/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2021 gatecat * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "log.h" #include "nextpnr.h" #include "util.h" #include NEXTPNR_NAMESPACE_BEGIN namespace { struct GlobalVist { PipId downhill = PipId(); int total_hops = 0; int global_hops = 0; bool operator<(const GlobalVist &other) const { return (total_hops < other.total_hops) || ((total_hops == other.total_hops) && (global_hops > other.global_hops)); } }; // This is our main global routing implementation. It is used both to actually route globals; and also to discover if // global buffers have available short routes from their source for auto-placement static int route_global_arc(Context *ctx, NetInfo *net, store_index usr_idx, size_t phys_port_idx, int max_hops, bool dry_run) { auto &usr = net->users.at(usr_idx); WireId src = ctx->getNetinfoSourceWire(net); WireId dest = ctx->getNetinfoSinkWire(net, usr, phys_port_idx); if (dest == WireId()) { if (dry_run) return -1; else log_error("Arc %d.%d (%s.%s) of net %s has no sink wire!\n", usr_idx.idx(), int(phys_port_idx), ctx->nameOf(usr.cell), ctx->nameOf(usr.port), ctx->nameOf(net)); } // Consider any existing routing put in place by the site router, etc int start_hops = 0; while (net->wires.count(dest) && dest != src) { dest = ctx->getPipSrcWire(net->wires.at(dest).pip); ++start_hops; } // The main BFS implementation // Currently this is a backwards-BFS from sink to source (or pre-existing routing) that avoids general routing. It // currently aims for minimum hops as a primary goal and maximum global resource usage as a secondary goal. More // advanced heuristics will likely be needed for more complex situation WireId startpoint; GlobalVist best_visit; std::queue visit_queue; dict visits; visit_queue.push(dest); visits[dest].downhill = PipId(); visits[dest].total_hops = start_hops; while (!visit_queue.empty()) { WireId cursor = visit_queue.front(); visit_queue.pop(); auto curr_visit = visits.at(cursor); // We're now at least one layer deeper than a valid visit, any further exploration is futile if (startpoint != WireId() && curr_visit.total_hops > best_visit.total_hops) break; // Valid end of routing if ((cursor == src) || (ctx->getBoundWireNet(cursor) == net)) { if (startpoint == WireId() || curr_visit < best_visit) { startpoint = cursor; best_visit = curr_visit; } } // Explore uphill for (auto pip : ctx->getPipsUphill(cursor)) { if (!dry_run && !ctx->checkPipAvailForNet(pip, net)) continue; WireId pip_src = ctx->getPipSrcWire(pip); if (!dry_run && !ctx->checkWireAvail(pip_src) && ctx->getBoundWireNet(pip_src) != net) continue; auto cat = ctx->get_wire_category(pip_src); if (!ctx->is_site_wire(pip_src) && cat == WIRE_CAT_GENERAL) continue; // never allow general routing GlobalVist next_visit; next_visit.downhill = pip; next_visit.total_hops = curr_visit.total_hops + 1; if (max_hops != -1 && next_visit.total_hops > max_hops) continue; next_visit.global_hops = curr_visit.global_hops + ((cat == WIRE_CAT_GLOBAL) ? 1 : 0); auto fnd_src = visits.find(pip_src); if (fnd_src == visits.end() || next_visit < fnd_src->second) { visit_queue.push(pip_src); visits[pip_src] = next_visit; } } } if (startpoint == WireId()) return -1; if (!dry_run) { if (ctx->getBoundWireNet(startpoint) == nullptr) ctx->bindWire(startpoint, net, STRENGTH_LOCKED); WireId cursor = startpoint; std::vector pips; // Create a list of pips on the routed path while (true) { PipId pip = visits.at(cursor).downhill; if (pip == PipId()) break; pips.push_back(pip); cursor = ctx->getPipDstWire(pip); } // Reverse that list std::reverse(pips.begin(), pips.end()); // Bind pips until we hit already-bound routing for (PipId pip : pips) { WireId dst = ctx->getPipDstWire(pip); if (ctx->getBoundWireNet(dst) == net) break; ctx->bindPip(pip, net, STRENGTH_LOCKED); } } return visits.at(startpoint).total_hops; } }; // namespace const GlobalCellPOD *Arch::global_cell_info(IdString cell_type) const { for (const auto &glb_cell : chip_info->global_cells) if (IdString(glb_cell.cell_type) == cell_type) return &glb_cell; return nullptr; } void Arch::place_globals() { log_info("Placing globals...\n"); Context *ctx = getCtx(); IdString gnd_net_name(chip_info->constants->gnd_net_name); IdString vcc_net_name(chip_info->constants->vcc_net_name); // TODO: for more complex PLL type setups, we might want a toposort or iterative loop as the PLL must be placed // before the GBs it drives for (auto &cell : ctx->cells) { CellInfo *ci = cell.second.get(); const GlobalCellPOD *glb_cell = global_cell_info(ci->type); if (glb_cell == nullptr) continue; // Ignore if already placed if (ci->bel != BelId()) continue; for (const auto &pin : glb_cell->pins) { if (!pin.guide_placement) continue; IdString pin_name(pin.name); if (!ci->ports.count(pin_name)) continue; auto &port = ci->ports.at(pin_name); // only input ports currently used for placement guidance if (port.type != PORT_IN) continue; NetInfo *net = port.net; if (net == nullptr || net->name == gnd_net_name || net->name == vcc_net_name) continue; // Ignore if there is no driver; or the driver is not placed if (net->driver.cell == nullptr || net->driver.cell->bel == BelId()) continue; // TODO: substantial performance improvements are probably possible, although of questionable benefit given // the low number of globals in a typical device... BelId best_bel; int shortest_distance = std::numeric_limits::max(); for (auto bel : getBels()) { int distance; if (!isValidBelForCellType(ci->type, bel)) continue; if (!checkBelAvail(bel)) continue; // Provisionally place bindBel(bel, ci, STRENGTH_WEAK); if (!isBelLocationValid(bel)) goto fail; // Check distance distance = route_global_arc(ctx, net, port.user_idx, 0, pin.max_hops, true); if (distance != -1 && distance < shortest_distance) { best_bel = bel; shortest_distance = distance; } fail: unbindBel(bel); } if (best_bel != BelId()) { bindBel(best_bel, ci, STRENGTH_LOCKED); log_info(" placed %s:%s at %s\n", ctx->nameOf(ci), ctx->nameOf(ci->type), ctx->nameOfBel(best_bel)); break; } } } } void Arch::route_globals() { log_info("Routing globals...\n"); Context *ctx = getCtx(); IdString gnd_net_name(chip_info->constants->gnd_net_name); IdString vcc_net_name(chip_info->constants->vcc_net_name); for (auto &cell : ctx->cells) { CellInfo *ci = cell.second.get(); const GlobalCellPOD *glb_cell = global_cell_info(ci->type); if (glb_cell == nullptr) continue; for (const auto &pin : glb_cell->pins) { IdString pin_name(pin.name); if (!ci->ports.count(pin_name)) continue; auto &port = ci->ports.at(pin_name); // TOOD: routing of input ports, too // output ports are generally the first priority though if (port.type != PORT_OUT) continue; NetInfo *net = port.net; if (net == nullptr || net->name == gnd_net_name || net->name == vcc_net_name) continue; int total_sinks = 0; int global_sinks = 0; for (auto usr : net->users.enumerate()) { for (size_t j = 0; j < ctx->getNetinfoSinkWireCount(net, usr.value); j++) { int result = route_global_arc(ctx, net, usr.index, j, pin.max_hops, false); ++total_sinks; if (result != -1) ++global_sinks; if ((result == -1) && pin.force_routing) log_error("Failed to route arc %d.%d (%s.%s) of net %s using dedicated global routing!\n", usr.index.idx(), int(j), ctx->nameOf(usr.value.cell), ctx->nameOf(usr.value.port), ctx->nameOf(net)); } } log_info(" routed %d/%d sinks of net %s using dedicated routing.\n", global_sinks, total_sinks, ctx->nameOf(net)); } } } NEXTPNR_NAMESPACE_END