFTRSTF_Msk (0x1U << RCC_CSR_SFTRSTF_Pos) /*!< 0x10000000 */ #define RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF_Msk /*!< Software Reset flag */ #define RCC_CSR_IWDGRSTF_Pos (29U) #define RCC_CSR_IWDGRSTF_Msk (0x1U << RCC_CSR_IWDGRSTF_Pos) /*!< 0x20000000 */ #define RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF_Msk /*!< Independent Watchdog reset flag */ #define RCC_CSR_WWDGRSTF_Pos (30U) #define RCC_CSR_WWDGRSTF_Msk (0x1U << RCC_CSR_WWDGRSTF_Pos) /*!< 0x40000000 */ #define RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF_Msk /*!< Window watchdog reset flag */ #define RCC_CSR_LPWRRSTF_Pos (31U) #define RCC_CSR_LPWRRSTF_Msk (0x1U << RCC_CSR_LPWRRSTF_Pos) /*!< 0x80000000 */ #define RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF_Msk /*!< Low-Power reset flag */ /******************************************************************************/ /* */ /* Real-Time Clock (RTC) */ /* */ /******************************************************************************/ /* * @brief Specific device feature definitions (not present on all devices in the STM32F0 serie) */ #define RTC_TAMPER1_SUPPORT /*!< TAMPER 1 feature support */ #define RTC_BACKUP_SUPPORT /*!< BACKUP register feature support */ #define RTC_WAKEUP_SUPPORT /*!< WAKEUP feature support */ /******************** Bits definition for RTC_TR register *******************/ #define RTC_TR_PM_Pos (22U) #define RTC_TR_PM_Msk (0x1U << RTC_TR_PM_Pos) /*!< 0x00400000 */ #define RTC_TR_PM RTC_TR_PM_Msk #define RTC_TR_HT_Pos (20U) #define RTC_TR_HT_Msk (0x3U << RTC_TR_HT_Pos) /*!< 0x00300000 */ #define RTC_TR_HT RTC_TR_HT_Msk #define RTC_TR_HT_0 (0x1U << RTC_TR_HT_Pos) /*!< 0x00100000 */ #define RTC_TR_HT_1 (0x2U << RTC_TR_HT_Pos) /*!< 0x00200000 */ #define RTC_TR_HU_Pos (16U) #define RTC_TR_HU_Msk (0xFU << RTC_TR_HU_Pos) /*!< 0x000F0000 */ #define RTC_TR_HU RTC_TR_HU_Msk #define RTC_TR_HU_0 (0x1U << RTC_TR_HU_Pos) /*!< 0x00010000 */ #define RTC_TR_HU_1 (0x2U << RTC_TR_HU_Pos) /*!< 0x00020000 */ #define RTC_TR_HU_2 (0x4U << RTC_TR_HU_Pos) /*!< 0x00040000 */ #define RTC_TR_HU_3 (0x8U << RTC_TR_HU_Pos) /*!< 0x00080000 */ #define RTC_TR_MNT_Pos (12U) #define RTC_TR_MNT_Msk (0x7U << RTC_TR_MNT_Pos) /*!< 0x00007000 */ #define RTC_TR_MNT RTC_TR_MNT_Msk #define RTC_TR_MNT_0 (0x1U << RTC_TR_MNT_Pos) /*!< 0x00001000 */ #define RTC_TR_MNT_1 (0x2U << RTC_TR_MNT_Pos) /*!< 0x00002000 */ #define RTC_TR_MNT_2 (0x4U << RTC_TR_MNT_Pos) /*!< 0x00004000 */ #define RTC_TR_MNU_Pos (8U) #define RTC_TR_MNU_Msk (0xFU << RTC_TR_MNU_Pos) /*!< 0x00000F00 */ #define RTC_TR_MNU RTC_TR_MNU_Msk #define RTC_TR_MNU_0 (0x1U << RTC_TR_MNU_Pos) /*!< 0x00000100 */ #define RTC_TR_MNU_1 (0x2U << RTC_TR_MNU_Pos) /*!< 0x00000200 */ #define RTC_TR_MNU_2 (0x4U << RTC_TR_MNU_Pos) /*!< 0x00000400 */ #define RTC_TR_MNU_3 (0x8U << RTC_TR_MNU_Pos) /*!< 0x00000800 */ #define RTC_TR_ST_Pos (4U) #define RTC_TR_ST_Msk (0x7U << RTC_TR_ST_Pos) /*!< 0x00000070 */ #define RTC_TR_ST RTC_TR_ST_Msk #define RTC_TR_ST_0 (0x1U << RTC_TR_ST_Pos) /*!< 0x00000010 */ #define RTC_TR_ST_1 (0x2U << RTC_TR_ST_Pos) /*!< 0x00000020 */ #define RTC_TR_ST_2 (0x4U << RTC_TR_ST_Pos) /*!< 0x00000040 */ #define RTC_TR_SU_Pos (0U) #define RTC_TR_SU_Msk (0xFU << RTC_TR_SU_Pos) /*!< 0x0000000F */ #define RTC_TR_SU RTC_TR_SU_Msk #define RTC_TR_SU_0 (0x1U << RTC_TR_SU_Pos) /*!< 0x00000001 */ #define RTC_TR_SU_1 (0x2U << RTC_TR_SU_Pos) /*!< 0x00000002 */ #define RTC_TR_SU_2 (0x4U << RTC_TR_SU_Pos) /*!< 0x00000004 */ #define RTC_TR_SU_3 (0x8U << RTC_TR_SU_Pos) /*!< 0x00000008 */ /******************** Bits definition for RTC_DR register *******************/ #define RTC_DR_YT_Pos (20U) #define RTC_DR_YT_Msk (0xFU << RTC_DR_YT_Pos) /*!< 0x00F00000 */ #define RTC_DR_YT RTC_DR_YT_Msk #define RTC_DR_YT_0 (0x1U << RTC_DR_YT_Pos) /*!< 0x00100000 */ #define RTC_DR_YT_1 (0x2U << RTC_DR_YT_Pos) /*!< 0x00200000 */ #define RTC_DR_YT_2 (0x4U << RTC_DR_YT_Pos) /*!< 0x00400000 */ #define RTC_DR_YT_3 (0x8U << RTC_DR_YT_Pos) /*!< 0x00800000 */ #define RTC_DR_YU_Pos (16U) #define RTC_DR_YU_Msk (0xFU << RTC_DR_YU_Pos) /*!< 0x000F0000 */ #define RTC_DR_YU RTC_DR_YU_Msk #define RTC_DR_YU_0 (0x1U << RTC_DR_YU_Pos) /*!< 0x00010000 */ #define RTC_DR_YU_1 (0x2U << RTC_DR_YU_Pos) /*!< 0x00020000 */ #define RTC_DR_YU_2 (0x4U << RTC_DR_YU_Pos) /*!< 0x00040000 */ #define RTC_DR_YU_3 (0x8U << RTC_DR_YU_Pos) /*!< 0x00080000 */ #define RTC_DR_WDU_Pos (13U) #define RTC_DR_WDU_Msk (0x7U << RTC_DR_WDU_Pos) /*!< 0x0000E000 */ #define RTC_DR_WDU RTC_DR_WDU_Msk #define RTC_DR_WDU_0 (0x1U << RTC_DR_WDU_Pos) /*!< 0x00002000 */ #define RTC_DR_WDU_1 (0x2U << RTC_DR_WDU_Pos) /*!< 0x00004000 */ #define RTC_DR_WDU_2 (0x4U << RTC_DR_WDU_Pos) /*!< 0x00008000 */ #define RTC_DR_MT_Pos (12U) #define RTC_DR_MT_Msk (0x1U << RTC_DR_MT_Pos) /*!< 0x00001000 */ #define RTC_DR_MT RTC_DR_MT_Msk #define RTC_DR_MU_Pos (8U) #define RTC_DR_MU_Msk (0xFU << RTC_DR_MU_Pos) /*!< 0x00000F00 */ #define RTC_DR_MU RTC_DR_MU_Msk #define RTC_DR_MU_0 (0x1U << RTC_DR_MU_Pos) /*!< 0x00000100 */ #define RTC_DR_MU_1 (0x2U << RTC_DR_MU_Pos) /*!< 0x00000200 */ #define RTC_DR_MU_2 (0x4U << RTC_DR_MU_Pos) /*!< 0x00000400 */ #define RTC_DR_MU_3 (0x8U << RTC_DR_MU_Pos) /*!< 0x00000800 */ #define RTC_DR_DT_Pos (4U) #define RTC_DR_DT_Msk (0x3U << RTC_DR_DT_Pos) /*!< 0x00000030 */ #define RTC_DR_DT RTC_DR_DT_Msk #define RTC_DR_DT_0 (0x1U << RTC_DR_DT_Pos) /*!< 0x00000010 */ #define RTC_DR_DT_1 (0x2U << RTC_DR_DT_Pos) /*!< 0x00000020 */ #define RTC_DR_DU_Pos (0U) #define RTC_DR_DU_Msk (0xFU << RTC_DR_DU_Pos) /*!< 0x0000000F */ #define RTC_DR_DU RTC_DR_DU_Msk #define RTC_DR_DU_0 (0x1U << RTC_DR_DU_Pos) /*!< 0x00000001 */ #define RTC_DR_DU_1 (0x2U << RTC_DR_DU_Pos) /*!< 0x00000002 */ #define RTC_DR_DU_2 (0x4U << RTC_DR_DU_Pos) /*!< 0x00000004 */ #define RTC_DR_DU_3 (0x8U << RTC_DR_DU_Pos) /*!< 0x00000008 */ /******************** Bits definition for RTC_CR register *******************/ #define RTC_CR_COE_Pos (23U) #define RTC_CR_COE_Msk (0x1U << RTC_CR_COE_Pos) /*!< 0x00800000 */ #define RTC_CR_COE RTC_CR_COE_Msk #define RTC_CR_OSEL_Pos (21U) #define RTC_CR_OSEL_Msk (0x3U << RTC_CR_OSEL_Pos) /*!< 0x00600000 */ #define RTC_CR_OSEL RTC_CR_OSEL_Msk #define RTC_CR_OSEL_0 (0x1U << RTC_CR_OSEL_Pos) /*!< 0x00200000 */ #define RTC_CR_OSEL_1 (0x2U << RTC_CR_OSEL_Pos) /*!< 0x00400000 */ #define RTC_CR_POL_Pos (20U) #define RTC_CR_POL_Msk (0x1U << RTC_CR_POL_Pos) /*!< 0x00100000 */ #define RTC_CR_POL RTC_CR_POL_Msk #define RTC_CR_BKP_Pos (18U) #define RTC_CR_BKP_Msk (0x1U << RTC_CR_BKP_Pos) /*!< 0x00040000 */ #define RTC_CR_BKP RTC_CR_BKP_Msk #define RTC_CR_SUB1H_Pos (17U) #define RTC_CR_SUB1H_Msk (0x1U << RTC_CR_SUB1H_Pos) /*!< 0x00020000 */ #define RTC_CR_SUB1H RTC_CR_SUB1H_Msk #define RTC_CR_ADD1H_Pos (16U) #define RTC_CR_ADD1H_Msk (0x1U << RTC_CR_ADD1H_Pos) /*!< 0x00010000 */ #define RTC_CR_ADD1H RTC_CR_ADD1H_Msk #define RTC_CR_TSIE_Pos (15U) #define RTC_CR_TSIE_Msk (0x1U << RTC_CR_TSIE_Pos) /*!< 0x00008000 */ #define RTC_CR_TSIE RTC_CR_TSIE_Msk #define RTC_CR_WUTIE_Pos (14U) #define RTC_CR_WUTIE_Msk (0x1U << RTC_CR_WUTIE_Pos) /*!< 0x00004000 */ #define RTC_CR_WUTIE RTC_CR_WUTIE_Msk #define RTC_CR_ALRBIE_Pos (13U) #define RTC_CR_ALRBIE_Msk (0x1U << RTC_CR_ALRBIE_Pos) /*!< 0x00002000 */ #define RTC_CR_ALRBIE RTC_CR_ALRBIE_Msk #define RTC_CR_ALRAIE_Pos (12U) #define RTC_CR_ALRAIE_Msk (0x1U << RTC_CR_ALRAIE_Pos) /*!< 0x00001000 */ #define RTC_CR_ALRAIE RTC_CR_ALRAIE_Msk #define RTC_CR_TSE_Pos (11U) #define RTC_CR_TSE_Msk (0x1U << RTC_CR_TSE_Pos) /*!< 0x00000800 */ #define RTC_CR_TSE RTC_CR_TSE_Msk #define RTC_CR_WUTE_Pos (10U) #define RTC_CR_WUTE_Msk (0x1U << RTC_CR_WUTE_Pos) /*!< 0x00000400 */ #define RTC_CR_WUTE RTC_CR_WUTE_Msk #define RTC_CR_ALRBE_Pos (9U) #define RTC_CR_ALRBE_Msk (0x1U << RTC_CR_ALRBE_Pos) /*!< 0x00000200 */ #define RTC_CR_ALRBE RTC_CR_ALRBE_Msk #define RTC_CR_ALRAE_Pos (8U) #define RTC_CR_ALRAE_Msk (0x1U << RTC_CR_ALRAE_Pos) /*!< 0x00000100 */ #define RTC_CR_ALRAE RTC_CR_ALRAE_Msk #define RTC_CR_DCE_Pos (7U) #define RTC_CR_DCE_Msk (0x1U << RTC_CR_DCE_Pos) /*!< 0x00000080 */ #define RTC_CR_DCE RTC_CR_DCE_Msk #define RTC_CR_FMT_Pos (6U) #define RTC_CR_FMT_Msk (0x1U << RTC_CR_FMT_Pos) /*!< 0x00000040 */ #define RTC_CR_FMT RTC_CR_FMT_Msk #define RTC_CR_REFCKON_Pos (4U) #define RTC_CR_REFCKON_Msk (0x1U << RTC_CR_REFCKON_Pos) /*!< 0x00000010 */ #define RTC_CR_REFCKON RTC_CR_REFCKON_Msk #define RTC_CR_TSEDGE_Pos (3U) #define RTC_CR_TSEDGE_Msk (0x1U << RTC_CR_TSEDGE_Pos) /*!< 0x00000008 */ #define RTC_CR_TSEDGE RTC_CR_TSEDGE_Msk #define RTC_CR_WUCKSEL_Pos (0U) #define RTC_CR_WUCKSEL_Msk (0x7U << RTC_CR_WUCKSEL_Pos) /*!< 0x00000007 */ #define RTC_CR_WUCKSEL RTC_CR_WUCKSEL_Msk #define RTC_CR_WUCKSEL_0 (0x1U << RTC_CR_WUCKSEL_Pos) /*!< 0x00000001 */ #define RTC_CR_WUCKSEL_1 (0x2U << RTC_CR_WUCKSEL_Pos) /*!< 0x00000002 */ #define RTC_CR_WUCKSEL_2 (0x4U << RTC_CR_WUCKSEL_Pos) /*!< 0x00000004 */ /* Legacy defines */ #define RTC_CR_BCK_Pos RTC_CR_BKP_Pos #define RTC_CR_BCK_Msk RTC_CR_BKP_Msk #define RTC_CR_BCK RTC_CR_BKP /******************** Bits definition for RTC_ISR register ******************/ #define RTC_ISR_TAMP1F_Pos (13U) #define RTC_ISR_TAMP1F_Msk (0x1U << RTC_ISR_TAMP1F_Pos) /*!< 0x00002000 */ #define RTC_ISR_TAMP1F RTC_ISR_TAMP1F_Msk #define RTC_ISR_TSOVF_Pos (12U) #define RTC_ISR_TSOVF_Msk (0x1U << RTC_ISR_TSOVF_Pos) /*!< 0x00001000 */ #define RTC_ISR_TSOVF RTC_ISR_TSOVF_Msk #define RTC_ISR_TSF_Pos (11U) #define RTC_ISR_TSF_Msk (0x1U << RTC_ISR_TSF_Pos) /*!< 0x00000800 */ #define RTC_ISR_TSF RTC_ISR_TSF_Msk #define RTC_ISR_WUTF_Pos (10U) #define RTC_ISR_WUTF_Msk (0x1U << RTC_ISR_WUTF_Pos) /*!< 0x00000400 */ #define RTC_ISR_WUTF RTC_ISR_WUTF_Msk #define RTC_ISR_ALRBF_Pos (9U) #define RTC_ISR_ALRBF_Msk (0x1U << RTC_ISR_ALRBF_Pos) /*!< 0x00000200 */ #define RTC_ISR_ALRBF RTC_ISR_ALRBF_Msk #define RTC_ISR_ALRAF_Pos (8U) #define RTC_ISR_ALRAF_Msk (0x1U << RTC_ISR_ALRAF_Pos) /*!< 0x00000100 */ #define RTC_ISR_ALRAF RTC_ISR_ALRAF_Msk #define RTC_ISR_INIT_Pos (7U) #define RTC_ISR_INIT_Msk (0x1U << RTC_ISR_INIT_Pos) /*!< 0x00000080 */ #define RTC_ISR_INIT RTC_ISR_INIT_Msk #define RTC_ISR_INITF_Pos (6U) #define RTC_ISR_INITF_Msk (0x1U << RTC_ISR_INITF_Pos) /*!< 0x00000040 */ #define RTC_ISR_INITF RTC_ISR_INITF_Msk #define RTC_ISR_RSF_Pos (5U) #define RTC_ISR_RSF_Msk (0x1U << RTC_ISR_RSF_Pos) /*!< 0x00000020 */ #define RTC_ISR_RSF RTC_ISR_RSF_Msk #define RTC_ISR_INITS_Pos (4U) #define RTC_ISR_INITS_Msk (0x1U << RTC_ISR_INITS_Pos) /*!< 0x00000010 */ #define RTC_ISR_INITS RTC_ISR_INITS_Msk #define RTC_ISR_WUTWF_Pos (2U) #define RTC_ISR_WUTWF_Msk (0x1U << RTC_ISR_WUTWF_Pos) /*!< 0x00000004 */ #define RTC_ISR_WUTWF RTC_ISR_WUTWF_Msk #define RTC_ISR_ALRBWF_Pos (1U) #define RTC_ISR_ALRBWF_Msk (0x1U << RTC_ISR_ALRBWF_Pos) /*!< 0x00000002 */ #define RTC_ISR_ALRBWF RTC_ISR_ALRBWF_Msk #define RTC_ISR_ALRAWF_Pos (0U) #define RTC_ISR_ALRAWF_Msk (0x1U << RTC_ISR_ALRAWF_Pos) /*!< 0x00000001 */ #define RTC_ISR_ALRAWF RTC_ISR_ALRAWF_Msk /******************** Bits definition for RTC_PRER register *****************/ #define RTC_PRER_PREDIV_A_Pos (16U) #define RTC_PRER_PREDIV_A_Msk (0x7FU << RTC_PRER_PREDIV_A_Pos) /*!< 0x007F0000 */ #define RTC_PRER_PREDIV_A RTC_PRER_PREDIV_A_Msk #define RTC_PRER_PREDIV_S_Pos (0U) #define RTC_PRER_PREDIV_S_Msk (0x1FFFU << RTC_PRER_PREDIV_S_Pos) /*!< 0x00001FFF */ #define RTC_PRER_PREDIV_S RTC_PRER_PREDIV_S_Msk /******************** Bits definition for RTC_WUTR register *****************/ #define RTC_WUTR_WUT_Pos (0U) #define RTC_WUTR_WUT_Msk (0xFFFFU << RTC_WUTR_WUT_Pos) /*!< 0x0000FFFF */ #define RTC_WUTR_WUT RTC_WUTR_WUT_Msk /******************** Bits definition for RTC_CALIBR register ***************/ #define RTC_CALIBR_DCS_Pos (7U) #define RTC_CALIBR_DCS_Msk (0x1U << RTC_CALIBR_DCS_Pos) /*!< 0x00000080 */ #define RTC_CALIBR_DCS RTC_CALIBR_DCS_Msk #define RTC_CALIBR_DC_Pos (0U) #define RTC_CALIBR_DC_Msk (0x1FU << RTC_CALIBR_DC_Pos) /*!< 0x0000001F */ #define RTC_CALIBR_DC RTC_CALIBR_DC_Msk /******************** Bits definition for RTC_ALRMAR register ***************/ #define RTC_ALRMAR_MSK4_Pos (31U) #define RTC_ALRMAR_MSK4_Msk (0x1U << RTC_ALRMAR_MSK4_Pos) /*!< 0x80000000 */ #define RTC_ALRMAR_MSK4 RTC_ALRMAR_MSK4_Msk #define RTC_ALRMAR_WDSEL_Pos (30U) #define RTC_ALRMAR_WDSEL_Msk (0x1U << RTC_ALRMAR_WDSEL_Pos) /*!< 0x40000000 */ #define RTC_ALRMAR_WDSEL RTC_ALRMAR_WDSEL_Msk #define RTC_ALRMAR_DT_Pos (28U) #define RTC_ALRMAR_DT_Msk (0x3U << RTC_ALRMAR_DT_Pos) /*!< 0x30000000 */ #define RTC_ALRMAR_DT RTC_ALRMAR_DT_Msk #define RTC_ALRMAR_DT_0 (0x1U << RTC_ALRMAR_DT_Pos) /*!< 0x10000000 */ #define RTC_ALRMAR_DT_1 (0x2U << RTC_ALRMAR_DT_Pos) /*!< 0x20000000 */ #define RTC_ALRMAR_DU_Pos (24U) #define RTC_ALRMAR_DU_Msk (0xFU << RTC_ALRMAR_DU_Pos) /*!< 0x0F000000 */ #define RTC_ALRMAR_DU RTC_ALRMAR_DU_Msk #define RTC_ALRMAR_DU_0 (0x1U << RTC_ALRMAR_DU_Pos) /*!< 0x01000000 */ #define RTC_ALRMAR_DU_1 (0x2U << RTC_ALRMAR_DU_Pos) /*!< 0x02000000 */ #define RTC_ALRMAR_DU_2 (0x4U << RTC_ALRMAR_DU_Pos) /*!< 0x04000000 */ #define RTC_ALRMAR_DU_3 (0x8U << RTC_ALRMAR_DU_Pos) /*!< 0x08000000 */ #define RTC_ALRMAR_MSK3_Pos (23U) #define RTC_ALRMAR_MSK3_Msk (0x1U << RTC_ALRMAR_MSK3_Pos) /*!< 0x00800000 */ #define RTC_ALRMAR_MSK3 RTC_ALRMAR_MSK3_Msk #define RTC_ALRMAR_PM_Pos (22U) #define RTC_ALRMAR_PM_Msk (0x1U << RTC_ALRMAR_PM_Pos) /*!< 0x00400000 */ #define RTC_ALRMAR_PM RTC_ALRMAR_PM_Msk #define RTC_ALRMAR_HT_Pos (20U) #define RTC_ALRMAR_HT_Msk (0x3U << RTC_ALRMAR_HT_Pos) /*!< 0x00300000 */ #define RTC_ALRMAR_HT RTC_ALRMAR_HT_Msk #define RTC_ALRMAR_HT_0 (0x1U << RTC_ALRMAR_HT_Pos) /*!< 0x00100000 */ #define RTC_ALRMAR_HT_1 (0x2U << RTC_ALRMAR_HT_Pos) /*!< 0x00200000 */ #define RTC_ALRMAR_HU_Pos (16U) #define RTC_ALRMAR_HU_Msk (0xFU << RTC_ALRMAR_HU_Pos) /*!< 0x000F0000 */ #define RTC_ALRMAR_HU RTC_ALRMAR_HU_Msk #define RTC_ALRMAR_HU_0 (0x1U << RTC_ALRMAR_HU_Pos) /*!< 0x00010000 */ #define RTC_ALRMAR_HU_1 (0x2U << RTC_ALRMAR_HU_Pos) /*!< 0x00020000 */ #define RTC_ALRMAR_HU_2 (0x4U << RTC_ALRMAR_HU_Pos) /*!< 0x00040000 */ #define RTC_ALRMAR_HU_3 (0x8U << RTC_ALRMAR_HU_Pos) /*!< 0x00080000 */ #define RTC_ALRMAR_MSK2_Pos (15U) #define RTC_ALRMAR_MSK2_Msk (0x1U << RTC_ALRMAR_MSK2_Pos) /*!< 0x00008000 */ #define RTC_ALRMAR_MSK2 RTC_ALRMAR_MSK2_Msk #define RTC_ALRMAR_MNT_Pos (12U) #define RTC_ALRMAR_MNT_Msk (0x7U << RTC_ALRMAR_MNT_Pos) /*!< 0x00007000 */ #define RTC_ALRMAR_MNT RTC_ALRMAR_MNT_Msk #define RTC_ALRMAR_MNT_0 (0x1U << RTC_ALRMAR_MNT_Pos) /*!< 0x00001000 */ #define RTC_ALRMAR_MNT_1 (0x2U << RTC_ALRMAR_MNT_Pos) /*!< 0x00002000 */ #define RTC_ALRMAR_MNT_2 (0x4U << RTC_ALRMAR_MNT_Pos) /*!< 0x00004000 */ #define RTC_ALRMAR_MNU_Pos (8U) #define RTC_ALRMAR_MNU_Msk (0xFU << RTC_ALRMAR_MNU_Pos) /*!< 0x00000F00 */ #define RTC_ALRMAR_MNU RTC_ALRMAR_MNU_Msk #define RTC_ALRMAR_MNU_0 (0x1U << RTC_ALRMAR_MNU_Pos) /*!< 0x00000100 */ #define RTC_ALRMAR_MNU_1 (0x2U << RTC_ALRMAR_MNU_Pos) /*!< 0x00000200 */ #define RTC_ALRMAR_MNU_2 (0x4U << RTC_ALRMAR_MNU_Pos) /*!< 0x00000400 */ #define RTC_ALRMAR_MNU_3 (0x8U << RTC_ALRMAR_MNU_Pos) /*!< 0x00000800 */ #define RTC_ALRMAR_MSK1_Pos (7U) #define RTC_ALRMAR_MSK1_Msk (0x1U << RTC_ALRMAR_MSK1_Pos) /*!< 0x00000080 */ #define RTC_ALRMAR_MSK1 RTC_ALRMAR_MSK1_Msk #define RTC_ALRMAR_ST_Pos (4U) #define RTC_ALRMAR_ST_Msk (0x7U << RTC_ALRMAR_ST_Pos) /*!< 0x00000070 */ #define RTC_ALRMAR_ST RTC_ALRMAR_ST_Msk #define RTC_ALRMAR_ST_0 (0x1U << RTC_ALRMAR_ST_Pos) /*!< 0x00000010 */ #define RTC_ALRMAR_ST_1 (0x2U << RTC_ALRMAR_ST_Pos) /*!< 0x00000020 */ #define RTC_ALRMAR_ST_2 (0x4U << RTC_ALRMAR_ST_Pos) /*!< 0x00000040 */ #define RTC_ALRMAR_SU_Pos (0U) #define RTC_ALRMAR_SU_Msk (0xFU << RTC_ALRMAR_SU_Pos) /*!< 0x0000000F */ #define RTC_ALRMAR_SU RTC_ALRMAR_SU_Msk #define RTC_ALRMAR_SU_0 (0x1U << RTC_ALRMAR_SU_Pos) /*!< 0x00000001 */ #define RTC_ALRMAR_SU_1 (0x2U << RTC_ALRMAR_SU_Pos) /*!< 0x00000002 */ #define RTC_ALRMAR_SU_2 (0x4U << RTC_ALRMAR_SU_Pos) /*!< 0x00000004 */ #define RTC_ALRMAR_SU_3 (0x8U << RTC_ALRMAR_SU_Pos) /*!< 0x00000008 */ /******************** Bits definition for RTC_ALRMBR register ***************/ #define RTC_ALRMBR_MSK4_Pos (31U) #define RTC_ALRMBR_MSK4_Msk (0x1U << RTC_ALRMBR_MSK4_Pos) /*!< 0x80000000 */ #define RTC_ALRMBR_MSK4 RTC_ALRMBR_MSK4_Msk #define RTC_ALRMBR_WDSEL_Pos (30U) #define RTC_ALRMBR_WDSEL_Msk (0x1U << RTC_ALRMBR_WDSEL_Pos) /*!< 0x40000000 */ #define RTC_ALRMBR_WDSEL RTC_ALRMBR_WDSEL_Msk #define RTC_ALRMBR_DT_Pos (28U) #define RTC_ALRMBR_DT_Msk (0x3U << RTC_ALRMBR_DT_Pos) /*!< 0x30000000 */ #define RTC_ALRMBR_DT RTC_ALRMBR_DT_Msk #define RTC_ALRMBR_DT_0 (0x1U << RTC_ALRMBR_DT_Pos) /*!< 0x10000000 */ #define RTC_ALRMBR_DT_1 (0x2U << RTC_ALRMBR_DT_Pos) /*!< 0x20000000 */ #define RTC_ALRMBR_DU_Pos (24U) #define RTC_ALRMBR_DU_Msk (0xFU << RTC_ALRMBR_DU_Pos) /*!< 0x0F000000 */ #define RTC_ALRMBR_DU RTC_ALRMBR_DU_Msk #define RTC_ALRMBR_DU_0 (0x1U << RTC_ALRMBR_DU_Pos) /*!< 0x01000000 */ #define RTC_ALRMBR_DU_1 (0x2U << RTC_ALRMBR_DU_Pos) /*!< 0x02000000 */ #define RTC_ALRMBR_DU_2 (0x4U << RTC_ALRMBR_DU_Pos) /*!< 0x04000000 */ #define RTC_ALRMBR_DU_3 (0x8U << RTC_ALRMBR_DU_Pos) /*!< 0x08000000 */ #define RTC_ALRMBR_MSK3_Pos (23U) #define RTC_ALRMBR_MSK3_Msk (0x1U << RTC_ALRMBR_MSK3_Pos) /*!< 0x00800000 */ #define RTC_ALRMBR_MSK3 RTC_ALRMBR_MSK3_Msk #define RTC_ALRMBR_PM_Pos (22U) #define RTC_ALRMBR_PM_Msk (0x1U << RTC_ALRMBR_PM_Pos) /*!< 0x00400000 */ #define RTC_ALRMBR_PM RTC_ALRMBR_PM_Msk #define RTC_ALRMBR_HT_Pos (20U) #define RTC_ALRMBR_HT_Msk (0x3U << RTC_ALRMBR_HT_Pos) /*!< 0x00300000 */ #define RTC_ALRMBR_HT RTC_ALRMBR_HT_Msk #define RTC_ALRMBR_HT_0 (0x1U << RTC_ALRMBR_HT_Pos) /*!< 0x00100000 */ #define RTC_ALRMBR_HT_1 (0x2U << RTC_ALRMBR_HT_Pos) /*!< 0x00200000 */ #define RTC_ALRMBR_HU_Pos (16U) #define RTC_ALRMBR_HU_Msk (0xFU << RTC_ALRMBR_HU_Pos) /*!< 0x000F0000 */ #define RTC_ALRMBR_HU RTC_ALRMBR_HU_Msk #define RTC_ALRMBR_HU_0 (0x1U << RTC_ALRMBR_HU_Pos) /*!< 0x00010000 */ #define RTC_ALRMBR_HU_1 (0x2U << RTC_ALRMBR_HU_Pos) /*!< 0x00020000 */ #define RTC_ALRMBR_HU_2 (0x4U << RTC_ALRMBR_HU_Pos) /*!< 0x00040000 */ #define RTC_ALRMBR_HU_3 (0x8U << RTC_ALRMBR_HU_Pos) /*!< 0x00080000 */ #define RTC_ALRMBR_MSK2_Pos (15U) #define RTC_ALRMBR_MSK2_Msk (0x1U << RTC_ALRMBR_MSK2_Pos) /*!< 0x00008000 */ #define RTC_ALRMBR_MSK2 RTC_ALRMBR_MSK2_Msk #define RTC_ALRMBR_MNT_Pos (12U) #define RTC_ALRMBR_MNT_Msk (0x7U << RTC_ALRMBR_MNT_Pos) /*!< 0x00007000 */ #define RTC_ALRMBR_MNT RTC_ALRMBR_MNT_Msk #define RTC_ALRMBR_MNT_0 (0x1U << RTC_ALRMBR_MNT_Pos) /*!< 0x00001000 */ #define RTC_ALRMBR_MNT_1 (0x2U << RTC_ALRMBR_MNT_Pos) /*!< 0x00002000 */ #define RTC_ALRMBR_MNT_2 (0x4U << RTC_ALRMBR_MNT_Pos) /*!< 0x00004000 */ #define RTC_ALRMBR_MNU_Pos (8U) #define RTC_ALRMBR_MNU_Msk (0xFU << RTC_ALRMBR_MNU_Pos) /*!< 0x00000F00 */ #define RTC_ALRMBR_MNU RTC_ALRMBR_MNU_Msk #define RTC_ALRMBR_MNU_0 (0x1U << RTC_ALRMBR_MNU_Pos) /*!< 0x00000100 */ #define RTC_ALRMBR_MNU_1 (0x2U << RTC_ALRMBR_MNU_Pos) /*!< 0x00000200 */ #define RTC_ALRMBR_MNU_2 (0x4U << RTC_ALRMBR_MNU_Pos) /*!< 0x00000400 */ #define RTC_ALRMBR_MNU_3 (0x8U << RTC_ALRMBR_MNU_Pos) /*!< 0x00000800 */ #define RTC_ALRMBR_MSK1_Pos (7U) #define RTC_ALRMBR_MSK1_Msk (0x1U << RTC_ALRMBR_MSK1_Pos) /*!< 0x00000080 */ #define RTC_ALRMBR_MSK1 RTC_ALRMBR_MSK1_Msk #define RTC_ALRMBR_ST_Pos (4U) #define RTC_ALRMBR_ST_Msk (0x7U << RTC_ALRMBR_ST_Pos) /*!< 0x00000070 */ #define RTC_ALRMBR_ST RTC_ALRMBR_ST_Msk #define RTC_ALRMBR_ST_0 (0x1U << RTC_ALRMBR_ST_Pos) /*!< 0x00000010 */ #define RTC_ALRMBR_ST_1 (0x2U << RTC_ALRMBR_ST_Pos) /*!< 0x00000020 */ #define RTC_ALRMBR_ST_2 (0x4U << RTC_ALRMBR_ST_Pos) /*!< 0x00000040 */ #define RTC_ALRMBR_SU_Pos (0U) #define RTC_ALRMBR_SU_Msk (0xFU << RTC_ALRMBR_SU_Pos) /*!< 0x0000000F */ #define RTC_ALRMBR_SU RTC_ALRMBR_SU_Msk #define RTC_ALRMBR_SU_0 (0x1U << RTC_ALRMBR_SU_Pos) /*!< 0x00000001 */ #define RTC_ALRMBR_SU_1 (0x2U << RTC_ALRMBR_SU_Pos) /*!< 0x00000002 */ #define RTC_ALRMBR_SU_2 (0x4U << RTC_ALRMBR_SU_Pos) /*!< 0x00000004 */ #define RTC_ALRMBR_SU_3 (0x8U << RTC_ALRMBR_SU_Pos) /*!< 0x00000008 */ /******************** Bits definition for RTC_WPR register ******************/ #define RTC_WPR_KEY_Pos (0U) #define RTC_WPR_KEY_Msk (0xFFU << RTC_WPR_KEY_Pos) /*!< 0x000000FF */ #define RTC_WPR_KEY RTC_WPR_KEY_Msk /******************** Bits definition for RTC_TSTR register *****************/ #define RTC_TSTR_PM_Pos (22U) #define RTC_TSTR_PM_Msk (0x1U << RTC_TSTR_PM_Pos) /*!< 0x00400000 */ #define RTC_TSTR_PM RTC_TSTR_PM_Msk #define RTC_TSTR_HT_Pos (20U) #define RTC_TSTR_HT_Msk (0x3U << RTC_TSTR_HT_Pos) /*!< 0x00300000 */ #define RTC_TSTR_HT RTC_TSTR_HT_Msk #define RTC_TSTR_HT_0 (0x1U << RTC_TSTR_HT_Pos) /*!< 0x00100000 */ #define RTC_TSTR_HT_1 (0x2U << RTC_TSTR_HT_Pos) /*!< 0x00200000 */ #define RTC_TSTR_HU_Pos (16U) #define RTC_TSTR_HU_Msk (0xFU << RTC_TSTR_HU_Pos) /*!< 0x000F0000 */ #define RTC_TSTR_HU RTC_TSTR_HU_Msk #define RTC_TSTR_HU_0 (0x1U << RTC_TSTR_HU_Pos) /*!< 0x00010000 */ #define RTC_TSTR_HU_1 (0x2U << RTC_TSTR_HU_Pos) /*!< 0x00020000 */ #define RTC_TSTR_HU_2 (0x4U << RTC_TSTR_HU_Pos) /*!< 0x00040000 */ #define RTC_TSTR_HU_3 (0x8U << RTC_TSTR_HU_Pos) /*!< 0x00080000 */ #define RTC_TSTR_MNT_Pos (12U) #define RTC_TSTR_MNT_Msk (0x7U << RTC_TSTR_MNT_Pos) /*!< 0x00007000 */ #define RTC_TSTR_MNT RTC_TSTR_MNT_Msk #define RTC_TSTR_MNT_0 (0x1U << RTC_TSTR_MNT_Pos) /*!< 0x00001000 */ #define RTC_TSTR_MNT_1 (0x2U << RTC_TSTR_MNT_Pos) /*!< 0x00002000 */ #define RTC_TSTR_MNT_2 (0x4U << RTC_TSTR_MNT_Pos) /*!< 0x00004000 */ #define RTC_TSTR_MNU_Pos (8U) #define RTC_TSTR_MNU_Msk (0xFU << RTC_TSTR_MNU_Pos) /*!< 0x00000F00 */ #define RTC_TSTR_MNU RTC_TSTR_MNU_Msk #define RTC_TSTR_MNU_0 (0x1U << RTC_TSTR_MNU_Pos) /*!< 0x00000100 */ #define RTC_TSTR_MNU_1 (0x2U << RTC_TSTR_MNU_Pos) /*!< 0x00000200 */ #define RTC_TSTR_MNU_2 (0x4U << RTC_TSTR_MNU_Pos) /*!< 0x00000400 */ #define RTC_TSTR_MNU_3 (0x8U << RTC_TSTR_MNU_Pos) /*!< 0x00000800 */ #define RTC_TSTR_ST_Pos (4U) #define RTC_TSTR_ST_Msk (0x7U << RTC_TSTR_ST_Pos) /*!< 0x00000070 */ #define RTC_TSTR_ST RTC_TSTR_ST_Msk #define RTC_TSTR_ST_0 (0x1U << RTC_TSTR_ST_Pos) /*!< 0x00000010 */ #define RTC_TSTR_ST_1 (0x2U << RTC_TSTR_ST_Pos) /*!< 0x00000020 */ #define RTC_TSTR_ST_2 (0x4U << RTC_TSTR_ST_Pos) /*!< 0x00000040 */ #define RTC_TSTR_SU_Pos (0U) #define RTC_TSTR_SU_Msk (0xFU << RTC_TSTR_SU_Pos) /*!< 0x0000000F */ #define RTC_TSTR_SU RTC_TSTR_SU_Msk #define RTC_TSTR_SU_0 (0x1U << RTC_TSTR_SU_Pos) /*!< 0x00000001 */ #define RTC_TSTR_SU_1 (0x2U << RTC_TSTR_SU_Pos) /*!< 0x00000002 */ #define RTC_TSTR_SU_2 (0x4U << RTC_TSTR_SU_Pos) /*!< 0x00000004 */ #define RTC_TSTR_SU_3 (0x8U << RTC_TSTR_SU_Pos) /*!< 0x00000008 */ /******************** Bits definition for RTC_TSDR register *****************/ #define RTC_TSDR_WDU_Pos (13U) #define RTC_TSDR_WDU_Msk (0x7U << RTC_TSDR_WDU_Pos) /*!< 0x0000E000 */ #define RTC_TSDR_WDU RTC_TSDR_WDU_Msk #define RTC_TSDR_WDU_0 (0x1U << RTC_TSDR_WDU_Pos) /*!< 0x00002000 */ #define RTC_TSDR_WDU_1 (0x2U << RTC_TSDR_WDU_Pos) /*!< 0x00004000 */ #define RTC_TSDR_WDU_2 (0x4U << RTC_TSDR_WDU_Pos) /*!< 0x00008000 */ #define RTC_TSDR_MT_Pos (12U) #define RTC_TSDR_MT_Msk (0x1U << RTC_TSDR_MT_Pos) /*!< 0x00001000 */ #define RTC_TSDR_MT RTC_TSDR_MT_Msk #define RTC_TSDR_MU_Pos (8U) #define RTC_TSDR_MU_Msk (0xFU << RTC_TSDR_MU_Pos) /*!< 0x00000F00 */ #define RTC_TSDR_MU RTC_TSDR_MU_Msk #define RTC_TSDR_MU_0 (0x1U << RTC_TSDR_MU_Pos) /*!< 0x00000100 */ #define RTC_TSDR_MU_1 (0x2U << RTC_TSDR_MU_Pos) /*!< 0x00000200 */ #define RTC_TSDR_MU_2 (0x4U << RTC_TSDR_MU_Pos) /*!< 0x00000400 */ #define RTC_TSDR_MU_3 (0x8U << RTC_TSDR_MU_Pos) /*!< 0x00000800 */ #define RTC_TSDR_DT_Pos (4U) #define RTC_TSDR_DT_Msk (0x3U << RTC_TSDR_DT_Pos) /*!< 0x00000030 */ #define RTC_TSDR_DT RTC_TSDR_DT_Msk #define RTC_TSDR_DT_0 (0x1U << RTC_TSDR_DT_Pos) /*!< 0x00000010 */ #define RTC_TSDR_DT_1 (0x2U << RTC_TSDR_DT_Pos) /*!< 0x00000020 */ #define RTC_TSDR_DU_Pos (0U) #define RTC_TSDR_DU_Msk (0xFU << RTC_TSDR_DU_Pos) /*!< 0x0000000F */ #define RTC_TSDR_DU RTC_TSDR_DU_Msk #define RTC_TSDR_DU_0 (0x1U << RTC_TSDR_DU_Pos) /*!< 0x00000001 */ #define RTC_TSDR_DU_1 (0x2U << RTC_TSDR_DU_Pos) /*!< 0x00000002 */ #define RTC_TSDR_DU_2 (0x4U << RTC_TSDR_DU_Pos) /*!< 0x00000004 */ #define RTC_TSDR_DU_3 (0x8U << RTC_TSDR_DU_Pos) /*!< 0x00000008 */ /******************** Bits definition for RTC_TAFCR register ****************/ #define RTC_TAFCR_ALARMOUTTYPE_Pos (18U) #define RTC_TAFCR_ALARMOUTTYPE_Msk (0x1U << RTC_TAFCR_ALARMOUTTYPE_Pos) /*!< 0x00040000 */ #define RTC_TAFCR_ALARMOUTTYPE RTC_TAFCR_ALARMOUTTYPE_Msk #define RTC_TAFCR_TAMPIE_Pos (2U) #define RTC_TAFCR_TAMPIE_Msk (0x1U << RTC_TAFCR_TAMPIE_Pos) /*!< 0x00000004 */ #define RTC_TAFCR_TAMPIE RTC_TAFCR_TAMPIE_Msk #define RTC_TAFCR_TAMP1TRG_Pos (1U) #define RTC_TAFCR_TAMP1TRG_Msk (0x1U << RTC_TAFCR_TAMP1TRG_Pos) /*!< 0x00000002 */ #define RTC_TAFCR_TAMP1TRG RTC_TAFCR_TAMP1TRG_Msk #define RTC_TAFCR_TAMP1E_Pos (0U) #define RTC_TAFCR_TAMP1E_Msk (0x1U << RTC_TAFCR_TAMP1E_Pos) /*!< 0x00000001 */ #define RTC_TAFCR_TAMP1E RTC_TAFCR_TAMP1E_Msk /******************** Bits definition for RTC_BKP0R register ****************/ #define RTC_BKP0R_Pos (0U) #define RTC_BKP0R_Msk (0xFFFFFFFFU << RTC_BKP0R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP0R RTC_BKP0R_Msk /******************** Bits definition for RTC_BKP1R register ****************/ #define RTC_BKP1R_Pos (0U) #define RTC_BKP1R_Msk (0xFFFFFFFFU << RTC_BKP1R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP1R RTC_BKP1R_Msk /******************** Bits definition for RTC_BKP2R register ****************/ #define RTC_BKP2R_Pos (0U) #define RTC_BKP2R_Msk (0xFFFFFFFFU << RTC_BKP2R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP2R RTC_BKP2R_Msk /******************** Bits definition for RTC_BKP3R register ****************/ #define RTC_BKP3R_Pos (0U) #define RTC_BKP3R_Msk (0xFFFFFFFFU << RTC_BKP3R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP3R RTC_BKP3R_Msk /******************** Bits definition for RTC_BKP4R register ****************/ #define RTC_BKP4R_Pos (0U) #define RTC_BKP4R_Msk (0xFFFFFFFFU << RTC_BKP4R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP4R RTC_BKP4R_Msk /******************** Bits definition for RTC_BKP5R register ****************/ #define RTC_BKP5R_Pos (0U) #define RTC_BKP5R_Msk (0xFFFFFFFFU << RTC_BKP5R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP5R RTC_BKP5R_Msk /******************** Bits definition for RTC_BKP6R register ****************/ #define RTC_BKP6R_Pos (0U) #define RTC_BKP6R_Msk (0xFFFFFFFFU << RTC_BKP6R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP6R RTC_BKP6R_Msk /******************** Bits definition for RTC_BKP7R register ****************/ #define RTC_BKP7R_Pos (0U) #define RTC_BKP7R_Msk (0xFFFFFFFFU << RTC_BKP7R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP7R RTC_BKP7R_Msk /******************** Bits definition for RTC_BKP8R register ****************/ #define RTC_BKP8R_Pos (0U) #define RTC_BKP8R_Msk (0xFFFFFFFFU << RTC_BKP8R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP8R RTC_BKP8R_Msk /******************** Bits definition for RTC_BKP9R register ****************/ #define RTC_BKP9R_Pos (0U) #define RTC_BKP9R_Msk (0xFFFFFFFFU << RTC_BKP9R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP9R RTC_BKP9R_Msk /******************** Bits definition for RTC_BKP10R register ***************/ #define RTC_BKP10R_Pos (0U) #define RTC_BKP10R_Msk (0xFFFFFFFFU << RTC_BKP10R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP10R RTC_BKP10R_Msk /******************** Bits definition for RTC_BKP11R register ***************/ #define RTC_BKP11R_Pos (0U) #define RTC_BKP11R_Msk (0xFFFFFFFFU << RTC_BKP11R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP11R RTC_BKP11R_Msk /******************** Bits definition for RTC_BKP12R register ***************/ #define RTC_BKP12R_Pos (0U) #define RTC_BKP12R_Msk (0xFFFFFFFFU << RTC_BKP12R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP12R RTC_BKP12R_Msk /******************** Bits definition for RTC_BKP13R register ***************/ #define RTC_BKP13R_Pos (0U) #define RTC_BKP13R_Msk (0xFFFFFFFFU << RTC_BKP13R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP13R RTC_BKP13R_Msk /******************** Bits definition for RTC_BKP14R register ***************/ #define RTC_BKP14R_Pos (0U) #define RTC_BKP14R_Msk (0xFFFFFFFFU << RTC_BKP14R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP14R RTC_BKP14R_Msk /******************** Bits definition for RTC_BKP15R register ***************/ #define RTC_BKP15R_Pos (0U) #define RTC_BKP15R_Msk (0xFFFFFFFFU << RTC_BKP15R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP15R RTC_BKP15R_Msk /******************** Bits definition for RTC_BKP16R register ***************/ #define RTC_BKP16R_Pos (0U) #define RTC_BKP16R_Msk (0xFFFFFFFFU << RTC_BKP16R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP16R RTC_BKP16R_Msk /******************** Bits definition for RTC_BKP17R register ***************/ #define RTC_BKP17R_Pos (0U) #define RTC_BKP17R_Msk (0xFFFFFFFFU << RTC_BKP17R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP17R RTC_BKP17R_Msk /******************** Bits definition for RTC_BKP18R register ***************/ #define RTC_BKP18R_Pos (0U) #define RTC_BKP18R_Msk (0xFFFFFFFFU << RTC_BKP18R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP18R RTC_BKP18R_Msk /******************** Bits definition for RTC_BKP19R register ***************/ #define RTC_BKP19R_Pos (0U) #define RTC_BKP19R_Msk (0xFFFFFFFFU << RTC_BKP19R_Pos) /*!< 0xFFFFFFFF */ #define RTC_BKP19R RTC_BKP19R_Msk /******************** Number of backup registers ******************************/ #define RTC_BKP_NUMBER 20 /******************************************************************************/ /* */ /* Serial Peripheral Interface (SPI) */ /* */ /******************************************************************************/ /* * @brief Specific device feature definitions (not present on all devices in the STM32F3 serie) */ /******************* Bit definition for SPI_CR1 register ********************/ #define SPI_CR1_CPHA_Pos (0U) #define SPI_CR1_CPHA_Msk (0x1U << SPI_CR1_CPHA_Pos) /*!< 0x00000001 */ #define SPI_CR1_CPHA SPI_CR1_CPHA_Msk /*!< Clock Phase */ #define SPI_CR1_CPOL_Pos (1U) #define SPI_CR1_CPOL_Msk (0x1U << SPI_CR1_CPOL_Pos) /*!< 0x00000002 */ #define SPI_CR1_CPOL SPI_CR1_CPOL_Msk /*!< Clock Polarity */ #define SPI_CR1_MSTR_Pos (2U) #define SPI_CR1_MSTR_Msk (0x1U << SPI_CR1_MSTR_Pos) /*!< 0x00000004 */ #define SPI_CR1_MSTR SPI_CR1_MSTR_Msk /*!< Master Selection */ #define SPI_CR1_BR_Pos (3U) #define SPI_CR1_BR_Msk (0x7U << SPI_CR1_BR_Pos) /*!< 0x00000038 */ #define SPI_CR1_BR SPI_CR1_BR_Msk /*!< BR[2:0] bits (Baud Rate Control) */ #define SPI_CR1_BR_0 (0x1U << SPI_CR1_BR_Pos) /*!< 0x00000008 */ #define SPI_CR1_BR_1 (0x2U << SPI_CR1_BR_Pos) /*!< 0x00000010 */ #define SPI_CR1_BR_2 (0x4U << SPI_CR1_BR_Pos) /*!< 0x00000020 */ #define SPI_CR1_SPE_Pos (6U) #define SPI_CR1_SPE_Msk (0x1U << SPI_CR1_SPE_Pos) /*!< 0x00000040 */ #define SPI_CR1_SPE SPI_CR1_SPE_Msk /*!< SPI Enable */ #define SPI_CR1_LSBFIRST_Pos (7U) #define SPI_CR1_LSBFIRST_Msk (0x1U << SPI_CR1_LSBFIRST_Pos) /*!< 0x00000080 */ #define SPI_CR1_LSBFIRST SPI_CR1_LSBFIRST_Msk /*!< Frame Format */ #define SPI_CR1_SSI_Pos (8U) #define SPI_CR1_SSI_Msk (0x1U << SPI_CR1_SSI_Pos) /*!< 0x00000100 */ #define SPI_CR1_SSI SPI_CR1_SSI_Msk /*!< Internal slave select */ #define SPI_CR1_SSM_Pos (9U) #define SPI_CR1_SSM_Msk (0x1U << SPI_CR1_SSM_Pos) /*!< 0x00000200 */ #define SPI_CR1_SSM SPI_CR1_SSM_Msk /*!< Software slave management */ #define SPI_CR1_RXONLY_Pos (10U) #define SPI_CR1_RXONLY_Msk (0x1U << SPI_CR1_RXONLY_Pos) /*!< 0x00000400 */ #define SPI_CR1_RXONLY SPI_CR1_RXONLY_Msk /*!< Receive only */ #define SPI_CR1_DFF_Pos (11U) #define SPI_CR1_DFF_Msk (0x1U << SPI_CR1_DFF_Pos) /*!< 0x00000800 */ #define SPI_CR1_DFF SPI_CR1_DFF_Msk /*!< Data Frame Format */ #define SPI_CR1_CRCNEXT_Pos (12U) #define SPI_CR1_CRCNEXT_Msk (0x1U << SPI_CR1_CRCNEXT_Pos) /*!< 0x00001000 */ #define SPI_CR1_CRCNEXT SPI_CR1_CRCNEXT_Msk /*!< Transmit CRC next */ #define SPI_CR1_CRCEN_Pos (13U) #define SPI_CR1_CRCEN_Msk (0x1U << SPI_CR1_CRCEN_Pos) /*!< 0x00002000 */ #define SPI_CR1_CRCEN SPI_CR1_CRCEN_Msk /*!< Hardware CRC calculation enable */ #define SPI_CR1_BIDIOE_Pos (14U) #define SPI_CR1_BIDIOE_Msk (0x1U << SPI_CR1_BIDIOE_Pos) /*!< 0x00004000 */ #define SPI_CR1_BIDIOE SPI_CR1_BIDIOE_Msk /*!< Output enable in bidirectional mode */ #define SPI_CR1_BIDIMODE_Pos (15U) #define SPI_CR1_BIDIMODE_Msk (0x1U << SPI_CR1_BIDIMODE_Pos) /*!< 0x00008000 */ #define SPI_CR1_BIDIMODE SPI_CR1_BIDIMODE_Msk /*!< Bidirectional data mode enable */ /******************* Bit definition for SPI_CR2 register ********************/ #define SPI_CR2_RXDMAEN_Pos (0U) #define SPI_CR2_RXDMAEN_Msk (0x1U << SPI_CR2_RXDMAEN_Pos) /*!< 0x00000001 */ #define SPI_CR2_RXDMAEN SPI_CR2_RXDMAEN_Msk /*!< Rx Buffer DMA Enable */ #define SPI_CR2_TXDMAEN_Pos (1U) #define SPI_CR2_TXDMAEN_Msk (0x1U << SPI_CR2_TXDMAEN_Pos) /*!< 0x00000002 */ #define SPI_CR2_TXDMAEN SPI_CR2_TXDMAEN_Msk /*!< Tx Buffer DMA Enable */ #define SPI_CR2_SSOE_Pos (2U) #define SPI_CR2_SSOE_Msk (0x1U << SPI_CR2_SSOE_Pos) /*!< 0x00000004 */ #define SPI_CR2_SSOE SPI_CR2_SSOE_Msk /*!< SS Output Enable */ #define SPI_CR2_ERRIE_Pos (5U) #define SPI_CR2_ERRIE_Msk (0x1U << SPI_CR2_ERRIE_Pos) /*!< 0x00000020 */ #define SPI_CR2_ERRIE SPI_CR2_ERRIE_Msk /*!< Error Interrupt Enable */ #define SPI_CR2_RXNEIE_Pos (6U) #define SPI_CR2_RXNEIE_Msk (0x1U << SPI_CR2_RXNEIE_Pos) /*!< 0x00000040 */ #define SPI_CR2_RXNEIE SPI_CR2_RXNEIE_Msk /*!< RX buffer Not Empty Interrupt Enable */ #define SPI_CR2_TXEIE_Pos (7U) #define SPI_CR2_TXEIE_Msk (0x1U << SPI_CR2_TXEIE_Pos) /*!< 0x00000080 */ #define SPI_CR2_TXEIE SPI_CR2_TXEIE_Msk /*!< Tx buffer Empty Interrupt Enable */ /******************** Bit definition for SPI_SR register ********************/ #define SPI_SR_RXNE_Pos (0U) #define SPI_SR_RXNE_Msk (0x1U << SPI_SR_RXNE_Pos) /*!< 0x00000001 */ #define SPI_SR_RXNE SPI_SR_RXNE_Msk /*!< Receive buffer Not Empty */ #define SPI_SR_TXE_Pos (1U) #define SPI_SR_TXE_Msk (0x1U << SPI_SR_TXE_Pos) /*!< 0x00000002 */ #define SPI_SR_TXE SPI_SR_TXE_Msk /*!< Transmit buffer Empty */ #define SPI_SR_CHSIDE_Pos (2U) #define SPI_SR_CHSIDE_Msk (0x1U << SPI_SR_CHSIDE_Pos) /*!< 0x00000004 */ #define SPI_SR_CHSIDE SPI_SR_CHSIDE_Msk /*!< Channel side */ #define SPI_SR_UDR_Pos (3U) #define SPI_SR_UDR_Msk (0x1U << SPI_SR_UDR_Pos) /*!< 0x00000008 */ #define SPI_SR_UDR SPI_SR_UDR_Msk /*!< Underrun flag */ #define SPI_SR_CRCERR_Pos (4U) #define SPI_SR_CRCERR_Msk (0x1U << SPI_SR_CRCERR_Pos) /*!< 0x00000010 */ #define SPI_SR_CRCERR SPI_SR_CRCERR_Msk /*!< CRC Error flag */ #define SPI_SR_MODF_Pos (5U) #define SPI_SR_MODF_Msk (0x1U << SPI_SR_MODF_Pos) /*!< 0x00000020 */ #define SPI_SR_MODF SPI_SR_MODF_Msk /*!< Mode fault */ #define SPI_SR_OVR_Pos (6U) #define SPI_SR_OVR_Msk (0x1U << SPI_SR_OVR_Pos) /*!< 0x00000040 */ #define SPI_SR_OVR SPI_SR_OVR_Msk /*!< Overrun flag */ #define SPI_SR_BSY_Pos (7U) #define SPI_SR_BSY_Msk (0x1U << SPI_SR_BSY_Pos) /*!< 0x00000080 */ #define SPI_SR_BSY SPI_SR_BSY_Msk /*!< Busy flag */ #define SPI_SR_FRE_Pos (8U) #define SPI_SR_FRE_Msk (0x1U << SPI_SR_FRE_Pos) /*!< 0x00000100 */ #define SPI_SR_FRE SPI_SR_FRE_Msk /*!