\section{Yosys by example -- Synthesis} \begin{frame} \sectionpage \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Typical Phases of a Synthesis Flow} \begin{frame}{\subsecname} \begin{itemize} \item Reading and elaborating the design \item Higher-level synthesis and optimization \begin{itemize} \item Converting {\tt always}-blocks to logic and registers \item Perform coarse-grain optimizations (resource sharing, const folding, ...) \item Handling of memories and other coarse-grain blocks \item Extracting and optimizing finite state machines \end{itemize} \item Convert remaining logic to bit-level logic functions \item Perform optimizations on bit-level logic functions \item Map bit-level logic gates and registers to cell library \item Write results to output file \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Reading the design} \begin{frame}[fragile]{\subsecname} \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] read_verilog file1.v read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v read_verilog -lib cell_library.v verilog_defaults -add -I include_dir read_verilog file3.v read_verilog file4.v verilog_defaults -clear verilog_defaults -push verilog_defaults -add -I include_dir read_verilog file5.v read_verilog file6.v verilog_defaults -pop \end{lstlisting} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Design elaboration} \begin{frame}[fragile]{\subsecname} During design elaboration Yosys figures out how the modules are hierarchically connected. It also re-runs the AST parts of the Verilog frontend to create all needed variations of parametric modules. \bigskip \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] # simplest form. at least this version should be used after reading all input files # hierarchy # recommended form. fails if parts of the design hierarchy are missing, removes # everything that is unreachable from the top module, and marks the top module. # hierarchy -check -top top_module \end{lstlisting} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\tt proc} command} \begin{frame}[fragile]{\subsecname} The Verilog frontend converts {\tt always}-blocks to RTL netlists for the expressions and ``processes'' for the control- and memory elements. \medskip The {\tt proc} command transforms this ``processes'' to netlists of RTL multiplexer and register cells. \medskip The {\tt proc} command is actually a macro-command that calls the following other commands: \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] proc_clean # remove empty branches and processes proc_rmdead # remove unreachable branches proc_init # special handling of "initial" blocks proc_arst # identify modeling of async resets proc_mux # convert decision trees to multiplexer networks proc_dff # extract registers from processes proc_clean # if all went fine, this should remove all the processes \end{lstlisting} \medskip Many commands can not operate on modules with ``processes'' in them. Usually a call to {\tt proc} is the first command in the actual synthesis procedure after design elaboration. \end{frame} \begin{frame}[fragile]{\subsecname{} -- Example 1/3} \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_01.v} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_01.ys} \end{columns} \hfil\includegraphics[width=8cm,trim=0 0cm 0 0cm]{PRESENTATION_ExSyn/proc_01.pdf} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 2/3} \vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -2.5cm]{PRESENTATION_ExSyn/proc_02.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_02.v} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_02.ys} \end{columns} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 3/3} \vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -1.5cm]{PRESENTATION_ExSyn/proc_03.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_03.ys} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_03.v} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\tt opt} command} \begin{frame}[fragile]{\subsecname} The {\tt opt} command implements a series of simple optimizations. It also is a macro command that calls other commands: \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] opt_expr # const folding and simple expression rewriting opt_merge -nomux # merging identical cells do opt_muxtree # remove never-active branches from multiplexer tree opt_reduce # consolidate trees of boolean ops to reduce functions opt_merge # merging identical cells opt_rmdff # remove/simplify registers with constant inputs opt_clean # remove unused objects (cells, wires) from design opt_expr # const folding and simple expression rewriting while [changed design] \end{lstlisting} The command {\tt clean} can be used as alias for {\tt opt\_clean}. And {\tt ;;} can be used as shortcut for {\tt clean}. For example: \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] proc; opt; memory; opt_expr;; fsm;; \end{lstlisting} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 1/4} \vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -0.5cm]{PRESENTATION_ExSyn/opt_01.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_01.ys} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_01.v} \end{columns} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 2/4} \vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm 0cm]{PRESENTATION_ExSyn/opt_02.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_02.ys} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_02.v} \end{columns} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 3/4} \vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -2cm]{PRESENTATION_ExSyn/opt_03.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_03.ys} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_03.v} \end{columns} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 4/4} \vbox to 0cm{\hskip6cm\includegraphics[width=6cm,trim=0cm 0cm 0cm -3cm]{PRESENTATION_ExSyn/opt_04.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_04.v} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_04.ys} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{When to use {\tt opt} or {\tt clean}} \begin{frame}{\subsecname} Usually it does not hurt to call {\tt opt} after each regular command in the synthesis script. But it increases the synthesis time, so it is favourable to only call {\tt opt} when an improvement can be achieved. \bigskip The designs in {\tt yosys-bigsim} are a good playground for experimenting with the effects of calling {\tt opt} in various places of the flow. \bigskip It generally is a good idea to call {\tt opt} before inherently expensive commands such as {\tt sat} or {\tt freduce}, as the possible gain is much higher in this cases as the possible loss. \bigskip The {\tt clean} command on the other hand is very fast and many commands leave a mess (dangling signal wires, etc). For example, most commands do not remove any wires or cells. They just change the connections and depend on a later call to clean to get rid of the now unused objects. So the occasional {\tt ;;} is a good idea in every synthesis script. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\tt memory} command} \begin{frame}[fragile]{\subsecname} In the RTL netlist, memory reads and writes are individual cells. This makes consolidating the number of ports for a memory easier. The {\tt memory} transforms memories to an implementation. Per default that is logic for address decoders and registers. It also is a macro command that calls other commands: \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] # this merges registers into the memory read- and write cells. memory_dff # this collects all read and write cells for a memory and transforms them # into one multi-port memory cell. memory_collect # this takes the multi-port memory cell and transforms it to address decoder # logic and registers. This step is skipped if "memory" is called with -nomap. memory_map \end{lstlisting} \bigskip Usually it is preferred to use architecture-specific RAM resources for memory. For example: \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] memory -nomap; techmap -map my_memory_map.v; memory_map \end{lstlisting} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 1/2} \vbox to 0cm{\includegraphics[width=0.7\linewidth,trim=0cm 0cm 0cm -10cm]{PRESENTATION_ExSyn/memory_01.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/memory_01.ys} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/memory_01.v} \end{columns} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Example 2/2} \vbox to 0cm{\hfill\includegraphics[width=7.5cm,trim=0cm 0cm 0cm -5cm]{PRESENTATION_ExSyn/memory_02.pdf}\vss} \vskip-1cm \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/memory_02.v} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/memory_02.ys} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\tt fsm} command} \begin{frame}[fragile]{\subsecname{}} The {\tt fsm} command identifies, extracts, optimizes (re-encodes), and re-synthesizes finite state machines. It again is a macro that calls a series of other commands: \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] fsm_detect # unless got option -nodetect fsm_extract fsm_opt clean fsm_opt fsm_expand # if got option -expand clean # if got option -expand fsm_opt # if got option -expand fsm_recode # unless got option -norecode fsm_info fsm_export # if got option -export fsm_map # unless got option -nomap \end{lstlisting} \end{frame} \begin{frame}{\subsecname{} -- details} Some details on the most important commands from the {\tt fsm\_*} group: \bigskip The {\tt fsm\_detect} command identifies FSM state registers and marks them with the {\tt (* fsm\_encoding = "auto" *)} attribute, if they do not have the {\tt fsm\_encoding} set already. Mark registers with {\tt (* fsm\_encoding = "none" *)} to disable FSM optimization for a register. \bigskip The {\tt fsm\_extract} command replaces the entire FSM (logic and state registers) with a {\tt \$fsm} cell. \bigskip The commands {\tt fsm\_opt} and {\tt fsm\_recode} can be used to optimize the FSM. \bigskip Finally the {\tt fsm\_map} command can be used to convert the (optimized) {\tt \$fsm} cell back to logic and registers. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\tt techmap} command} \begin{frame}[t]{\subsecname} \vbox to 0cm{\includegraphics[width=12cm,trim=-15cm 0cm 0cm -20cm]{PRESENTATION_ExSyn/techmap_01.pdf}\vss} \vskip-0.8cm The {\tt techmap} command replaces cells with implementations given as verilog source. For example implementing a 32 bit adder using 16 bit adders: \vbox to 0cm{ \vskip-0.3cm \lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/techmap_01_map.v} }\vbox to 0cm{ \vskip-0.5cm \lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExSyn/techmap_01.v} \lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/techmap_01.ys} } \end{frame} \begin{frame}[t]{\subsecname{} -- stdcell mapping} When {\tt techmap} is used without a map file, it uses a built-in map file to map all RTL cell types to a generic library of built-in logic gates and registers. \bigskip \begin{block}{The built-in logic gate types are:} {\tt \$\_NOT\_ \$\_AND\_ \$\_OR\_ \$\_XOR\_ \$\_MUX\_} \end{block} \bigskip \begin{block}{The register types are:} {\tt \$\_SR\_NN\_ \$\_SR\_NP\_ \$\_SR\_PN\_ \$\_SR\_PP\_ \\ \$\_DFF\_N\_ \$\_DFF\_P\_ \\ \$\_DFF\_NN0\_ \$\_DFF\_NN1\_ \$\_DFF\_NP0\_ \$\_DFF\_NP1\_ \\ \$\_DFF\_PN0\_ \$\_DFF\_PN1\_ \$\_DFF\_PP0\_ \$\_DFF\_PP1\_ \\ \$\_DFFSR\_NNN\_ \$\_DFFSR\_NNP\_ \$\_DFFSR\_NPN\_ \$\_DFFSR\_NPP\_ \\ \$\_DFFSR\_PNN\_ \$\_DFFSR\_PNP\_ \$\_DFFSR\_PPN\_ \$\_DFFSR\_PPP\_ \\ \$\_DLATCH\_N\_ \$\_DLATCH\_P\_} \end{block} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\tt abc} command} \begin{frame}{\subsecname} The {\tt abc} command provides an interface to ABC\footnote[frame]{\url{http://www.eecs.berkeley.edu/~alanmi/abc/}}, an open source tool for low-level logic synthesis. \medskip The {\tt abc} command processes a netlist of internal gate types and can perform: \begin{itemize} \item logic minimization (optimization) \item mapping of logic to standard cell library (liberty format) \item mapping of logic to k-LUTs (for FPGA synthesis) \end{itemize} \medskip Optionally {\tt abc} can process registers from one clock domain and perform sequential optimization (such as register balancing). \medskip ABC is also controlled using scripts. An ABC script can be specified to use more advanced ABC features. It is also possible to write the design with {\tt write\_blif} and load the output file into ABC outside of Yosys. \end{frame} \begin{frame}[fragile]{\subsecname{} -- Example} \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/abc_01.v} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/abc_01.ys} \end{columns} \includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_ExSyn/abc_01.pdf} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Other special-purpose mapping commands} \begin{frame}{\subsecname} \begin{block}{\tt dfflibmap} This command maps the internal register cell types to the register types described in a liberty file. \end{block} \bigskip \begin{block}{\tt hilomap} Some architectures require special driver cells for driving a constant hi or lo value. This command replaces simple constants with instances of such driver cells. \end{block} \bigskip \begin{block}{\tt iopadmap} Top-level input/outputs must usually be implemented using special I/O-pad cells. This command inserts this cells to the design. \end{block} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Example Synthesis Script} \begin{frame}[fragile]{\subsecname} \begin{columns} \column[t]{4cm} \begin{lstlisting}[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=ys] # read and elaborate design read_verilog cpu_top.v cpu_ctrl.v cpu_regs.v read_verilog -D WITH_MULT cpu_alu.v hierarchy -check -top cpu_top # high-level synthesis proc; opt; fsm;; memory -nomap; opt # substitute block rams techmap -map map_rams.v # map remaining memories memory_map # low-level synthesis techmap; opt; flatten;; abc -lut6 techmap -map map_xl_cells.v # add clock buffers select -set xl_clocks t:FDRE %x:+FDRE[C] t:FDRE %d iopadmap -inpad BUFGP O:I @xl_clocks # add io buffers select -set xl_nonclocks w:* t:BUFGP %x:+BUFGP[I] %d iopadmap -outpad OBUF I:O -inpad IBUF O:I @xl_nonclocks # write synthesis results write_edif synth.edif \end{lstlisting} \column[t]{6cm} \vskip1cm \begin{block}{Teaser / Outlook} \small\parbox{6cm}{ The weird {\tt select} expressions at the end of this script are discussed in the next part (Section 3, ``Advanced Synthesis'') of this presentation.} \end{block} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Summary} \begin{frame}{\subsecname} \begin{itemize} \item Yosys provides commands for each phase of the synthesis. \item Each command solves a (more or less) simple problem. \item Complex commands are often only front-ends to simple commands. \item {\tt proc; opt; fsm; opt; memory; opt; techmap; opt; abc;;} \end{itemize} \bigskip \bigskip \begin{center} Questions? \end{center} \bigskip \bigskip \begin{center} \url{http://www.clifford.at/yosys/} \end{center} \end{frame} href='#n455'>455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
# Defining a Mock Class #
## Mocking a Normal Class ##
Given
```
class Foo {
...
virtual ~Foo();
virtual int GetSize() const = 0;
virtual string Describe(const char* name) = 0;
virtual string Describe(int type) = 0;
virtual bool Process(Bar elem, int count) = 0;
};
```
(note that `~Foo()` **must** be virtual) we can define its mock as
```
#include "gmock/gmock.h"
class MockFoo : public Foo {
MOCK_CONST_METHOD0(GetSize, int());
MOCK_METHOD1(Describe, string(const char* name));
MOCK_METHOD1(Describe, string(int type));
MOCK_METHOD2(Process, bool(Bar elem, int count));
};
```
To create a "nice" mock object which ignores all uninteresting calls,
or a "strict" mock object, which treats them as failures:
```
NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
```
## Mocking a Class Template ##
To mock
```
template <typename Elem>
class StackInterface {
public:
...
virtual ~StackInterface();
virtual int GetSize() const = 0;
virtual void Push(const Elem& x) = 0;
};
```
(note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros:
```
template <typename Elem>
class MockStack : public StackInterface<Elem> {
public:
...
MOCK_CONST_METHOD0_T(GetSize, int());
MOCK_METHOD1_T(Push, void(const Elem& x));
};
```
## Specifying Calling Conventions for Mock Functions ##
If your mock function doesn't use the default calling convention, you
can specify it by appending `_WITH_CALLTYPE` to any of the macros
described in the previous two sections and supplying the calling
convention as the first argument to the macro. For example,
```
MOCK_METHOD_1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));
```
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.
# Using Mocks in Tests #
The typical flow is:
1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted.
1. Create the mock objects.
1. Optionally, set the default actions of the mock objects.
1. Set your expectations on the mock objects (How will they be called? What wil they do?).
1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test](../../googletest/) assertions.
1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.
Here is an example:
```
using ::testing::Return; // #1
TEST(BarTest, DoesThis) {
MockFoo foo; // #2
ON_CALL(foo, GetSize()) // #3
.WillByDefault(Return(1));
// ... other default actions ...
EXPECT_CALL(foo, Describe(5)) // #4
.Times(3)
.WillRepeatedly(Return("Category 5"));
// ... other expectations ...
EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
} // #6
```
# Setting Default Actions #
Google Mock has a **built-in default action** for any function that
returns `void`, `bool`, a numeric value, or a pointer.
To customize the default action for functions with return type `T` globally:
```
using ::testing::DefaultValue;
// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
// T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
```
To customize the default action for a particular method, use `ON_CALL()`:
```
ON_CALL(mock_object, method(matchers))
.With(multi_argument_matcher) ?
.WillByDefault(action);
```
# Setting Expectations #
`EXPECT_CALL()` sets **expectations** on a mock method (How will it be
called? What will it do?):
```
EXPECT_CALL(mock_object, method(matchers))
.With(multi_argument_matcher) ?
.Times(cardinality) ?
.InSequence(sequences) *
.After(expectations) *
.WillOnce(action) *
.WillRepeatedly(action) ?
.RetiresOnSaturation(); ?
```
If `Times()` is omitted, the cardinality is assumed to be:
* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
* `Times(n)` when there are `n WillOnce()`s but no `WillRepeatedly()`, where `n` >= 1; or
* `Times(AtLeast(n))` when there are `n WillOnce()`s and a `WillRepeatedly()`, where `n` >= 0.
A method with no `EXPECT_CALL()` is free to be invoked _any number of times_, and the default action will be taken each time.
# Matchers #
A **matcher** matches a _single_ argument. You can use it inside
`ON_CALL()` or `EXPECT_CALL()`, or use it to validate a value
directly:
| `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher`. |
|:------------------------------|:----------------------------------------|
| `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)`, except that it generates a **fatal** failure. |
Built-in matchers (where `argument` is the function argument) are
divided into several categories:
## Wildcard ##
|`_`|`argument` can be any value of the correct type.|
|:--|:-----------------------------------------------|
|`A<type>()` or `An<type>()`|`argument` can be any value of type `type`. |
## Generic Comparison ##
|`Eq(value)` or `value`|`argument == value`|
|:---------------------|:------------------|
|`Ge(value)` |`argument >= value`|
|`Gt(value)` |`argument > value` |
|`Le(value)` |`argument <= value`|
|`Lt(value)` |`argument < value` |
|`Ne(value)` |`argument != value`|
|`IsNull()` |`argument` is a `NULL` pointer (raw or smart).|
|`NotNull()` |`argument` is a non-null pointer (raw or smart).|
|`Ref(variable)` |`argument` is a reference to `variable`.|
|`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.|
Except `Ref()`, these matchers make a _copy_ of `value` in case it's
modified or destructed later. If the compiler complains that `value`
doesn't have a public copy constructor, try wrap it in `ByRef()`,
e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your
matcher will be changed.
## Floating-Point Matchers ##
|`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.|
|:-------------------|:----------------------------------------------------------------------------------------------|
|`FloatEq(a_float)` |`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
|`NanSensitiveDoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
|`NanSensitiveFloatEq(a_float)`|`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
The above matchers use ULP-based comparison (the same as used in
[Google Test](../../googletest/)). They
automatically pick a reasonable error bound based on the absolute
value of the expected value. `DoubleEq()` and `FloatEq()` conform to
the IEEE standard, which requires comparing two NaNs for equality to
return false. The `NanSensitive*` version instead treats two NaNs as
equal, which is often what a user wants.
|`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.|
|:------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
|`FloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
|`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
|`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
## String Matchers ##
The `argument` can be either a C string or a C++ string object:
|`ContainsRegex(string)`|`argument` matches the given regular expression.|
|:----------------------|:-----------------------------------------------|
|`EndsWith(suffix)` |`argument` ends with string `suffix`. |
|`HasSubstr(string)` |`argument` contains `string` as a sub-string. |
|`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
|`StartsWith(prefix)` |`argument` starts with string `prefix`. |
|`StrCaseEq(string)` |`argument` is equal to `string`, ignoring case. |
|`StrCaseNe(string)` |`argument` is not equal to `string`, ignoring case.|
|`StrEq(string)` |`argument` is equal to `string`. |
|`StrNe(string)` |`argument` is not equal to `string`. |
`ContainsRegex()` and `MatchesRegex()` use the regular expression
syntax defined
[here](../../googletest/docs/AdvancedGuide.md#regular-expression-syntax).
`StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide
strings as well.
## Container Matchers ##
Most STL-style containers support `==`, so you can use
`Eq(expected_container)` or simply `expected_container` to match a
container exactly. If you want to write the elements in-line,
match them more flexibly, or get more informative messages, you can use:
| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
|:-------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
| `Each(e)` | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher. |
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
| `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(UnorderedElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. |
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. |
Notes:
* These matchers can also match:
1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and
1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)).
* The array being matched may be multi-dimensional (i.e. its elements can be arrays).
* `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:
```
using ::testing::get;
MATCHER(FooEq, "") {
return get<0>(arg).Equals(get<1>(arg));
}
...
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
```
## Member Matchers ##
|`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
|:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|`Key(e)` |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.|
|`Pair(m1, m2)` |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
|`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
## Matching the Result of a Function or Functor ##
|`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.|
|:---------------|:---------------------------------------------------------------------|
## Pointer Matchers ##
|`Pointee(m)`|`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`.|
|:-----------|:-----------------------------------------------------------------------------------------------|
|`WhenDynamicCastTo<T>(m)`| when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
## Multiargument Matchers ##
Technically, all matchers match a _single_ value. A "multi-argument"
matcher is just one that matches a _tuple_. The following matchers can
be used to match a tuple `(x, y)`:
|`Eq()`|`x == y`|
|:-----|:-------|
|`Ge()`|`x >= y`|
|`Gt()`|`x > y` |
|`Le()`|`x <= y`|
|`Lt()`|`x < y` |
|`Ne()`|`x != y`|
You can use the following selectors to pick a subset of the arguments
(or reorder them) to participate in the matching:
|`AllArgs(m)`|Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`.|
|:-----------|:-------------------------------------------------------------------|
|`Args<N1, N2, ..., Nk>(m)`|The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`.|
## Composite Matchers ##
You can make a matcher from one or more other matchers:
|`AllOf(m1, m2, ..., mn)`|`argument` matches all of the matchers `m1` to `mn`.|
|:-----------------------|:---------------------------------------------------|
|`AnyOf(m1, m2, ..., mn)`|`argument` matches at least one of the matchers `m1` to `mn`.|
|`Not(m)` |`argument` doesn't match matcher `m`. |
## Adapters for Matchers ##
|`MatcherCast<T>(m)`|casts matcher `m` to type `Matcher<T>`.|
|:------------------|:--------------------------------------|
|`SafeMatcherCast<T>(m)`| [safely casts](CookBook.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
|`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.|
## Matchers as Predicates ##
|`Matches(m)(value)`|evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor.|
|:------------------|:---------------------------------------------------------------------------------------------|
|`ExplainMatchResult(m, value, result_listener)`|evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
|`Value(value, m)` |evaluates to `true` if `value` matches `m`. |
## Defining Matchers ##
| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
|:-------------------------------------------------|:------------------------------------------------------|
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n`. |
| `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
**Notes:**
1. The `MATCHER*` macros cannot be used inside a function or class.
1. The matcher body must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).
1. You can use `PrintToString(x)` to convert a value `x` of any type to a string.
## Matchers as Test Assertions ##
|`ASSERT_THAT(expression, m)`|Generates a [fatal failure](../../googletest/docs/Primer.md#assertions) if the value of `expression` doesn't match matcher `m`.|
|:---------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
|`EXPECT_THAT(expression, m)`|Generates a non-fatal failure if the value of `expression` doesn't match matcher `m`. |
# Actions #
**Actions** specify what a mock function should do when invoked.
## Returning a Value ##
|`Return()`|Return from a `void` mock function.|
|:---------|:----------------------------------|
|`Return(value)`|Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed.|
|`ReturnArg<N>()`|Return the `N`-th (0-based) argument.|
|`ReturnNew<T>(a1, ..., ak)`|Return `new T(a1, ..., ak)`; a different object is created each time.|
|`ReturnNull()`|Return a null pointer. |
|`ReturnPointee(ptr)`|Return the value pointed to by `ptr`.|
|`ReturnRef(variable)`|Return a reference to `variable`. |
|`ReturnRefOfCopy(value)`|Return a reference to a copy of `value`; the copy lives as long as the action.|
## Side Effects ##
|`Assign(&variable, value)`|Assign `value` to variable.|
|:-------------------------|:--------------------------|
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
| `SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N`-th (0-based) argument. |
|`SetArgPointee<N>(value)` |Assign `value` to the variable pointed by the `N`-th (0-based) argument.|
|`SetArgumentPointee<N>(value)`|Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0.|
|`SetArrayArgument<N>(first, last)`|Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.|
|`SetErrnoAndReturn(error, value)`|Set `errno` to `error` and return `value`.|
|`Throw(exception)` |Throws the given exception, which can be any copyable value. Available since v1.1.0.|
## Using a Function or a Functor as an Action ##
|`Invoke(f)`|Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor.|
|:----------|:-----------------------------------------------------------------------------------------------------------------|
|`Invoke(object_pointer, &class::method)`|Invoke the {method on the object with the arguments passed to the mock function. |
|`InvokeWithoutArgs(f)`|Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
|`InvokeWithoutArgs(object_pointer, &class::method)`|Invoke the method on the object, which takes no arguments. |
|`InvokeArgument<N>(arg1, arg2, ..., argk)`|Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments.|
The return value of the invoked function is used as the return value
of the action.
When defining a function or functor to be used with `Invoke*()`, you can declare any unused parameters as `Unused`:
```
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
...
EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
```
In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference, wrap it inside `ByRef()`. For example,
```
InvokeArgument<2>(5, string("Hi"), ByRef(foo))
```
calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by value, and `foo` by reference.
## Default Action ##
|`DoDefault()`|Do the default action (specified by `ON_CALL()` or the built-in one).|
|:------------|:--------------------------------------------------------------------|
**Note:** due to technical reasons, `DoDefault()` cannot be used inside a composite action - trying to do so will result in a run-time error.
## Composite Actions ##
|`DoAll(a1, a2, ..., an)`|Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. |
|:-----------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|`IgnoreResult(a)` |Perform action `a` and ignore its result. `a` must not return void. |
|`WithArg<N>(a)` |Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
|`WithArgs<N1, N2, ..., Nk>(a)`|Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
|`WithoutArgs(a)` |Perform action `a` without any arguments. |
## Defining Actions ##
| `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. |
|:--------------------------------------|:---------------------------------------------------------------------------------------|
| `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. |
| `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. |
The `ACTION*` macros cannot be used inside a function or class.
# Cardinalities #
These are used in `Times()` to specify how many times a mock function will be called:
|`AnyNumber()`|The function can be called any number of times.|
|:------------|:----------------------------------------------|
|`AtLeast(n)` |The call is expected at least `n` times. |
|`AtMost(n)` |The call is expected at most `n` times. |
|`Between(m, n)`|The call is expected between `m` and `n` (inclusive) times.|
|`Exactly(n) or n`|The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0.|
# Expectation Order #
By default, the expectations can be matched in _any_ order. If some
or all expectations must be matched in a given order, there are two
ways to specify it. They can be used either independently or
together.
## The After Clause ##
```
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
.After(init_x, init_y);
```
says that `Bar()` can be called only after both `InitX()` and
`InitY()` have been called.
If you don't know how many pre-requisites an expectation has when you
write it, you can use an `ExpectationSet` to collect them:
```
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count; i++) {
all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
.After(all_inits);
```
says that `Bar()` can be called only after all elements have been
initialized (but we don't care about which elements get initialized
before the others).
Modifying an `ExpectationSet` after using it in an `.After()` doesn't
affect the meaning of the `.After()`.
## Sequences ##
When you have a long chain of sequential expectations, it's easier to
specify the order using **sequences**, which don't require you to given
each expectation in the chain a different name. <i>All expected<br>
calls</i> in the same sequence must occur in the order they are
specified.
```
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(foo, Reset())
.InSequence(s1, s2)
.WillOnce(Return(true));
EXPECT_CALL(foo, GetSize())
.InSequence(s1)
.WillOnce(Return(1));
EXPECT_CALL(foo, Describe(A<const char*>()))
.InSequence(s2)
.WillOnce(Return("dummy"));
```
says that `Reset()` must be called before _both_ `GetSize()` _and_
`Describe()`, and the latter two can occur in any order.
To put many expectations in a sequence conveniently:
```
using ::testing::InSequence;
{
InSequence dummy;
EXPECT_CALL(...)...;
EXPECT_CALL(...)...;
...
EXPECT_CALL(...)...;
}
```
says that all expected calls in the scope of `dummy` must occur in
strict order. The name `dummy` is irrelevant.)
# Verifying and Resetting a Mock #
Google Mock will verify the expectations on a mock object when it is destructed, or you can do it earlier:
```
using ::testing::Mock;
...
// Verifies and removes the expectations on mock_obj;
// returns true iff successful.
Mock::VerifyAndClearExpectations(&mock_obj);
...
// Verifies and removes the expectations on mock_obj;
// also removes the default actions set by ON_CALL();
// returns true iff successful.
Mock::VerifyAndClear(&mock_obj);
```
You can also tell Google Mock that a mock object can be leaked and doesn't
need to be verified:
```
Mock::AllowLeak(&mock_obj);
```
# Mock Classes #
Google Mock defines a convenient mock class template
```
class MockFunction<R(A1, ..., An)> {
public:
MOCK_METHODn(Call, R(A1, ..., An));
};
```
See this [recipe](CookBook.md#using-check-points) for one application of it.
# Flags #
| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. |
|:-------------------------------|:----------------------------------------------|
| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. |