// dear imgui: Renderer for Vulkan // This needs to be used along with a Platform Binding (e.g. GLFW, SDL, Win32, custom..) // Missing features: // [ ] Renderer: User texture binding. Changes of ImTextureID aren't supported by this binding! See https://github.com/ocornut/imgui/pull/914 // You can copy and use unmodified imgui_impl_* files in your project. See main.cpp for an example of using this. // If you are new to dear imgui, read examples/README.txt and read the documentation at the top of imgui.cpp. // https://github.com/ocornut/imgui // The aim of imgui_impl_vulkan.h/.cpp is to be usable in your engine without any modification. // IF YOU FEEL YOU NEED TO MAKE ANY CHANGE TO THIS CODE, please share them and your feedback at https://github.com/ocornut/imgui/ // CHANGELOG // (minor and older changes stripped away, please see git history for details) // 2018-08-25: Vulkan: Fixed mishandled VkSurfaceCapabilitiesKHR::maxImageCount=0 case. // 2018-06-22: Inverted the parameters to ImGui_ImplVulkan_RenderDrawData() to be consistent with other bindings. // 2018-06-08: Misc: Extracted imgui_impl_vulkan.cpp/.h away from the old combined GLFW+Vulkan example. // 2018-06-08: Vulkan: Use draw_data->DisplayPos and draw_data->DisplaySize to setup projection matrix and clipping rectangle. // 2018-03-03: Vulkan: Various refactor, created a couple of ImGui_ImplVulkanH_XXX helper that the example can use and that viewport support will use. // 2018-03-01: Vulkan: Renamed ImGui_ImplVulkan_Init_Info to ImGui_ImplVulkan_InitInfo and fields to match more closely Vulkan terminology. // 2018-02-16: Misc: Obsoleted the io.RenderDrawListsFn callback, ImGui_ImplVulkan_Render() calls ImGui_ImplVulkan_RenderDrawData() itself. // 2018-02-06: Misc: Removed call to ImGui::Shutdown() which is not available from 1.60 WIP, user needs to call CreateContext/DestroyContext themselves. // 2017-05-15: Vulkan: Fix scissor offset being negative. Fix new Vulkan validation warnings. Set required depth member for buffer image copy. // 2016-11-13: Vulkan: Fix validation layer warnings and errors and redeclare gl_PerVertex. // 2016-10-18: Vulkan: Add location decorators & change to use structs as in/out in glsl, update embedded spv (produced with glslangValidator -x). Null the released resources. // 2016-08-27: Vulkan: Fix Vulkan example for use when a depth buffer is active. #include "imgui.h" #include "imgui_impl_vulkan.h" #include // Vulkan data static const VkAllocationCallbacks* g_Allocator = NULL; static VkPhysicalDevice g_PhysicalDevice = VK_NULL_HANDLE; static VkInstance g_Instance = VK_NULL_HANDLE; static VkDevice g_Device = VK_NULL_HANDLE; static uint32_t g_QueueFamily = (uint32_t)-1; static VkQueue g_Queue = VK_NULL_HANDLE; static VkPipelineCache g_PipelineCache = VK_NULL_HANDLE; static VkDescriptorPool g_DescriptorPool = VK_NULL_HANDLE; static VkRenderPass g_RenderPass = VK_NULL_HANDLE; static void (*g_CheckVkResultFn)(VkResult err) = NULL; static VkDeviceSize g_BufferMemoryAlignment = 256; static VkPipelineCreateFlags g_PipelineCreateFlags = 0; static VkDescriptorSetLayout g_DescriptorSetLayout = VK_NULL_HANDLE; static VkPipelineLayout g_PipelineLayout = VK_NULL_HANDLE; static VkDescriptorSet g_DescriptorSet = VK_NULL_HANDLE; static VkPipeline g_Pipeline = VK_NULL_HANDLE; // Frame data struct FrameDataForRender { VkDeviceMemory VertexBufferMemory; VkDeviceMemory IndexBufferMemory; VkDeviceSize VertexBufferSize; VkDeviceSize IndexBufferSize; VkBuffer VertexBuffer; VkBuffer IndexBuffer; }; static int g_FrameIndex = 0; static FrameDataForRender g_FramesDataBuffers[IMGUI_VK_QUEUED_FRAMES] = {}; // Font data static VkSampler g_FontSampler = VK_NULL_HANDLE; static VkDeviceMemory g_FontMemory = VK_NULL_HANDLE; static VkImage g_FontImage = VK_NULL_HANDLE; static VkImageView g_FontView = VK_NULL_HANDLE; static VkDeviceMemory g_UploadBufferMemory = VK_NULL_HANDLE; static VkBuffer g_UploadBuffer = VK_NULL_HANDLE; // glsl_shader.vert, compiled with: // # glslangValidator -V -x -o glsl_shader.vert.u32 glsl_shader.vert static uint32_t __glsl_shader_vert_spv[] = { 0x07230203,0x00010000,0x00080001,0x0000002e,0x00000000,0x00020011,0x00000001,0x0006000b, 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001, 0x000a000f,0x00000000,0x00000004,0x6e69616d,0x00000000,0x0000000b,0x0000000f,0x00000015, 0x0000001b,0x0000001c,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d, 0x00000000,0x00030005,0x00000009,0x00000000,0x00050006,0x00000009,0x00000000,0x6f6c6f43, 0x00000072,0x00040006,0x00000009,0x00000001,0x00005655,0x00030005,0x0000000b,0x0074754f, 0x00040005,0x0000000f,0x6c6f4361,0x0000726f,0x00030005,0x00000015,0x00565561,0x00060005, 0x00000019,0x505f6c67,0x65567265,0x78657472,0x00000000,0x00060006,0x00000019,0x00000000, 0x505f6c67,0x7469736f,0x006e6f69,0x00030005,0x0000001b,0x00000000,0x00040005,0x0000001c, 0x736f5061,0x00000000,0x00060005,0x0000001e,0x73755075,0x6e6f4368,0x6e617473,0x00000074, 0x00050006,0x0000001e,0x00000000,0x61635375,0x0000656c,0x00060006,0x0000001e,0x00000001, 0x61725475,0x616c736e,0x00006574,0x00030005,0x00000020,0x00006370,0x00040047,0x0000000b, 0x0000001e,0x00000000,0x00040047,0x0000000f,0x0000001e,0x00000002,0x00040047,0x00000015, 0x0000001e,0x00000001,0x00050048,0x00000019,0x00000000,0x0000000b,0x00000000,0x00030047, 0x00000019,0x00000002,0x00040047,0x0000001c,0x0000001e,0x00000000,0x00050048,0x0000001e, 0x00000000,0x00000023,0x00000000,0x00050048,0x0000001e,0x00000001,0x00000023,0x00000008, 0x00030047,0x0000001e,0x00000002,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002, 0x00030016,0x00000006,0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040017, 0x00000008,0x00000006,0x00000002,0x0004001e,0x00000009,0x00000007,0x00000008,0x00040020, 0x0000000a,0x00000003,0x00000009,0x0004003b,0x0000000a,0x0000000b,0x00000003,0x00040015, 0x0000000c,0x00000020,0x00000001,0x0004002b,0x0000000c,0x0000000d,0x00000000,0x00040020, 0x0000000e,0x00000001,0x00000007,0x0004003b,0x0000000e,0x0000000f,0x00000001,0x00040020, 0x00000011,0x00000003,0x00000007,0x0004002b,0x0000000c,0x00000013,0x00000001,0x00040020, 0x00000014,0x00000001,0x00000008,0x0004003b,0x00000014,0x00000015,0x00000001,0x00040020, 0x00000017,0x00000003,0x00000008,0x0003001e,0x00000019,0x00000007,0x00040020,0x0000001a, 0x00000003,0x00000019,0x0004003b,0x0000001a,0x0000001b,0x00000003,0x0004003b,0x00000014, 0x0000001c,0x00000001,0x0004001e,0x0000001e,0x00000008,0x00000008,0x00040020,0x0000001f, 0x00000009,0x0000001e,0x0004003b,0x0000001f,0x00000020,0x00000009,0x00040020,0x00000021, 0x00000009,0x00000008,0x0004002b,0x00000006,0x00000028,0x00000000,0x0004002b,0x00000006, 0x00000029,0x3f800000,0x00050036,0x00000002,0x00000004,0x00000000,0x00000003,0x000200f8, 0x00000005,0x0004003d,0x00000007,0x00000010,0x0000000f,0x00050041,0x00000011,0x00000012, 0x0000000b,0x0000000d,0x0003003e,0x00000012,0x00000010,0x0004003d,0x00000008,0x00000016, 0x00000015,0x00050041,0x00000017,0x00000018,0x0000000b,0x00000013,0x0003003e,0x00000018, 0x00000016,0x0004003d,0x00000008,0x0000001d,0x0000001c,0x00050041,0x00000021,0x00000022, 0x00000020,0x0000000d,0x0004003d,0x00000008,0x00000023,0x00000022,0x00050085,0x00000008, 0x00000024,0x0000001d,0x00000023,0x00050041,0x00000021,0x00000025,0x00000020,0x00000013, 0x0004003d,0x00000008,0x00000026,0x00000025,0x00050081,0x00000008,0x00000027,0x00000024, 0x00000026,0x00050051,0x00000006,0x0000002a,0x00000027,0x00000000,0x00050051,0x00000006, 0x0000002b,0x00000027,0x00000001,0x00070050,0x00000007,0x0000002c,0x0000002a,0x0000002b, 0x00000028,0x00000029,0x00050041,0x00000011,0x0000002d,0x0000001b,0x0000000d,0x0003003e, 0x0000002d,0x0000002c,0x000100fd,0x00010038 }; // glsl_shader.frag, compiled with: // # glslangValidator -V -x -o glsl_shader.frag.u32 glsl_shader.frag static uint32_t __glsl_shader_frag_spv[] = { 0x07230203,0x00010000,0x00080001,0x0000001e,0x00000000,0x00020011,0x00000001,0x0006000b, 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001, 0x0007000f,0x00000004,0x00000004,0x6e69616d,0x00000000,0x00000009,0x0000000d,0x00030010, 0x00000004,0x00000007,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d, 0x00000000,0x00040005,0x00000009,0x6c6f4366,0x0000726f,0x00030005,0x0000000b,0x00000000, 0x00050006,0x0000000b,0x00000000,0x6f6c6f43,0x00000072,0x00040006,0x0000000b,0x00000001, 0x00005655,0x00030005,0x0000000d,0x00006e49,0x00050005,0x00000016,0x78655473,0x65727574, 0x00000000,0x00040047,0x00000009,0x0000001e,0x00000000,0x00040047,0x0000000d,0x0000001e, 0x00000000,0x00040047,0x00000016,0x00000022,0x00000000,0x00040047,0x00000016,0x00000021, 0x00000000,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006, 0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040020,0x00000008,0x00000003, 0x00000007,0x0004003b,0x00000008,0x00000009,0x00000003,0x00040017,0x0000000a,0x00000006, 0x00000002,0x0004001e,0x0000000b,0x00000007,0x0000000a,0x00040020,0x0000000c,0x00000001, 0x0000000b,0x0004003b,0x0000000c,0x0000000d,0x00000001,0x00040015,0x0000000e,0x00000020, 0x00000001,0x0004002b,0x0000000e,0x0000000f,0x00000000,0x00040020,0x00000010,0x00000001, 0x00000007,0x00090019,0x00000013,0x00000006,0x00000001,0x00000000,0x00000000,0x00000000, 0x00000001,0x00000000,0x0003001b,0x00000014,0x00000013,0x00040020,0x00000015,0x00000000, 0x00000014,0x0004003b,0x00000015,0x00000016,0x00000000,0x0004002b,0x0000000e,0x00000018, 0x00000001,0x00040020,0x00000019,0x00000001,0x0000000a,0x00050036,0x00000002,0x00000004, 0x00000000,0x00000003,0x000200f8,0x00000005,0x00050041,0x00000010,0x00000011,0x0000000d, 0x0000000f,0x0004003d,0x00000007,0x00000012,0x00000011,0x0004003d,0x00000014,0x00000017, 0x00000016,0x00050041,0x00000019,0x0000001a,0x0000000d,0x00000018,0x0004003d,0x0000000a, 0x0000001b,0x0000001a,0x00050057,0x00000007,0x0000001c,0x00000017,0x0000001b,0x00050085, 0x00000007,0x0000001d,0x00000012,0x0000001c,0x0003003e,0x00000009,0x0000001d,0x000100fd, 0x00010038 }; static uint32_t ImGui_ImplVulkan_MemoryType(VkMemoryPropertyFlags properties, uint32_t type_bits) { VkPhysicalDeviceMemoryProperties prop; vkGetPhysicalDeviceMemoryProperties(g_PhysicalDevice, &prop); for (uint32_t i = 0; i < prop.memoryTypeCount; i++) if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1< req.alignment) ? g_BufferMemoryAlignment : req.alignment; VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits); err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &buffer_memory); check_vk_result(err); err = vkBindBufferMemory(g_Device, buffer, buffer_memory, 0); check_vk_result(err); p_buffer_size = new_size; } // Render function // (this used to be set in io.RenderDrawListsFn and called by ImGui::Render(), but you can now call this directly from your main loop) void ImGui_ImplVulkan_RenderDrawData(ImDrawData* draw_data, VkCommandBuffer command_buffer) { VkResult err; if (draw_data->TotalVtxCount == 0) return; FrameDataForRender* fd = &g_FramesDataBuffers[g_FrameIndex]; g_FrameIndex = (g_FrameIndex + 1) % IMGUI_VK_QUEUED_FRAMES; // Create the Vertex and Index buffers: size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert); size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx); if (!fd->VertexBuffer || fd->VertexBufferSize < vertex_size) CreateOrResizeBuffer(fd->VertexBuffer, fd->VertexBufferMemory, fd->VertexBufferSize, vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); if (!fd->IndexBuffer || fd->IndexBufferSize < index_size) CreateOrResizeBuffer(fd->IndexBuffer, fd->IndexBufferMemory, fd->IndexBufferSize, index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT); // Upload Vertex and index Data: { ImDrawVert* vtx_dst = NULL; ImDrawIdx* idx_dst = NULL; err = vkMapMemory(g_Device, fd->VertexBufferMemory, 0, vertex_size, 0, (void**)(&vtx_dst)); check_vk_result(err); err = vkMapMemory(g_Device, fd->IndexBufferMemory, 0, index_size, 0, (void**)(&idx_dst)); check_vk_result(err); for (int n = 0; n < draw_data->CmdListsCount; n++) { const ImDrawList* cmd_list = draw_data->CmdLists[n]; memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert)); memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx)); vtx_dst += cmd_list->VtxBuffer.Size; idx_dst += cmd_list->IdxBuffer.Size; } VkMappedMemoryRange range[2] = {}; range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[0].memory = fd->VertexBufferMemory; range[0].size = VK_WHOLE_SIZE; range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[1].memory = fd->IndexBufferMemory; range[1].size = VK_WHOLE_SIZE; err = vkFlushMappedMemoryRanges(g_Device, 2, range); check_vk_result(err); vkUnmapMemory(g_Device, fd->VertexBufferMemory); vkUnmapMemory(g_Device, fd->IndexBufferMemory); } // Bind pipeline and descriptor sets: { vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_Pipeline); VkDescriptorSet desc_set[1] = { g_DescriptorSet }; vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_PipelineLayout, 0, 1, desc_set, 0, NULL); } // Bind Vertex And Index Buffer: { VkBuffer vertex_buffers[1] = { fd->VertexBuffer }; VkDeviceSize vertex_offset[1] = { 0 }; vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset); vkCmdBindIndexBuffer(command_buffer, fd->IndexBuffer, 0, VK_INDEX_TYPE_UINT16); } // Setup viewport: { VkViewport viewport; viewport.x = 0; viewport.y = 0; viewport.width = draw_data->DisplaySize.x; viewport.height = draw_data->DisplaySize.y; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; vkCmdSetViewport(command_buffer, 0, 1, &viewport); } // Setup scale and translation: // Our visible imgui space lies from draw_data->DisplayPos (top left) to draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin is typically (0,0) for single viewport apps. { float scale[2]; scale[0] = 2.0f / draw_data->DisplaySize.x; scale[1] = 2.0f / draw_data->DisplaySize.y; float translate[2]; translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0]; translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1]; vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale); vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate); } // Render the command lists: int vtx_offset = 0; int idx_offset = 0; ImVec2 display_pos = draw_data->DisplayPos; for (int n = 0; n < draw_data->CmdListsCount; n++) { const ImDrawList* cmd_list = draw_data->CmdLists[n]; for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++) { const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i]; if (pcmd->UserCallback) { pcmd->UserCallback(cmd_list, pcmd); } else { // Apply scissor/clipping rectangle // FIXME: We could clamp width/height based on clamped min/max values. VkRect2D scissor; scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0; scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0; scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x); scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here? vkCmdSetScissor(command_buffer, 0, 1, &scissor); // Draw vkCmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0); } idx_offset += pcmd->ElemCount; } vtx_offset += cmd_list->VtxBuffer.Size; } } bool ImGui_ImplVulkan_CreateFontsTexture(VkCommandBuffer command_buffer) { ImGuiIO& io = ImGui::GetIO(); unsigned char* pixels; int width, height; io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height); size_t upload_size = width*height*4*sizeof(char); VkResult err; // Create the Image: { VkImageCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; info.imageType = VK_IMAGE_TYPE_2D; info.format = VK_FORMAT_R8G8B8A8_UNORM; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.samples = VK_SAMPLE_COUNT_1_BIT; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; err = vkCreateImage(g_Device, &info, g_Allocator, &g_FontImage); check_vk_result(err); VkMemoryRequirements req; vkGetImageMemoryRequirements(g_Device, g_FontImage, &req); VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, req.memoryTypeBits); err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &g_FontMemory); check_vk_result(err); err = vkBindImageMemory(g_Device, g_FontImage, g_FontMemory, 0); check_vk_result(err); } // Create the Image View: { VkImageViewCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; info.image = g_FontImage; info.viewType = VK_IMAGE_VIEW_TYPE_2D; info.format = VK_FORMAT_R8G8B8A8_UNORM; info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; info.subresourceRange.levelCount = 1; info.subresourceRange.layerCount = 1; err = vkCreateImageView(g_Device, &info, g_Allocator, &g_FontView); check_vk_result(err); } // Update the Descriptor Set: { VkDescriptorImageInfo desc_image[1] = {}; desc_image[0].sampler = g_FontSampler; desc_image[0].imageView = g_FontView; desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkWriteDescriptorSet write_desc[1] = {}; write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; write_desc[0].dstSet = g_DescriptorSet; write_desc[0].descriptorCount = 1; write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; write_desc[0].pImageInfo = desc_image; vkUpdateDescriptorSets(g_Device, 1, write_desc, 0, NULL); } // Create the Upload Buffer: { VkBufferCreateInfo buffer_info = {}; buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buffer_info.size = upload_size; buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; err = vkCreateBuffer(g_Device, &buffer_info, g_Allocator, &g_UploadBuffer); check_vk_result(err); VkMemoryRequirements req; vkGetBufferMemoryRequirements(g_Device, g_UploadBuffer, &req); g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment; VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits); err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &g_UploadBufferMemory); check_vk_result(err); err = vkBindBufferMemory(g_Device, g_UploadBuffer, g_UploadBufferMemory, 0); check_vk_result(err); } // Upload to Buffer: { char* map = NULL; err = vkMapMemory(g_Device, g_UploadBufferMemory, 0, upload_size, 0, (void**)(&map)); check_vk_result(err); memcpy(map, pixels, upload_size); VkMappedMemoryRange range[1] = {}; range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[0].memory = g_UploadBufferMemory; range[0].size = upload_size; err = vkFlushMappedMemoryRanges(g_Device, 1, range); check_vk_result(err); vkUnmapMemory(g_Device, g_UploadBufferMemory); } // Copy to Image: { VkImageMemoryBarrier copy_barrier[1] = {}; copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; copy_barrier[0].image = g_FontImage; copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_barrier[0].subresourceRange.levelCount = 1; copy_barrier[0].subresourceRange.layerCount = 1; vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier); VkBufferImageCopy region = {}; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.layerCount = 1; region.imageExtent.width = width; region.imageExtent.height = height; region.imageExtent.depth = 1; vkCmdCopyBufferToImage(command_buffer, g_UploadBuffer, g_FontImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); VkImageMemoryBarrier use_barrier[1] = {}; use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; use_barrier[0].image = g_FontImage; use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; use_barrier[0].subresourceRange.levelCount = 1; use_barrier[0].subresourceRange.layerCount = 1; vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier); } // Store our identifier io.Fonts->TexID = (ImTextureID)(intptr_t)g_FontImage; return true; } bool ImGui_ImplVulkan_CreateDeviceObjects() { VkResult err; VkShaderModule vert_module; VkShaderModule frag_module; // Create The Shader Modules: { VkShaderModuleCreateInfo vert_info = {}; vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; vert_info.codeSize = sizeof(__glsl_shader_vert_spv); vert_info.pCode = (uint32_t*)__glsl_shader_vert_spv; err = vkCreateShaderModule(g_Device, &vert_info, g_Allocator, &vert_module); check_vk_result(err); VkShaderModuleCreateInfo frag_info = {}; frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; frag_info.codeSize = sizeof(__glsl_shader_frag_spv); frag_info.pCode = (uint32_t*)__glsl_shader_frag_spv; err = vkCreateShaderModule(g_Device, &frag_info, g_Allocator, &frag_module); check_vk_result(err); } if (!g_FontSampler) { VkSamplerCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; info.magFilter = VK_FILTER_LINEAR; info.minFilter = VK_FILTER_LINEAR; info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; info.minLod = -1000; info.maxLod = 1000; info.maxAnisotropy = 1.0f; err = vkCreateSampler(g_Device, &info, g_Allocator, &g_FontSampler); check_vk_result(err); } if (!g_DescriptorSetLayout) { VkSampler sampler[1] = {g_FontSampler}; VkDescriptorSetLayoutBinding binding[1] = {}; binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; binding[0].descriptorCount = 1; binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; binding[0].pImmutableSamplers = sampler; VkDescriptorSetLayoutCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; info.bindingCount = 1; info.pBindings = binding; err = vkCreateDescriptorSetLayout(g_Device, &info, g_Allocator, &g_DescriptorSetLayout); check_vk_result(err); } // Create Descriptor Set: { VkDescriptorSetAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; alloc_info.descriptorPool = g_DescriptorPool; alloc_info.descriptorSetCount = 1; alloc_info.pSetLayouts = &g_DescriptorSetLayout; err = vkAllocateDescriptorSets(g_Device, &alloc_info, &g_DescriptorSet); check_vk_result(err); } if (!g_PipelineLayout) { // Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full 3d projection matrix VkPushConstantRange push_constants[1] = {}; push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; push_constants[0].offset = sizeof(float) * 0; push_constants[0].size = sizeof(float) * 4; VkDescriptorSetLayout set_layout[1] = { g_DescriptorSetLayout }; VkPipelineLayoutCreateInfo layout_info = {}; layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; layout_info.setLayoutCount = 1; layout_info.pSetLayouts = set_layout; layout_info.pushConstantRangeCount = 1; layout_info.pPushConstantRanges = push_constants; err = vkCreatePipelineLayout(g_Device, &layout_info, g_Allocator, &g_PipelineLayout); check_vk_result(err); } VkPipelineShaderStageCreateInfo stage[2] = {}; stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT; stage[0].module = vert_module; stage[0].pName = "main"; stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; stage[1].module = frag_module; stage[1].pName = "main"; VkVertexInputBindingDescription binding_desc[1] = {}; binding_desc[0].stride = sizeof(ImDrawVert); binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX; VkVertexInputAttributeDescription attribute_desc[3] = {}; attribute_desc[0].location = 0; attribute_desc[0].binding = binding_desc[0].binding; attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT; attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos); attribute_desc[1].location = 1; attribute_desc[1].binding = binding_desc[0].binding; attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT; attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv); attribute_desc[2].location = 2; attribute_desc[2].binding = binding_desc[0].binding; attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM; attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col); VkPipelineVertexInputStateCreateInfo vertex_info = {}; vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertex_info.vertexBindingDescriptionCount = 1; vertex_info.pVertexBindingDescriptions = binding_desc; vertex_info.vertexAttributeDescriptionCount = 3; vertex_info.pVertexAttributeDescriptions = attribute_desc; VkPipelineInputAssemblyStateCreateInfo ia_info = {}; ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkPipelineViewportStateCreateInfo viewport_info = {}; viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewport_info.viewportCount = 1; viewport_info.scissorCount = 1; VkPipelineRasterizationStateCreateInfo raster_info = {}; raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; raster_info.polygonMode = VK_POLYGON_MODE_FILL; raster_info.cullMode = VK_CULL_MODE_NONE; raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; raster_info.lineWidth = 1.0f; VkPipelineMultisampleStateCreateInfo ms_info = {}; ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; VkPipelineColorBlendAttachmentState color_attachment[1] = {}; color_attachment[0].blendEnable = VK_TRUE; color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD; color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD; color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; VkPipelineDepthStencilStateCreateInfo depth_info = {}; depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; VkPipelineColorBlendStateCreateInfo blend_info = {}; blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; blend_info.attachmentCount = 1; blend_info.pAttachments = color_attachment; VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamic_state = {}; dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states); dynamic_state.pDynamicStates = dynamic_states; VkGraphicsPipelineCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; info.flags = g_PipelineCreateFlags; info.stageCount = 2; info.pStages = stage; info.pVertexInputState = &vertex_info; info.pInputAssemblyState = &ia_info; info.pViewportState = &viewport_info; info.pRasterizationState = &raster_info; info.pMultisampleState = &ms_info; info.pDepthStencilState = &depth_info; info.pColorBlendState = &blend_info; info.pDynamicState = &dynamic_state; info.layout = g_PipelineLayout; info.renderPass = g_RenderPass; err = vkCreateGraphicsPipelines(g_Device, g_PipelineCache, 1, &info, g_Allocator, &g_Pipeline); check_vk_result(err); vkDestroyShaderModule(g_Device, vert_module, g_Allocator); vkDestroyShaderModule(g_Device, frag_module, g_Allocator); return true; } void ImGui_ImplVulkan_InvalidateFontUploadObjects() { if (g_UploadBuffer) { vkDestroyBuffer(g_Device, g_UploadBuffer, g_Allocator); g_UploadBuffer = VK_NULL_HANDLE; } if (g_UploadBufferMemory) { vkFreeMemory(g_Device, g_UploadBufferMemory, g_Allocator); g_UploadBufferMemory = VK_NULL_HANDLE; } } void ImGui_ImplVulkan_InvalidateDeviceObjects() { ImGui_ImplVulkan_InvalidateFontUploadObjects(); for (int i = 0; i < IMGUI_VK_QUEUED_FRAMES; i++) { FrameDataForRender* fd = &g_FramesDataBuffers[i]; if (fd->VertexBuffer) { vkDestroyBuffer (g_Device, fd->VertexBuffer, g_Allocator); fd->VertexBuffer = VK_NULL_HANDLE; } if (fd->VertexBufferMemory) { vkFreeMemory (g_Device, fd->VertexBufferMemory, g_Allocator); fd->VertexBufferMemory = VK_NULL_HANDLE; } if (fd->IndexBuffer) { vkDestroyBuffer (g_Device, fd->IndexBuffer, g_Allocator); fd->IndexBuffer = VK_NULL_HANDLE; } if (fd->IndexBufferMemory) { vkFreeMemory (g_Device, fd->IndexBufferMemory, g_Allocator); fd->IndexBufferMemory = VK_NULL_HANDLE; } } if (g_FontView) { vkDestroyImageView(g_Device, g_FontView, g_Allocator); g_FontView = VK_NULL_HANDLE; } if (g_FontImage) { vkDestroyImage(g_Device, g_FontImage, g_Allocator); g_FontImage = VK_NULL_HANDLE; } if (g_FontMemory) { vkFreeMemory(g_Device, g_FontMemory, g_Allocator); g_FontMemory = VK_NULL_HANDLE; } if (g_FontSampler) { vkDestroySampler(g_Device, g_FontSampler, g_Allocator); g_FontSampler = VK_NULL_HANDLE; } if (g_DescriptorSetLayout) { vkDestroyDescriptorSetLayout(g_Device, g_DescriptorSetLayout, g_Allocator); g_DescriptorSetLayout = VK_NULL_HANDLE; } if (g_PipelineLayout) { vkDestroyPipelineLayout(g_Device, g_PipelineLayout, g_Allocator); g_PipelineLayout = VK_NULL_HANDLE; } if (g_Pipeline) { vkDestroyPipeline(g_Device, g_Pipeline, g_Allocator); g_Pipeline = VK_NULL_HANDLE; } } bool ImGui_ImplVulkan_Init(ImGui_ImplVulkan_InitInfo* info, VkRenderPass render_pass) { IM_ASSERT(info->Instance != VK_NULL_HANDLE); IM_ASSERT(info->PhysicalDevice != VK_NULL_HANDLE); IM_ASSERT(info->Device != VK_NULL_HANDLE); IM_ASSERT(info->Queue != VK_NULL_HANDLE); IM_ASSERT(info->DescriptorPool != VK_NULL_HANDLE); IM_ASSERT(render_pass != VK_NULL_HANDLE); g_Instance = info->Instance; g_PhysicalDevice = info->PhysicalDevice; g_Device = info->Device; g_QueueFamily = info->QueueFamily; g_Queue = info->Queue; g_RenderPass = render_pass; g_PipelineCache = info->PipelineCache; g_DescriptorPool = info->DescriptorPool; g_Allocator = info->Allocator; g_CheckVkResultFn = info->CheckVkResultFn; ImGui_ImplVulkan_CreateDeviceObjects(); return true; } void ImGui_ImplVulkan_Shutdown() { ImGui_ImplVulkan_InvalidateDeviceObjects(); } void ImGui_ImplVulkan_NewFrame() { } //------------------------------------------------------------------------- // Internal / Miscellaneous Vulkan Helpers //------------------------------------------------------------------------- // You probably do NOT need to use or care about those functions. // Those functions only exist because: // 1) they facilitate the readability and maintenance of the multiple main.cpp examples files. // 2) the upcoming multi-viewport feature will need them internally. // Generally we avoid exposing any kind of superfluous high-level helpers in the bindings, // but it is too much code to duplicate everywhere so we exceptionally expose them. // Your application/engine will likely already have code to setup all that stuff (swap chain, render pass, frame buffers, etc.). // You may read this code to learn about Vulkan, but it is recommended you use you own custom tailored code to do equivalent work. // (those functions do not interact with any of the state used by the regular ImGui_ImplVulkan_XXX functions) //------------------------------------------------------------------------- #include // malloc ImGui_ImplVulkanH_FrameData::ImGui_ImplVulkanH_FrameData() { BackbufferIndex = 0; CommandPool = VK_NULL_HANDLE; CommandBuffer = VK_NULL_HANDLE; Fence = VK_NULL_HANDLE; ImageAcquiredSemaphore = VK_NULL_HANDLE; RenderCompleteSemaphore = VK_NULL_HANDLE; } ImGui_ImplVulkanH_WindowData::ImGui_ImplVulkanH_WindowData() { Width = Height = 0; Swapchain = VK_NULL_HANDLE; Surface = VK_NULL_HANDLE; memset(&SurfaceFormat, 0, sizeof(SurfaceFormat)); PresentMode = VK_PRESENT_MODE_MAX_ENUM_KHR; RenderPass = VK_NULL_HANDLE; ClearEnable = true; memset(&ClearValue, 0, sizeof(ClearValue)); BackBufferCount = 0; memset(&BackBuffer, 0, sizeof(BackBuffer)); memset(&BackBufferView, 0, sizeof(BackBufferView)); memset(&Framebuffer, 0, sizeof(Framebuffer)); FrameIndex = 0; } VkSurfaceFormatKHR ImGui_ImplVulkanH_SelectSurfaceFormat(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkFormat* request_formats, int request_formats_count, VkColorSpaceKHR request_color_space) { IM_ASSERT(request_formats != NULL); IM_ASSERT(request_formats_count > 0); // Per Spec Format and View Format are expected to be the same unless VK_IMAGE_CREATE_MUTABLE_BIT was set at image creation // Assuming that the default behavior is without setting this bit, there is no need for separate Swapchain image and image view format // Additionally several new color spaces were introduced with Vulkan Spec v1.0.40, // hence we must make sure that a format with the mostly available color space, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR, is found and used. uint32_t avail_count; vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, NULL); ImVector avail_format; avail_format.resize((int)avail_count); vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, avail_format.Data); // First check if only one format, VK_FORMAT_UNDEFINED, is available, which would imply that any format is available if (avail_count == 1) { if (avail_format[0].format == VK_FORMAT_UNDEFINED) { VkSurfaceFormatKHR ret; ret.format = request_formats[0]; ret.colorSpace = request_color_space; return ret; } else { // No point in searching another format return avail_format[0]; } } else { // Request several formats, the first found will be used for (int request_i = 0; request_i < request_formats_count; request_i++) for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++) if (avail_format[avail_i].format == request_formats[request_i] && avail_format[avail_i].colorSpace == request_color_space) return avail_format[avail_i]; // If none of the requested image formats could be found, use the first available return avail_format[0]; } } VkPresentModeKHR ImGui_ImplVulkanH_SelectPresentMode(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkPresentModeKHR* request_modes, int request_modes_count) { IM_ASSERT(request_modes != NULL); IM_ASSERT(request_modes_count > 0); // Request a certain mode and confirm that it is available. If not use VK_PRESENT_MODE_FIFO_KHR which is mandatory uint32_t avail_count = 0; vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, NULL); ImVector avail_modes; avail_modes.resize((int)avail_count); vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, avail_modes.Data); //for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++) // printf("[vulkan] avail_modes[%d] = %d\n", avail_i, avail_modes[avail_i]); for (int request_i = 0; request_i < request_modes_count; request_i++) for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++) if (request_modes[request_i] == avail_modes[avail_i]) return request_modes[request_i]; return VK_PRESENT_MODE_FIFO_KHR; // Always available } void ImGui_ImplVulkanH_CreateWindowDataCommandBuffers(VkPhysicalDevice physical_device, VkDevice device, uint32_t queue_family, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator) { IM_ASSERT(physical_device != VK_NULL_HANDLE && device != VK_NULL_HANDLE); (void)allocator; // Create Command Buffers VkResult err; for (int i = 0; i < IMGUI_VK_QUEUED_FRAMES; i++) { ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i]; { VkCommandPoolCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; info.queueFamilyIndex = queue_family; err = vkCreateCommandPool(device, &info, allocator, &fd->CommandPool); check_vk_result(err); } { VkCommandBufferAllocateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; info.commandPool = fd->CommandPool; info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; info.commandBufferCount = 1; err = vkAllocateCommandBuffers(device, &info, &fd->CommandBuffer); check_vk_result(err); } { VkFenceCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; info.flags = VK_FENCE_CREATE_SIGNALED_BIT; err = vkCreateFence(device, &info, allocator, &fd->Fence); check_vk_result(err); } { VkSemaphoreCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; err = vkCreateSemaphore(device, &info, allocator, &fd->ImageAcquiredSemaphore); check_vk_result(err); err = vkCreateSemaphore(device, &info, allocator, &fd->RenderCompleteSemaphore); check_vk_result(err); } } } int ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(VkPresentModeKHR present_mode) { if (present_mode == VK_PRESENT_MODE_MAILBOX_KHR) return 3; if (present_mode == VK_PRESENT_MODE_FIFO_KHR || present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR) return 2; if (present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR) return 1; IM_ASSERT(0); return 1; } void ImGui_ImplVulkanH_CreateWindowDataSwapChainAndFramebuffer(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator, int w, int h) { uint32_t min_image_count = 2; // FIXME: this should become a function parameter VkResult err; VkSwapchainKHR old_swapchain = wd->Swapchain; err = vkDeviceWaitIdle(device); check_vk_result(err); // Destroy old Framebuffer for (uint32_t i = 0; i < wd->BackBufferCount; i++) { if (wd->BackBufferView[i]) vkDestroyImageView(device, wd->BackBufferView[i], allocator); if (wd->Framebuffer[i]) vkDestroyFramebuffer(device, wd->Framebuffer[i], allocator); } wd->BackBufferCount = 0; if (wd->RenderPass) vkDestroyRenderPass(device, wd->RenderPass, allocator); // If min image count was not specified, request different count of images dependent on selected present mode if (min_image_count == 0) min_image_count = ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(wd->PresentMode); // Create Swapchain { VkSwapchainCreateInfoKHR info = {}; info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; info.surface = wd->Surface; info.minImageCount = min_image_count; info.imageFormat = wd->SurfaceFormat.format; info.imageColorSpace = wd->SurfaceFormat.colorSpace; info.imageArrayLayers = 1; info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; // Assume that graphics family == present family info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; info.presentMode = wd->PresentMode; info.clipped = VK_TRUE; info.oldSwapchain = old_swapchain; VkSurfaceCapabilitiesKHR cap; err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, wd->Surface, &cap); check_vk_result(err); if (info.minImageCount < cap.minImageCount) info.minImageCount = cap.minImageCount; else if (cap.maxImageCount != 0 && info.minImageCount > cap.maxImageCount) info.minImageCount = cap.maxImageCount; if (cap.currentExtent.width == 0xffffffff) { info.imageExtent.width = wd->Width = w; info.imageExtent.height = wd->Height = h; } else { info.imageExtent.width = wd->Width = cap.currentExtent.width; info.imageExtent.height = wd->Height = cap.currentExtent.height; } err = vkCreateSwapchainKHR(device, &info, allocator, &wd->Swapchain); check_vk_result(err); err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->BackBufferCount, NULL); check_vk_result(err); err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->BackBufferCount, wd->BackBuffer); check_vk_result(err); } if (old_swapchain) vkDestroySwapchainKHR(device, old_swapchain, allocator); // Create the Render Pass { VkAttachmentDescription attachment = {}; attachment.format = wd->SurfaceFormat.format; attachment.samples = VK_SAMPLE_COUNT_1_BIT; attachment.loadOp = wd->ClearEnable ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference color_attachment = {}; color_attachment.attachment = 0; color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_attachment; VkSubpassDependency dependency = {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; VkRenderPassCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; info.attachmentCount = 1; info.pAttachments = &attachment; info.subpassCount = 1; info.pSubpasses = &subpass; info.dependencyCount = 1; info.pDependencies = &dependency; err = vkCreateRenderPass(device, &info, allocator, &wd->RenderPass); check_vk_result(err); } // Create The Image Views { VkImageViewCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; info.viewType = VK_IMAGE_VIEW_TYPE_2D; info.format = wd->SurfaceFormat.format; info.components.r = VK_COMPONENT_SWIZZLE_R; info.components.g = VK_COMPONENT_SWIZZLE_G; info.components.b = VK_COMPONENT_SWIZZLE_B; info.components.a = VK_COMPONENT_SWIZZLE_A; VkImageSubresourceRange image_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; info.subresourceRange = image_range; for (uint32_t i = 0; i < wd->BackBufferCount; i++) { info.image = wd->BackBuffer[i]; err = vkCreateImageView(device, &info, allocator, &wd->BackBufferView[i]); check_vk_result(err); } } // Create Framebuffer { VkImageView attachment[1]; VkFramebufferCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; info.renderPass = wd->RenderPass; info.attachmentCount = 1; info.pAttachments = attachment; info.width = wd->Width; info.height = wd->Height; info.layers = 1; for (uint32_t i = 0; i < wd->BackBufferCount; i++) { attachment[0] = wd->BackBufferView[i]; err = vkCreateFramebuffer(device, &info, allocator, &wd->Framebuffer[i]); check_vk_result(err); } } } void ImGui_ImplVulkanH_DestroyWindowData(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator) { vkDeviceWaitIdle(device); // FIXME: We could wait on the Queue if we had the queue in wd-> (otherwise VulkanH functions can't use globals) //vkQueueWaitIdle(g_Queue); for (int i = 0; i < IMGUI_VK_QUEUED_FRAMES; i++) { ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i]; vkDestroyFence(device, fd->Fence, allocator); vkFreeCommandBuffers(device, fd->CommandPool, 1, &fd->CommandBuffer); vkDestroyCommandPool(device, fd->CommandPool, allocator); vkDestroySemaphore(device, fd->ImageAcquiredSemaphore, allocator); vkDestroySemaphore(device, fd->RenderCompleteSemaphore, allocator); } for (uint32_t i = 0; i < wd->BackBufferCount; i++) { vkDestroyImageView(device, wd->BackBufferView[i], allocator); vkDestroyFramebuffer(device, wd->Framebuffer[i], allocator); } vkDestroyRenderPass(device, wd->RenderPass, allocator); vkDestroySwapchainKHR(device, wd->Swapchain, allocator); vkDestroySurfaceKHR(instance, wd->Surface, allocator); *wd = ImGui_ImplVulkanH_WindowData(); } ='n1416' href='#n1416'>1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 *  ---
 *
 *  A simple and straightforward Verilog backend.
 *
 */

#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/sigtools.h"
#include <string>
#include <sstream>
#include <set>
#include <map>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

bool verbose, norename, noattr, attr2comment, noexpr, nodec, nohex, nostr, extmem, defparam, decimal, siminit;
int auto_name_counter, auto_name_offset, auto_name_digits, extmem_counter;
std::map<RTLIL::IdString, int> auto_name_map;
std::set<RTLIL::IdString> reg_wires, reg_ct;
std::string auto_prefix, extmem_prefix;

RTLIL::Module *active_module;
dict<RTLIL::SigBit, RTLIL::State> active_initdata;
SigMap active_sigmap;

void reset_auto_counter_id(RTLIL::IdString id, bool may_rename)
{
	const char *str = id.c_str();

	if (*str == '$' && may_rename && !norename)
		auto_name_map[id] = auto_name_counter++;

	if (str[0] != '\\' || str[1] != '_' || str[2] == 0)
		return;

	for (int i = 2; str[i] != 0; i++) {
		if (str[i] == '_' && str[i+1] == 0)
			continue;
		if (str[i] < '0' || str[i] > '9')
			return;
	}

	int num = atoi(str+2);
	if (num >= auto_name_offset)
		auto_name_offset = num + 1;
}

void reset_auto_counter(RTLIL::Module *module)
{
	auto_name_map.clear();
	auto_name_counter = 0;
	auto_name_offset = 0;

	reset_auto_counter_id(module->name, false);

	for (auto it = module->wires_.begin(); it != module->wires_.end(); ++it)
		reset_auto_counter_id(it->second->name, true);

	for (auto it = module->cells_.begin(); it != module->cells_.end(); ++it) {
		reset_auto_counter_id(it->second->name, true);
		reset_auto_counter_id(it->second->type, false);
	}

	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		reset_auto_counter_id(it->second->name, false);

	auto_name_digits = 1;
	for (size_t i = 10; i < auto_name_offset + auto_name_map.size(); i = i*10)
		auto_name_digits++;

	if (verbose)
		for (auto it = auto_name_map.begin(); it != auto_name_map.end(); ++it)
			log("  renaming `%s' to `%s_%0*d_'.\n", it->first.c_str(), auto_prefix.c_str(), auto_name_digits, auto_name_offset + it->second);
}

std::string next_auto_id()
{
	return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_counter++);
}

std::string id(RTLIL::IdString internal_id, bool may_rename = true)
{
	const char *str = internal_id.c_str();
	bool do_escape = false;

	if (may_rename && auto_name_map.count(internal_id) != 0)
		return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_map[internal_id]);

	if (*str == '\\')
		str++;

	if ('0' <= *str && *str <= '9')
		do_escape = true;

	for (int i = 0; str[i]; i++)
	{
		if ('0' <= str[i] && str[i] <= '9')
			continue;
		if ('a' <= str[i] && str[i] <= 'z')
			continue;
		if ('A' <= str[i] && str[i] <= 'Z')
			continue;
		if (str[i] == '_')
			continue;
		do_escape = true;
		break;
	}

	const pool<string> keywords = {
		// IEEE 1800-2017 Annex B
		"accept_on", "alias", "always", "always_comb", "always_ff", "always_latch", "and", "assert", "assign", "assume", "automatic", "before",
		"begin", "bind", "bins", "binsof", "bit", "break", "buf", "bufif0", "bufif1", "byte", "case", "casex", "casez", "cell", "chandle",
		"checker", "class", "clocking", "cmos", "config", "const", "constraint", "context", "continue", "cover", "covergroup", "coverpoint",
		"cross", "deassign", "default", "defparam", "design", "disable", "dist", "do", "edge", "else", "end", "endcase", "endchecker",
		"endclass", "endclocking", "endconfig", "endfunction", "endgenerate", "endgroup", "endinterface", "endmodule", "endpackage",
		"endprimitive", "endprogram", "endproperty", "endsequence", "endspecify", "endtable", "endtask", "enum", "event", "eventually",
		"expect", "export", "extends", "extern", "final", "first_match", "for", "force", "foreach", "forever", "fork", "forkjoin", "function",
		"generate", "genvar", "global", "highz0", "highz1", "if", "iff", "ifnone", "ignore_bins", "illegal_bins", "implements", "implies",
		"import", "incdir", "include", "initial", "inout", "input", "inside", "instance", "int", "integer", "interconnect", "interface",
		"intersect", "join", "join_any", "join_none", "large", "let", "liblist", "library", "local", "localparam", "logic", "longint",
		"macromodule", "matches", "medium", "modport", "module", "nand", "negedge", "nettype", "new", "nexttime", "nmos", "nor",
		"noshowcancelled", "not", "notif0", "notif1", "null", "or", "output", "package", "packed", "parameter", "pmos", "posedge", "primitive",
		"priority", "program", "property", "protected", "pull0", "pull1", "pulldown", "pullup", "pulsestyle_ondetect", "pulsestyle_onevent",
		"pure", "rand", "randc", "randcase", "randsequence", "rcmos", "real", "realtime", "ref", "reg", "reject_on", "release", "repeat",
		"restrict", "return", "rnmos", "rpmos", "rtran", "rtranif0", "rtranif1", "s_always", "s_eventually", "s_nexttime", "s_until",
		"s_until_with", "scalared", "sequence", "shortint", "shortreal", "showcancelled", "signed", "small", "soft", "solve", "specify",
		"specparam", "static", "string", "strong", "strong0", "strong1", "struct", "super", "supply0", "supply1", "sync_accept_on",
		"sync_reject_on", "table", "tagged", "task", "this", "throughout", "time", "timeprecision", "timeunit", "tran", "tranif0", "tranif1",
		"tri", "tri0", "tri1", "triand", "trior", "trireg", "type", "typedef", "union", "unique", "unique0", "unsigned", "until", "until_with",
		"untyped", "use", "uwire", "var", "vectored", "virtual", "void", "wait", "wait_order", "wand", "weak", "weak0", "weak1", "while",
		"wildcard", "wire", "with", "within", "wor", "xnor", "xor",
	};
	if (keywords.count(str))
		do_escape = true;

	if (do_escape)
		return "\\" + std::string(str) + " ";
	return std::string(str);
}

bool is_reg_wire(RTLIL::SigSpec sig, std::string &reg_name)
{
	if (!sig.is_chunk() || sig.as_chunk().wire == NULL)
		return false;

	RTLIL::SigChunk chunk = sig.as_chunk();

	if (reg_wires.count(chunk.wire->name) == 0)
		return false;

	reg_name = id(chunk.wire->name);
	if (sig.size() != chunk.wire->width) {
		if (sig.size() == 1)
			reg_name += stringf("[%d]", chunk.wire->start_offset +  chunk.offset);
		else if (chunk.wire->upto)
			reg_name += stringf("[%d:%d]", (chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset,
					(chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
		else
			reg_name += stringf("[%d:%d]", chunk.wire->start_offset +  chunk.offset + chunk.width - 1,
					chunk.wire->start_offset +  chunk.offset);
	}

	return true;
}

void dump_const(std::ostream &f, const RTLIL::Const &data, int width = -1, int offset = 0, bool no_decimal = false, bool escape_comment = false)
{
	bool set_signed = (data.flags & RTLIL::CONST_FLAG_SIGNED) != 0;
	if (width < 0)
		width = data.bits.size() - offset;
	if (width == 0) {
		// See IEEE 1364-2005 Clause 5.1.14.
		f << "{0{1'b0}}";
		return;
	}
	if (nostr)
		goto dump_hex;
	if ((data.flags & RTLIL::CONST_FLAG_STRING) == 0 || width != (int)data.bits.size()) {
		if (width == 32 && !no_decimal && !nodec) {
			int32_t val = 0;
			for (int i = offset+width-1; i >= offset; i--) {
				log_assert(i < (int)data.bits.size());
				if (data.bits[i] != State::S0 && data.bits[i] != State::S1)
					goto dump_hex;
				if (data.bits[i] == State::S1)
					val |= 1 << (i - offset);
			}
			if (decimal)
				f << stringf("%d", val);
			else if (set_signed && val < 0)
				f << stringf("-32'sd%u", -val);
			else
				f << stringf("32'%sd%u", set_signed ? "s" : "", val);
		} else {
	dump_hex:
			if (nohex)
				goto dump_bin;
			vector<char> bin_digits, hex_digits;
			for (int i = offset; i < offset+width; i++) {
				log_assert(i < (int)data.bits.size());
				switch (data.bits[i]) {
				case State::S0: bin_digits.push_back('0'); break;
				case State::S1: bin_digits.push_back('1'); break;
				case RTLIL::Sx: bin_digits.push_back('x'); break;
				case RTLIL::Sz: bin_digits.push_back('z'); break;
				case RTLIL::Sa: bin_digits.push_back('?'); break;
				case RTLIL::Sm: log_error("Found marker state in final netlist.");
				}
			}
			if (GetSize(bin_digits) == 0)
				goto dump_bin;
			while (GetSize(bin_digits) % 4 != 0)
				if (bin_digits.back() == '1')
					bin_digits.push_back('0');
				else
					bin_digits.push_back(bin_digits.back());
			for (int i = 0; i < GetSize(bin_digits); i += 4)
			{
				char bit_3 = bin_digits[i+3];
				char bit_2 = bin_digits[i+2];
				char bit_1 = bin_digits[i+1];
				char bit_0 = bin_digits[i+0];
				if (bit_3 == 'x' || bit_2 == 'x' || bit_1 == 'x' || bit_0 == 'x') {
					if (bit_3 != 'x' || bit_2 != 'x' || bit_1 != 'x' || bit_0 != 'x')
						goto dump_bin;
					hex_digits.push_back('x');
					continue;
				}
				if (bit_3 == 'z' || bit_2 == 'z' || bit_1 == 'z' || bit_0 == 'z') {
					if (bit_3 != 'z' || bit_2 != 'z' || bit_1 != 'z' || bit_0 != 'z')
						goto dump_bin;
					hex_digits.push_back('z');
					continue;
				}
				if (bit_3 == '?' || bit_2 == '?' || bit_1 == '?' || bit_0 == '?') {
					if (bit_3 != '?' || bit_2 != '?' || bit_1 != '?' || bit_0 != '?')
						goto dump_bin;
					hex_digits.push_back('?');
					continue;
				}
				int val = 8*(bit_3 - '0') + 4*(bit_2 - '0') + 2*(bit_1 - '0') + (bit_0 - '0');
				hex_digits.push_back(val < 10 ? '0' + val : 'a' + val - 10);
			}
			f << stringf("%d'%sh", width, set_signed ? "s" : "");
			for (int i = GetSize(hex_digits)-1; i >= 0; i--)
				f << hex_digits[i];
		}
		if (0) {
	dump_bin:
			f << stringf("%d'%sb", width, set_signed ? "s" : "");
			if (width == 0)
				f << stringf("0");
			for (int i = offset+width-1; i >= offset; i--) {
				log_assert(i < (int)data.bits.size());
				switch (data.bits[i]) {
				case State::S0: f << stringf("0"); break;
				case State::S1: f << stringf("1"); break;
				case RTLIL::Sx: f << stringf("x"); break;
				case RTLIL::Sz: f << stringf("z"); break;
				case RTLIL::Sa: f << stringf("?"); break;
				case RTLIL::Sm: log_error("Found marker state in final netlist.");
				}
			}
		}
	} else {
		if ((data.flags & RTLIL::CONST_FLAG_REAL) == 0)
			f << stringf("\"");
		std::string str = data.decode_string();
		for (size_t i = 0; i < str.size(); i++) {
			if (str[i] == '\n')
				f << stringf("\\n");
			else if (str[i] == '\t')
				f << stringf("\\t");
			else if (str[i] < 32)
				f << stringf("\\%03o", str[i]);
			else if (str[i] == '"')
				f << stringf("\\\"");
			else if (str[i] == '\\')
				f << stringf("\\\\");
			else if (str[i] == '/' && escape_comment && i > 0 && str[i-1] == '*')
				f << stringf("\\/");
			else
				f << str[i];
		}
		if ((data.flags & RTLIL::CONST_FLAG_REAL) == 0)
			f << stringf("\"");
	}
}

void dump_reg_init(std::ostream &f, SigSpec sig)
{
	Const initval;
	bool gotinit = false;

	for (auto bit : active_sigmap(sig)) {
		if (active_initdata.count(bit)) {
			initval.bits.push_back(active_initdata.at(bit));
			gotinit = true;
		} else {
			initval.bits.push_back(State::Sx);
		}
	}

	if (gotinit) {
		f << " = ";
		dump_const(f, initval);
	}
}

void dump_sigchunk(std::ostream &f, const RTLIL::SigChunk &chunk, bool no_decimal = false)
{
	if (chunk.wire == NULL) {
		dump_const(f, chunk.data, chunk.width, chunk.offset, no_decimal);
	} else {
		if (chunk.width == chunk.wire->width && chunk.offset == 0) {
			f << stringf("%s", id(chunk.wire->name).c_str());
		} else if (chunk.width == 1) {
			if (chunk.wire->upto)
				f << stringf("%s[%d]", id(chunk.wire->name).c_str(), (chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
			else
				f << stringf("%s[%d]", id(chunk.wire->name).c_str(), chunk.offset + chunk.wire->start_offset);
		} else {
			if (chunk.wire->upto)
				f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(),
						(chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset,
						(chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
			else
				f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(),
						(chunk.offset + chunk.width - 1) + chunk.wire->start_offset,
						chunk.offset + chunk.wire->start_offset);
		}
	}
}

void dump_sigspec(std::ostream &f, const RTLIL::SigSpec &sig)
{
	if (GetSize(sig) == 0) {
		f << "\"\"";
		return;
	}
	if (sig.is_chunk()) {
		dump_sigchunk(f, sig.as_chunk());
	} else {
		f << stringf("{ ");
		for (auto it = sig.chunks().rbegin(); it != sig.chunks().rend(); ++it) {
			if (it != sig.chunks().rbegin())
				f << stringf(", ");
			dump_sigchunk(f, *it, true);
		}
		f << stringf(" }");
	}
}

void dump_attributes(std::ostream &f, std::string indent, dict<RTLIL::IdString, RTLIL::Const> &attributes, char term = '\n', bool modattr = false, bool regattr = false, bool as_comment = false)
{
	if (noattr)
		return;
	if (attr2comment)
		as_comment = true;
	for (auto it = attributes.begin(); it != attributes.end(); ++it) {
		if (it->first == "\\init" && regattr) continue;
		f << stringf("%s" "%s %s", indent.c_str(), as_comment ? "/*" : "(*", id(it->first).c_str());
		f << stringf(" = ");
		if (modattr && (it->second == State::S0 || it->second == Const(0)))
			f << stringf(" 0 ");
		else if (modattr && (it->second == State::S1 || it->second == Const(1)))
			f << stringf(" 1 ");
		else
			dump_const(f, it->second, -1, 0, false, as_comment);
		f << stringf(" %s%c", as_comment ? "*/" : "*)", term);
	}
}

void dump_wire(std::ostream &f, std::string indent, RTLIL::Wire *wire)
{
	dump_attributes(f, indent, wire->attributes, '\n', /*modattr=*/false, /*regattr=*/reg_wires.count(wire->name));
#if 0
	if (wire->port_input && !wire->port_output)
		f << stringf("%s" "input %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else if (!wire->port_input && wire->port_output)
		f << stringf("%s" "output %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else if (wire->port_input && wire->port_output)
		f << stringf("%s" "inout %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else
		f << stringf("%s" "%s ", indent.c_str(), reg_wires.count(wire->name) ? "reg" : "wire");
	if (wire->width != 1)
		f << stringf("[%d:%d] ", wire->width - 1 + wire->start_offset, wire->start_offset);
	f << stringf("%s;\n", id(wire->name).c_str());
#else
	// do not use Verilog-2k "output reg" syntax in Verilog export
	std::string range = "";
	if (wire->width != 1) {
		if (wire->upto)
			range = stringf(" [%d:%d]", wire->start_offset, wire->width - 1 + wire->start_offset);
		else
			range = stringf(" [%d:%d]", wire->width - 1 + wire->start_offset, wire->start_offset);
	}
	if (wire->port_input && !wire->port_output)
		f << stringf("%s" "input%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (!wire->port_input && wire->port_output)
		f << stringf("%s" "output%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (wire->port_input && wire->port_output)
		f << stringf("%s" "inout%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (reg_wires.count(wire->name)) {
		f << stringf("%s" "reg%s %s", indent.c_str(), range.c_str(), id(wire->name).c_str());
		if (wire->attributes.count("\\init")) {
			f << stringf(" = ");
			dump_const(f, wire->attributes.at("\\init"));
		}
		f << stringf(";\n");
	} else if (!wire->port_input && !wire->port_output)
		f << stringf("%s" "wire%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
#endif
}

void dump_memory(std::ostream &f, std::string indent, RTLIL::Memory *memory)
{
	dump_attributes(f, indent, memory->attributes);
	f << stringf("%s" "reg [%d:0] %s [%d:%d];\n", indent.c_str(), memory->width-1, id(memory->name).c_str(), memory->size+memory->start_offset-1, memory->start_offset);
}

void dump_cell_expr_port(std::ostream &f, RTLIL::Cell *cell, std::string port, bool gen_signed = true)
{
	if (gen_signed && cell->parameters.count("\\" + port + "_SIGNED") > 0 && cell->parameters["\\" + port + "_SIGNED"].as_bool()) {
		f << stringf("$signed(");
		dump_sigspec(f, cell->getPort("\\" + port));
		f << stringf(")");
	} else
		dump_sigspec(f, cell->getPort("\\" + port));
}

std::string cellname(RTLIL::Cell *cell)
{
	if (!norename && cell->name[0] == '$' && reg_ct.count(cell->type) && cell->hasPort("\\Q"))
	{
		RTLIL::SigSpec sig = cell->getPort("\\Q");
		if (GetSize(sig) != 1 || sig.is_fully_const())
			goto no_special_reg_name;

		RTLIL::Wire *wire = sig[0].wire;

		if (wire->name[0] != '\\')
			goto no_special_reg_name;

		std::string cell_name = wire->name.str();

		size_t pos = cell_name.find('[');
		if (pos != std::string::npos)
			cell_name = cell_name.substr(0, pos) + "_reg" + cell_name.substr(pos);
		else
			cell_name = cell_name + "_reg";

		if (wire->width != 1)
			cell_name += stringf("[%d]", wire->start_offset + sig[0].offset);

		if (active_module && active_module->count_id(cell_name) > 0)
				goto no_special_reg_name;

		return id(cell_name);
	}
	else
	{
no_special_reg_name:
		return id(cell->name).c_str();
	}
}

void dump_cell_expr_uniop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, cell->getPort("\\Y"));
	f << stringf(" = %s ", op.c_str());
	dump_attributes(f, "", cell->attributes, ' ');
	dump_cell_expr_port(f, cell, "A", true);
	f << stringf(";\n");
}

void dump_cell_expr_binop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, cell->getPort("\\Y"));
	f << stringf(" = ");
	dump_cell_expr_port(f, cell, "A", true);
	f << stringf(" %s ", op.c_str());
	dump_attributes(f, "", cell->attributes, ' ');
	dump_cell_expr_port(f, cell, "B", true);
	f << stringf(";\n");
}

bool dump_cell_expr(std::ostream &f, std::string indent, RTLIL::Cell *cell)
{
	if (cell->type == "$_NOT_") {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		f << stringf("~");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(";\n");
		return true;
	}

	if (cell->type.in("$_AND_", "$_NAND_", "$_OR_", "$_NOR_", "$_XOR_", "$_XNOR_", "$_ANDNOT_", "$_ORNOT_")) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		if (cell->type.in("$_NAND_", "$_NOR_", "$_XNOR_"))
			f << stringf("~(");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(" ");
		if (cell->type.in("$_AND_", "$_NAND_", "$_ANDNOT_"))
			f << stringf("&");
		if (cell->type.in("$_OR_", "$_NOR_", "$_ORNOT_"))
			f << stringf("|");
		if (cell->type.in("$_XOR_", "$_XNOR_"))
			f << stringf("^");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" ");
		if (cell->type.in("$_ANDNOT_", "$_ORNOT_"))
			f << stringf("~(");
		dump_cell_expr_port(f, cell, "B", false);
		if (cell->type.in("$_NAND_", "$_NOR_", "$_XNOR_", "$_ANDNOT_", "$_ORNOT_"))
			f << stringf(")");
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$_MUX_") {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_cell_expr_port(f, cell, "S", false);
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(" : ");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$_NMUX_") {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = !(");
		dump_cell_expr_port(f, cell, "S", false);
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(" : ");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in("$_AOI3_", "$_OAI3_")) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ~((");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(cell->type == "$_AOI3_" ? " & " : " | ");
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(cell->type == "$_AOI3_" ? ") |" : ") &");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" ");
		dump_cell_expr_port(f, cell, "C", false);
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in("$_AOI4_", "$_OAI4_")) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ~((");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(cell->type == "$_AOI4_" ? " & " : " | ");
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(cell->type == "$_AOI4_" ? ") |" : ") &");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" (");
		dump_cell_expr_port(f, cell, "C", false);
		f << stringf(cell->type == "$_AOI4_" ? " & " : " | ");
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf("));\n");
		return true;
	}

	if (cell->type.begins_with("$_DFF_"))
	{
		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg %s", indent.c_str(), reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		dump_attributes(f, indent, cell->attributes);
		f << stringf("%s" "always @(%sedge ", indent.c_str(), cell->type[6] == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\C"));
		if (cell->type[7] != '_') {
			f << stringf(" or %sedge ", cell->type[7] == 'P' ? "pos" : "neg");
			dump_sigspec(f, cell->getPort("\\R"));
		}
		f << stringf(")\n");

		if (cell->type[7] != '_') {
			f << stringf("%s" "  if (%s", indent.c_str(), cell->type[7] == 'P' ? "" : "!");
			dump_sigspec(f, cell->getPort("\\R"));
			f << stringf(")\n");
			f << stringf("%s" "    %s <= %c;\n", indent.c_str(), reg_name.c_str(), cell->type[8]);
			f << stringf("%s" "  else\n", indent.c_str());
		}

		f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type.begins_with("$_DFFSR_"))
	{
		char pol_c = cell->type[8], pol_s = cell->type[9], pol_r = cell->type[10];

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg %s", indent.c_str(), reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		dump_attributes(f, indent, cell->attributes);
		f << stringf("%s" "always @(%sedge ", indent.c_str(), pol_c == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\C"));
		f << stringf(" or %sedge ", pol_s == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(" or %sedge ", pol_r == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\R"));
		f << stringf(")\n");

		f << stringf("%s" "  if (%s", indent.c_str(), pol_r == 'P' ? "" : "!");
		dump_sigspec(f, cell->getPort("\\R"));
		f << stringf(")\n");
		f << stringf("%s" "    %s <= 0;\n", indent.c_str(), reg_name.c_str());

		f << stringf("%s" "  else if (%s", indent.c_str(), pol_s == 'P' ? "" : "!");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(")\n");
		f << stringf("%s" "    %s <= 1;\n", indent.c_str(), reg_name.c_str());

		f << stringf("%s" "  else\n", indent.c_str());
		f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

#define HANDLE_UNIOP(_type, _operator) \
	if (cell->type ==_type) { dump_cell_expr_uniop(f, indent, cell, _operator); return true; }
#define HANDLE_BINOP(_type, _operator) \
	if (cell->type ==_type) { dump_cell_expr_binop(f, indent, cell, _operator); return true; }

	HANDLE_UNIOP("$not", "~")
	HANDLE_UNIOP("$pos", "+")
	HANDLE_UNIOP("$neg", "-")

	HANDLE_BINOP("$and",  "&")
	HANDLE_BINOP("$or",   "|")
	HANDLE_BINOP("$xor",  "^")
	HANDLE_BINOP("$xnor", "~^")

	HANDLE_UNIOP("$reduce_and",  "&")
	HANDLE_UNIOP("$reduce_or",   "|")
	HANDLE_UNIOP("$reduce_xor",  "^")
	HANDLE_UNIOP("$reduce_xnor", "~^")
	HANDLE_UNIOP("$reduce_bool", "|")

	HANDLE_BINOP("$shl",  "<<")
	HANDLE_BINOP("$shr",  ">>")
	HANDLE_BINOP("$sshl", "<<<")
	HANDLE_BINOP("$sshr", ">>>")

	HANDLE_BINOP("$lt",  "<")
	HANDLE_BINOP("$le",  "<=")
	HANDLE_BINOP("$eq",  "==")
	HANDLE_BINOP("$ne",  "!=")
	HANDLE_BINOP("$eqx", "===")
	HANDLE_BINOP("$nex", "!==")
	HANDLE_BINOP("$ge",  ">=")
	HANDLE_BINOP("$gt",  ">")

	HANDLE_BINOP("$add", "+")
	HANDLE_BINOP("$sub", "-")
	HANDLE_BINOP("$mul", "*")
	HANDLE_BINOP("$div", "/")
	HANDLE_BINOP("$mod", "%")
	HANDLE_BINOP("$pow", "**")

	HANDLE_UNIOP("$logic_not", "!")
	HANDLE_BINOP("$logic_and", "&&")
	HANDLE_BINOP("$logic_or",  "||")

#undef HANDLE_UNIOP
#undef HANDLE_BINOP

	if (cell->type == "$shift")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		if (cell->getParam("\\B_SIGNED").as_bool())
		{
			f << stringf("$signed(");
			dump_sigspec(f, cell->getPort("\\B"));
			f << stringf(")");
			f << stringf(" < 0 ? ");
			dump_sigspec(f, cell->getPort("\\A"));
			f << stringf(" << - ");
			dump_sigspec(f, cell->getPort("\\B"));
			f << stringf(" : ");
			dump_sigspec(f, cell->getPort("\\A"));
			f << stringf(" >> ");
			dump_sigspec(f, cell->getPort("\\B"));
		}
		else
		{
			dump_sigspec(f, cell->getPort("\\A"));
			f << stringf(" >> ");
			dump_sigspec(f, cell->getPort("\\B"));
		}
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$shiftx")
	{
		std::string temp_id = next_auto_id();
		f << stringf("%s" "wire [%d:0] %s = ", indent.c_str(), GetSize(cell->getPort("\\A"))-1, temp_id.c_str());
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(";\n");

		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = %s[", temp_id.c_str());
		if (cell->getParam("\\B_SIGNED").as_bool())
			f << stringf("$signed(");
		dump_sigspec(f, cell->getPort("\\B"));
		if (cell->getParam("\\B_SIGNED").as_bool())
			f << stringf(")");
		f << stringf(" +: %d", cell->getParam("\\Y_WIDTH").as_int());
		f << stringf("];\n");
		return true;
	}

	if (cell->type == "$mux")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_sigspec(f, cell->getPort("\\B"));
		f << stringf(" : ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$pmux")
	{
		int width = cell->parameters["\\WIDTH"].as_int();
		int s_width = cell->getPort("\\S").size();
		std::string func_name = cellname(cell);

		f << stringf("%s" "function [%d:0] %s;\n", indent.c_str(), width-1, func_name.c_str());
		f << stringf("%s" "  input [%d:0] a;\n", indent.c_str(), width-1);
		f << stringf("%s" "  input [%d:0] b;\n", indent.c_str(), s_width*width-1);
		f << stringf("%s" "  input [%d:0] s;\n", indent.c_str(), s_width-1);

		dump_attributes(f, indent + "  ", cell->attributes);
		if (!noattr)
			f << stringf("%s" "  (* parallel_case *)\n", indent.c_str());
		f << stringf("%s" "  casez (s)", indent.c_str());
		f << stringf(noattr ? " // synopsys parallel_case\n" : "\n");

		for (int i = 0; i < s_width; i++)
		{
			f << stringf("%s" "    %d'b", indent.c_str(), s_width);

			for (int j = s_width-1; j >= 0; j--)
				f << stringf("%c", j == i ? '1' : '?');

			f << stringf(":\n");
			f << stringf("%s" "      %s = b[%d:%d];\n", indent.c_str(), func_name.c_str(), (i+1)*width-1, i*width);
		}

		f << stringf("%s" "    default:\n", indent.c_str());
		f << stringf("%s" "      %s = a;\n", indent.c_str(), func_name.c_str());

		f << stringf("%s" "  endcase\n", indent.c_str());
		f << stringf("%s" "endfunction\n", indent.c_str());

		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = %s(", func_name.c_str());
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(", ");
		dump_sigspec(f, cell->getPort("\\B"));
		f << stringf(", ");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(");\n");
		return true;
	}

	if (cell->type == "$tribuf")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort("\\EN"));
		f << stringf(" ? ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(" : %d'bz;\n", cell->parameters.at("\\WIDTH").as_int());
		return true;
	}

	if (cell->type == "$slice")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(" >> %d;\n", cell->parameters.at("\\OFFSET").as_int());
		return true;
	}

	if (cell->type == "$concat")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = { ");
		dump_sigspec(f, cell->getPort("\\B"));
		f << stringf(" , ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(" };\n");
		return true;
	}

	if (cell->type == "$lut")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_const(f, cell->parameters.at("\\LUT"));
		f << stringf(" >> ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$dffsr")
	{
		SigSpec sig_clk = cell->getPort("\\CLK");
		SigSpec sig_set = cell->getPort("\\SET");
		SigSpec sig_clr = cell->getPort("\\CLR");
		SigSpec sig_d = cell->getPort("\\D");
		SigSpec sig_q = cell->getPort("\\Q");

		int width = cell->parameters["\\WIDTH"].as_int();
		bool pol_clk = cell->parameters["\\CLK_POLARITY"].as_bool();
		bool pol_set = cell->parameters["\\SET_POLARITY"].as_bool();
		bool pol_clr = cell->parameters["\\CLR_POLARITY"].as_bool();

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(sig_q, reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg [%d:0] %s", indent.c_str(), width-1, reg_name.c_str());
			dump_reg_init(f, sig_q);
			f << ";\n";
		}

		for (int i = 0; i < width; i++) {
			f << stringf("%s" "always @(%sedge ", indent.c_str(), pol_clk ? "pos" : "neg");
			dump_sigspec(f, sig_clk);
			f << stringf(", %sedge ", pol_set ? "pos" : "neg");
			dump_sigspec(f, sig_set);
			f << stringf(", %sedge ", pol_clr ? "pos" : "neg");
			dump_sigspec(f, sig_clr);
			f << stringf(")\n");

			f << stringf("%s" "  if (%s", indent.c_str(), pol_clr ? "" : "!");
			dump_sigspec(f, sig_clr);
			f << stringf(") %s[%d] <= 1'b0;\n", reg_name.c_str(), i);

			f << stringf("%s" "  else if (%s", indent.c_str(), pol_set ? "" : "!");
			dump_sigspec(f, sig_set);
			f << stringf(") %s[%d] <= 1'b1;\n", reg_name.c_str(), i);

			f << stringf("%s" "  else  %s[%d] <= ", indent.c_str(), reg_name.c_str(), i);
			dump_sigspec(f, sig_d[i]);
			f << stringf(";\n");
		}

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, sig_q);
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type.in("$dff", "$adff", "$dffe"))
	{
		RTLIL::SigSpec sig_clk, sig_arst, sig_en, val_arst;
		bool pol_clk, pol_arst = false, pol_en = false;

		sig_clk = cell->getPort("\\CLK");
		pol_clk = cell->parameters["\\CLK_POLARITY"].as_bool();

		if (cell->type == "$adff") {
			sig_arst = cell->getPort("\\ARST");
			pol_arst = cell->parameters["\\ARST_POLARITY"].as_bool();
			val_arst = RTLIL::SigSpec(cell->parameters["\\ARST_VALUE"]);
		}

		if (cell->type == "$dffe") {
			sig_en = cell->getPort("\\EN");
			pol_en = cell->parameters["\\EN_POLARITY"].as_bool();
		}

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg [%d:0] %s", indent.c_str(), cell->parameters["\\WIDTH"].as_int()-1, reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		f << stringf("%s" "always @(%sedge ", indent.c_str(), pol_clk ? "pos" : "neg");
		dump_sigspec(f, sig_clk);
		if (cell->type == "$adff") {
			f << stringf(" or %sedge ", pol_arst ? "pos" : "neg");
			dump_sigspec(f, sig_arst);
		}
		f << stringf(")\n");

		if (cell->type == "$adff") {
			f << stringf("%s" "  if (%s", indent.c_str(), pol_arst ? "" : "!");
			dump_sigspec(f, sig_arst);
			f << stringf(")\n");
			f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
			dump_sigspec(f, val_arst);
			f << stringf(";\n");
			f << stringf("%s" "  else\n", indent.c_str());
		}

		if (cell->type == "$dffe") {
			f << stringf("%s" "  if (%s", indent.c_str(), pol_en ? "" : "!");
			dump_sigspec(f, sig_en);
			f << stringf(")\n");
		}

		f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type == "$dlatch")
	{
		RTLIL::SigSpec sig_en;
		bool pol_en = false;

		sig_en = cell->getPort("\\EN");
		pol_en = cell->parameters["\\EN_POLARITY"].as_bool();

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg [%d:0] %s", indent.c_str(), cell->parameters["\\WIDTH"].as_int()-1, reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		f << stringf("%s" "always @*\n", indent.c_str());

		f << stringf("%s" "  if (%s", indent.c_str(), pol_en ? "" : "!");
		dump_sigspec(f, sig_en);
		f << stringf(")\n");

		f << stringf("%s" "    %s = ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type == "$mem")
	{
		RTLIL::IdString memid = cell->parameters["\\MEMID"].decode_string();
		std::string mem_id = id(cell->parameters["\\MEMID"].decode_string());
		int abits = cell->parameters["\\ABITS"].as_int();
		int size = cell->parameters["\\SIZE"].as_int();
		int offset = cell->parameters["\\OFFSET"].as_int();
		int width = cell->parameters["\\WIDTH"].as_int();
		bool use_init = !(RTLIL::SigSpec(cell->parameters["\\INIT"]).is_fully_undef());

		// for memory block make something like:
		//  reg [7:0] memid [3:0];
		//  initial begin
		//    memid[0] = ...
		//  end
		f << stringf("%s" "reg [%d:%d] %s [%d:%d];\n", indent.c_str(), width-1, 0, mem_id.c_str(), size+offset-1, offset);
		if (use_init)
		{
			if (extmem)
			{
				std::string extmem_filename = stringf("%s-%d.mem", extmem_prefix.c_str(), extmem_counter++);

				std::string extmem_filename_esc;
				for (auto c : extmem_filename)
				{
					if (c == '\n')
						extmem_filename_esc += "\\n";
					else if (c == '\t')
						extmem_filename_esc += "\\t";
					else if (c < 32)
						extmem_filename_esc += stringf("\\%03o", c);
					else if (c == '"')
						extmem_filename_esc += "\\\"";
					else if (c == '\\')
						extmem_filename_esc += "\\\\";
					else
						extmem_filename_esc += c;
				}
				f << stringf("%s" "initial $readmemb(\"%s\", %s);\n", indent.c_str(), extmem_filename_esc.c_str(), mem_id.c_str());

				std::ofstream extmem_f(extmem_filename, std::ofstream::trunc);
				if (extmem_f.fail())
					log_error("Can't open file `%s' for writing: %s\n", extmem_filename.c_str(), strerror(errno));
				else
				{
					for (int i=0; i<size; i++)
					{
						RTLIL::Const element = cell->parameters["\\INIT"].extract(i*width, width);
						for (int j=0; j<element.size(); j++)
						{
							switch (element[element.size()-j-1])
							{
								case State::S0: extmem_f << '0'; break;
								case State::S1: extmem_f << '1'; break;
								case State::Sx: extmem_f << 'x'; break;
								case State::Sz: extmem_f << 'z'; break;
								case State::Sa: extmem_f << '_'; break;
								case State::Sm: log_error("Found marker state in final netlist.");
							}
						}
						extmem_f << '\n';
					}
				}

			}
			else
			{
				f << stringf("%s" "initial begin\n", indent.c_str());
				for (int i=0; i<size; i++)
				{
					f << stringf("%s" "  %s[%d] = ", indent.c_str(), mem_id.c_str(), i);
					dump_const(f, cell->parameters["\\INIT"].extract(i*width, width));
					f << stringf(";\n");
				}
				f << stringf("%s" "end\n", indent.c_str());
			}
		}

		// create a map : "edge clk" -> expressions within that clock domain
		dict<std::string, std::vector<std::string>> clk_to_lof_body;
		clk_to_lof_body[""] = std::vector<std::string>();
		std::string clk_domain_str;
		// create a list of reg declarations
		std::vector<std::string> lof_reg_declarations;

		int nread_ports = cell->parameters["\\RD_PORTS"].as_int();
		RTLIL::SigSpec sig_rd_clk, sig_rd_en, sig_rd_data, sig_rd_addr;
		bool use_rd_clk, rd_clk_posedge, rd_transparent;
		// read ports
		for (int i=0; i < nread_ports; i++)
		{
			sig_rd_clk = cell->getPort("\\RD_CLK").extract(i);
			sig_rd_en = cell->getPort("\\RD_EN").extract(i);
			sig_rd_data = cell->getPort("\\RD_DATA").extract(i*width, width);
			sig_rd_addr = cell->getPort("\\RD_ADDR").extract(i*abits, abits);
			use_rd_clk = cell->parameters["\\RD_CLK_ENABLE"].extract(i).as_bool();
			rd_clk_posedge = cell->parameters["\\RD_CLK_POLARITY"].extract(i).as_bool();
			rd_transparent = cell->parameters["\\RD_TRANSPARENT"].extract(i).as_bool();
			if (use_rd_clk)
			{
				{
					std::ostringstream os;
					dump_sigspec(os, sig_rd_clk);
					clk_domain_str = stringf("%sedge %s", rd_clk_posedge ? "pos" : "neg", os.str().c_str());
					if( clk_to_lof_body.count(clk_domain_str) == 0 )
						clk_to_lof_body[clk_domain_str] = std::vector<std::string>();
				}
				if (!rd_transparent)
				{
					// for clocked read ports make something like:
					//   reg [..] temp_id;
					//   always @(posedge clk)
					//      if (rd_en) temp_id <= array_reg[r_addr];
					//   assign r_data = temp_id;
					std::string temp_id = next_auto_id();
					lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", sig_rd_data.size() - 1, temp_id.c_str()) );
					{
						std::ostringstream os;
						if (sig_rd_en != RTLIL::SigBit(true))
						{
							os << stringf("if (");
							dump_sigspec(os, sig_rd_en);
							os << stringf(") ");
						}
						os << stringf("%s <= %s[", temp_id.c_str(), mem_id.c_str());
						dump_sigspec(os, sig_rd_addr);
						os << stringf("];\n");
						clk_to_lof_body[clk_domain_str].push_back(os.str());
					}
					{
						std::ostringstream os;
						dump_sigspec(os, sig_rd_data);
						std::string line = stringf("assign %s = %s;\n", os.str().c_str(), temp_id.c_str());
						clk_to_lof_body[""].push_back(line);
					}
				}
				else
				{
					// for rd-transparent read-ports make something like:
					//   reg [..] temp_id;
					//   always @(posedge clk)
					//     temp_id <= r_addr;
					//   assign r_data = array_reg[temp_id];
					std::string temp_id = next_auto_id();
					lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", sig_rd_addr.size() - 1, temp_id.c_str()) );
					{
						std::ostringstream os;
						dump_sigspec(os, sig_rd_addr);
						std::string line = stringf("%s <= %s;\n", temp_id.c_str(), os.str().c_str());
						clk_to_lof_body[clk_domain_str].push_back(line);
					}
					{
						std::ostringstream os;
						dump_sigspec(os, sig_rd_data);
						std::string line = stringf("assign %s = %s[%s];\n", os.str().c_str(), mem_id.c_str(), temp_id.c_str());
						clk_to_lof_body[""].push_back(line);
					}
				}
			} else {
				// for non-clocked read-ports make something like:
				//   assign r_data = array_reg[r_addr];
				std::ostringstream os, os2;
				dump_sigspec(os, sig_rd_data);
				dump_sigspec(os2, sig_rd_addr);
				std::string line = stringf("assign %s = %s[%s];\n", os.str().c_str(), mem_id.c_str(), os2.str().c_str());
				clk_to_lof_body[""].push_back(line);
			}
		}

		int nwrite_ports = cell->parameters["\\WR_PORTS"].as_int();
		RTLIL::SigSpec sig_wr_clk, sig_wr_data, sig_wr_addr, sig_wr_en;
		bool wr_clk_posedge;

		// write ports
		for (int i=0; i < nwrite_ports; i++)
		{
			sig_wr_clk = cell->getPort("\\WR_CLK").extract(i);
			sig_wr_data = cell->getPort("\\WR_DATA").extract(i*width, width);
			sig_wr_addr = cell->getPort("\\WR_ADDR").extract(i*abits, abits);
			sig_wr_en = cell->getPort("\\WR_EN").extract(i*width, width);
			wr_clk_posedge = cell->parameters["\\WR_CLK_POLARITY"].extract(i).as_bool();
			{
				std::ostringstream os;
				dump_sigspec(os, sig_wr_clk);
				clk_domain_str = stringf("%sedge %s", wr_clk_posedge ? "pos" : "neg", os.str().c_str());
				if( clk_to_lof_body.count(clk_domain_str) == 0 )
					clk_to_lof_body[clk_domain_str] = std::vector<std::string>();
			}
			//   make something like:
			//   always @(posedge clk)
			//      if (wr_en_bit) memid[w_addr][??] <= w_data[??];
			//   ...
			for (int i = 0; i < GetSize(sig_wr_en); i++)
			{
				int start_i = i, width = 1;
				SigBit wen_bit = sig_wr_en[i];

				while (i+1 < GetSize(sig_wr_en) && active_sigmap(sig_wr_en[i+1]) == active_sigmap(wen_bit))
					i++, width++;

				if (wen_bit == State::S0)
					continue;

				std::ostringstream os;
				if (wen_bit != State::S1)
				{
					os << stringf("if (");
					dump_sigspec(os, wen_bit);
					os << stringf(") ");
				}
				os << stringf("%s[", mem_id.c_str());
				dump_sigspec(os, sig_wr_addr);
				if (width == GetSize(sig_wr_en))
					os << stringf("] <= ");
				else
					os << stringf("][%d:%d] <= ", i, start_i);
				dump_sigspec(os, sig_wr_data.extract(start_i, width));
				os << stringf(";\n");
				clk_to_lof_body[clk_domain_str].push_back(os.str());
			}
		}
		// Output Verilog that looks something like this:
		// reg [..] _3_;
		// always @(posedge CLK2) begin
		//   _3_ <= memory[D1ADDR];
		//   if (A1EN)
		//     memory[A1ADDR] <= A1DATA;
		//   if (A2EN)
		//     memory[A2ADDR] <= A2DATA;
		//   ...
		// end
		// always @(negedge CLK1) begin
		//   if (C1EN)
		//     memory[C1ADDR] <= C1DATA;
		// end
		// ...
		// assign D1DATA = _3_;
		// assign D2DATA <= memory[D2ADDR];

		// the reg ... definitions
		for(auto &reg : lof_reg_declarations)
		{
			f << stringf("%s" "%s", indent.c_str(), reg.c_str());
		}
		// the block of expressions by clock domain
		for(auto &pair : clk_to_lof_body)
		{
			std::string clk_domain = pair.first;
			std::vector<std::string> lof_lines = pair.second;
			if( clk_domain != "")
			{
				f << stringf("%s" "always @(%s) begin\n", indent.c_str(), clk_domain.c_str());
				for(auto &line : lof_lines)
					f << stringf("%s%s" "%s", indent.c_str(), indent.c_str(), line.c_str());
				f << stringf("%s" "end\n", indent.c_str());
			}
			else
			{
				// the non-clocked assignments
				for(auto &line : lof_lines)
					f << stringf("%s" "%s", indent.c_str(), line.c_str());
			}
		}

		return true;
	}

	if (cell->type.in("$assert", "$assume", "$cover"))
	{
		f << stringf("%s" "always @* if (", indent.c_str());
		dump_sigspec(f, cell->getPort("\\EN"));
		f << stringf(") %s(", cell->type.c_str()+1);
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in("$specify2", "$specify3"))
	{
		f << stringf("%s" "specify\n%s  ", indent.c_str(), indent.c_str());

		SigSpec en = cell->getPort("\\EN");
		if (en != State::S1) {
			f << stringf("if (");
			dump_sigspec(f, cell->getPort("\\EN"));
			f << stringf(") ");
		}

		f << "(";
		if (cell->type == "$specify3" && cell->getParam("\\EDGE_EN").as_bool())
			f << (cell->getParam("\\EDGE_POL").as_bool() ? "posedge ": "negedge ");

		dump_sigspec(f, cell->getPort("\\SRC"));

		f << " ";
		if (cell->getParam("\\SRC_DST_PEN").as_bool())
			f << (cell->getParam("\\SRC_DST_POL").as_bool() ? "+": "-");
		f << (cell->getParam("\\FULL").as_bool() ? "*> ": "=> ");

		if (cell->type == "$specify3") {
			f << "(";
			dump_sigspec(f, cell->getPort("\\DST"));
			f << " ";
			if (cell->getParam("\\DAT_DST_PEN").as_bool())
				f << (cell->getParam("\\DAT_DST_POL").as_bool() ? "+": "-");
			f << ": ";
			dump_sigspec(f, cell->getPort("\\DAT"));
			f << ")";
		} else {
			dump_sigspec(f, cell->getPort("\\DST"));
		}

		bool bak_decimal = decimal;
		decimal = 1;

		f << ") = (";
		dump_const(f, cell->getParam("\\T_RISE_MIN"));
		f << ":";
		dump_const(f, cell->getParam("\\T_RISE_TYP"));
		f << ":";
		dump_const(f, cell->getParam("\\T_RISE_MAX"));
		f << ", ";
		dump_const(f, cell->getParam("\\T_FALL_MIN"));
		f << ":";
		dump_const(f, cell->getParam("\\T_FALL_TYP"));
		f << ":";
		dump_const(f, cell->getParam("\\T_FALL_MAX"));
		f << ");\n";

		decimal = bak_decimal;

		f << stringf("%s" "endspecify\n", indent.c_str());
		return true;
	}

	if (cell->type == "$specrule")
	{
		f << stringf("%s" "specify\n%s  ", indent.c_str(), indent.c_str());

		string spec_type = cell->getParam("\\TYPE").decode_string();
		f << stringf("%s(", spec_type.c_str());

		if (cell->getParam("\\SRC_PEN").as_bool())
			f << (cell->getParam("\\SRC_POL").as_bool() ? "posedge ": "negedge ");
		dump_sigspec(f, cell->getPort("\\SRC"));

		if (cell->getPort("\\SRC_EN") != State::S1) {
			f << " &&& ";
			dump_sigspec(f, cell->getPort("\\SRC_EN"));
		}

		f << ", ";
		if (cell->getParam("\\DST_PEN").as_bool())
			f << (cell->getParam("\\DST_POL").as_bool() ? "posedge ": "negedge ");
		dump_sigspec(f, cell->getPort("\\DST"));

		if (cell->getPort("\\DST_EN") != State::S1) {
			f << " &&& ";
			dump_sigspec(f, cell->getPort("\\DST_EN"));
		}

		bool bak_decimal = decimal;
		decimal = 1;

		f << ", ";
		dump_const(f, cell->getParam("\\T_LIMIT"));

		if (spec_type == "$setuphold" || spec_type == "$recrem" || spec_type == "$fullskew") {
			f << ", ";
			dump_const(f, cell->getParam("\\T_LIMIT2"));
		}

		f << ");\n";
		decimal = bak_decimal;

		f << stringf("%s" "endspecify\n", indent.c_str());
		return true;
	}

	// FIXME: $_SR_[PN][PN]_, $_DLATCH_[PN]_, $_DLATCHSR_[PN][PN][PN]_
	// FIXME: $sr, $dlatch, $memrd, $memwr, $fsm

	return false;
}

void dump_cell(std::ostream &f, std::string indent, RTLIL::Cell *cell)
{
	if (cell->type[0] == '$' && !noexpr) {
		if (dump_cell_expr(f, indent, cell))
			return;
	}

	dump_attributes(f, indent, cell->attributes);
	f << stringf("%s" "%s", indent.c_str(), id(cell->type, false).c_str());

	if (!defparam && cell->parameters.size() > 0) {
		f << stringf(" #(");
		for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) {
			if (it != cell->parameters.begin())
				f << stringf(",");
			f << stringf("\n%s  .%s(", indent.c_str(), id(it->first).c_str());
			dump_const(f, it->second);
			f << stringf(")");
		}
		f << stringf("\n%s" ")", indent.c_str());
	}

	std::string cell_name = cellname(cell);
	if (cell_name != id(cell->name))
		f << stringf(" %s /* %s */ (", cell_name.c_str(), id(cell->name).c_str());
	else
		f << stringf(" %s (", cell_name.c_str());

	bool first_arg = true;
	std::set<RTLIL::IdString> numbered_ports;
	for (int i = 1; true; i++) {
		char str[16];
		snprintf(str, 16, "$%d", i);
		for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
			if (it->first != str)
				continue;
			if (!first_arg)
				f << stringf(",");
			first_arg = false;
			f << stringf("\n%s  ", indent.c_str());
			dump_sigspec(f, it->second);
			numbered_ports.insert(it->first);
			goto found_numbered_port;
		}
		break;
	found_numbered_port:;
	}
	for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
		if (numbered_ports.count(it->first))
			continue;
		if (!first_arg)
			f << stringf(",");
		first_arg = false;
		f << stringf("\n%s  .%s(", indent.c_str(), id(it->first).c_str());
		if (it->second.size() > 0)
			dump_sigspec(f, it->second);
		f << stringf(")");
	}
	f << stringf("\n%s" ");\n", indent.c_str());

	if (defparam && cell->parameters.size() > 0) {
		for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) {
			f << stringf("%sdefparam %s.%s = ", indent.c_str(), cell_name.c_str(), id(it->first).c_str());
			dump_const(f, it->second);
			f << stringf(";\n");
		}
	}

	if (siminit && reg_ct.count(cell->type) && cell->hasPort("\\Q")) {
		std::stringstream ss;
		dump_reg_init(ss, cell->getPort("\\Q"));
		if (!ss.str().empty()) {
			f << stringf("%sinitial %s.Q", indent.c_str(), cell_name.c_str());
			f << ss.str();
			f << ";\n";
		}
	}
}

void dump_conn(std::ostream &f, std::string indent, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, left);
	f << stringf(" = ");
	dump_sigspec(f, right);
	f << stringf(";\n");
}

void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw);

void dump_case_body(std::ostream &f, std::string indent, RTLIL::CaseRule *cs, bool omit_trailing_begin = false)
{
	int number_of_stmts = cs->switches.size() + cs->actions.size();

	if (!omit_trailing_begin && number_of_stmts >= 2)
		f << stringf("%s" "begin\n", indent.c_str());

	for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) {
		if (it->first.size() == 0)
			continue;
		f << stringf("%s  ", indent.c_str());
		dump_sigspec(f, it->first);
		f << stringf(" = ");
		dump_sigspec(f, it->second);
		f << stringf(";\n");
	}

	for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it)
		dump_proc_switch(f, indent + "  ", *it);

	if (!omit_trailing_begin && number_of_stmts == 0)
		f << stringf("%s  /* empty */;\n", indent.c_str());

	if (omit_trailing_begin || number_of_stmts >= 2)
		f << stringf("%s" "end\n", indent.c_str());
}

void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw)
{
	if (sw->signal.size() == 0) {
		f << stringf("%s" "begin\n", indent.c_str());
		for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) {
			if ((*it)->compare.size() == 0)
				dump_case_body(f, indent + "  ", *it);
		}
		f << stringf("%s" "end\n", indent.c_str());
		return;
	}

	dump_attributes(f, indent, sw->attributes);
	f << stringf("%s" "casez (", indent.c_str());
	dump_sigspec(f, sw->signal);
	f << stringf(")\n");

	bool got_default = false;
	for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) {
		dump_attributes(f, indent + "  ", (*it)->attributes, '\n', /*modattr=*/false, /*regattr=*/false, /*as_comment=*/true);
		if ((*it)->compare.size() == 0) {
			if (got_default)
				continue;
			f << stringf("%s  default", indent.c_str());
			got_default = true;
		} else {
			f << stringf("%s  ", indent.c_str());
			for (size_t i = 0; i < (*it)->compare.size(); i++) {
				if (i > 0)
					f << stringf(", ");
				dump_sigspec(f, (*it)->compare[i]);
			}
		}
		f << stringf(":\n");
		dump_case_body(f, indent + "    ", *it);
	}

	f << stringf("%s" "endcase\n", indent.c_str());
}

void case_body_find_regs(RTLIL::CaseRule *cs)
{
	for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it)
	for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++)
		case_body_find_regs(*it2);

	for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) {
		for (auto &c : it->first.chunks())
			if (c.wire != NULL)
				reg_wires.insert(c.wire->name);
	}
}

void dump_process(std::ostream &f, std::string indent, RTLIL::Process *proc, bool find_regs = false)
{
	if (find_regs) {
		case_body_find_regs(&proc->root_case);
		for (auto it = proc->syncs.begin(); it != proc->syncs.end(); ++it)
		for (auto it2 = (*it)->actions.begin(); it2 != (*it)->actions.end(); it2++) {
			for (auto &c : it2->first.chunks())
				if (c.wire != NULL)
					reg_wires.insert(c.wire->name);
		}
		return;
	}

	f << stringf("%s" "always @* begin\n", indent.c_str());
	dump_case_body(f, indent, &proc->root_case, true);

	std::string backup_indent = indent;

	for (size_t i = 0; i < proc->syncs.size(); i++)
	{
		RTLIL::SyncRule *sync = proc->syncs[i];
		indent = backup_indent;

		if (sync->type == RTLIL::STa) {
			f << stringf("%s" "always @* begin\n", indent.c_str());
		} else if (sync->type == RTLIL::STi) {
			f << stringf("%s" "initial begin\n", indent.c_str());
		} else {
			f << stringf("%s" "always @(", indent.c_str());
			if (sync->type == RTLIL::STp || sync->type == RTLIL::ST1)
				f << stringf("posedge ");
			if (sync->type == RTLIL::STn || sync->type == RTLIL::ST0)
				f << stringf("negedge ");
			dump_sigspec(f, sync->signal);
			f << stringf(") begin\n");
		}
		std::string ends = indent + "end\n";
		indent += "  ";

		if (sync->type == RTLIL::ST0 || sync->type == RTLIL::ST1) {
			f << stringf("%s" "if (%s", indent.c_str(), sync->type == RTLIL::ST0 ? "!" : "");
			dump_sigspec(f, sync->signal);
			f << stringf(") begin\n");
			ends = indent + "end\n" + ends;
			indent += "  ";
		}

		if (sync->type == RTLIL::STp || sync->type == RTLIL::STn) {
			for (size_t j = 0; j < proc->syncs.size(); j++) {
				RTLIL::SyncRule *sync2 = proc->syncs[j];
				if (sync2->type == RTLIL::ST0 || sync2->type == RTLIL::ST1) {
					f << stringf("%s" "if (%s", indent.c_str(), sync2->type == RTLIL::ST1 ? "!" : "");
					dump_sigspec(f, sync2->signal);
					f << stringf(") begin\n");
					ends = indent + "end\n" + ends;
					indent += "  ";
				}
			}
		}

		for (auto it = sync->actions.begin(); it != sync->actions.end(); ++it) {
			if (it->first.size() == 0)
				continue;
			f << stringf("%s  ", indent.c_str());
			dump_sigspec(f, it->first);
			f << stringf(" <= ");
			dump_sigspec(f, it->second);
			f << stringf(";\n");
		}

		f << stringf("%s", ends.c_str());
	}
}

void dump_module(std::ostream &f, std::string indent, RTLIL::Module *module)
{
	reg_wires.clear();
	reset_auto_counter(module);
	active_module = module;
	active_sigmap.set(module);
	active_initdata.clear();

	for (auto wire : module->wires())
		if (wire->attributes.count("\\init")) {
			SigSpec sig = active_sigmap(wire);
			Const val = wire->attributes.at("\\init");
			for (int i = 0; i < GetSize(sig) && i < GetSize(val); i++)
				if (val[i] == State::S0 || val[i] == State::S1)
					active_initdata[sig[i]] = val[i];
		}

	if (!module->processes.empty())
		log_warning("Module %s contains unmapped RTLIL processes. RTLIL processes\n"
				"can't always be mapped directly to Verilog always blocks. Unintended\n"
				"changes in simulation behavior are possible! Use \"proc\" to convert\n"
				"processes to logic networks and registers.\n", log_id(module));

	f << stringf("\n");
	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		dump_process(f, indent + "  ", it->second, true);

	if (!noexpr)
	{
		std::set<std::pair<RTLIL::Wire*,int>> reg_bits;
		for (auto &it : module->cells_)
		{
			RTLIL::Cell *cell = it.second;
			if (!reg_ct.count(cell->type) || !cell->hasPort("\\Q"))
				continue;

			RTLIL::SigSpec sig = cell->getPort("\\Q");

			if (sig.is_chunk()) {
				RTLIL::SigChunk chunk = sig.as_chunk();
				if (chunk.wire != NULL)
					for (int i = 0; i < chunk.width; i++)
						reg_bits.insert(std::pair<RTLIL::Wire*,int>(chunk.wire, chunk.offset+i));
			}
		}
		for (auto &it : module->wires_)
		{
			RTLIL::Wire *wire = it.second;
			for (int i = 0; i < wire->width; i++)
				if (reg_bits.count(std::pair<RTLIL::Wire*,int>(wire, i)) == 0)
					goto this_wire_aint_reg;
			if (wire->width)
				reg_wires.insert(wire->name);
		this_wire_aint_reg:;
		}
	}

	dump_attributes(f, indent, module->attributes, '\n', /*modattr=*/true);
	f << stringf("%s" "module %s(", indent.c_str(), id(module->name, false).c_str());