aboutsummaryrefslogtreecommitdiffstats
path: root/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'README.md')
0 files changed, 0 insertions, 0 deletions
ref='#n61'>61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
--  Environment definition for synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Netlists.Builders; use Netlists.Builders;
with Netlists.Concats;
with Netlists.Gates;
with Netlists.Gates_Ports;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Inference;

with Synth.Flags;

package body Synth.Environment is
   procedure Phi_Assign
     (Ctxt : Builders.Context_Acc; Dest : Wire_Id; Pasgn : Partial_Assign);

   procedure Set_Wire_Mark (Wid : Wire_Id; Mark : Boolean := True) is
   begin
      Wire_Id_Table.Table (Wid).Mark_Flag := Mark;
   end Set_Wire_Mark;

   function Get_Wire_Mark (Wid : Wire_Id) return Boolean is
   begin
      return Wire_Id_Table.Table (Wid).Mark_Flag;
   end Get_Wire_Mark;

   function Alloc_Wire (Kind : Wire_Kind; Decl : Decl_Type) return Wire_Id
   is
      Res : Wire_Id;
   begin
      Wire_Id_Table.Append ((Kind => Kind,
                             Mark_Flag => False,
                             Decl => Decl,
                             Gate => No_Net,
                             Cur_Assign => No_Seq_Assign,
                             Final_Assign => No_Conc_Assign,
                             Nbr_Final_Assign => 0));
      Res := Wire_Id_Table.Last;
      return Res;
   end Alloc_Wire;

   procedure Free_Wire (Wid : Wire_Id)
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
   begin
      --  Check the wire was not already free.
      pragma Assert (Wire_Rec.Kind /= Wire_None);

      --  All the assignments have been handled.
      pragma Assert (Wire_Rec.Cur_Assign = No_Seq_Assign);

      Wire_Rec.Kind := Wire_None;
   end Free_Wire;

   procedure Set_Kind (Wid : Wire_Id; Kind : Wire_Kind)
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
   begin
      pragma Assert (Kind = Wire_Unset or Wire_Rec.Kind = Wire_Unset);
      Wire_Rec.Kind := Kind;
   end Set_Kind;

   function Get_Kind (Wid : Wire_Id) return Wire_Kind
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
   begin
      pragma Assert (Wire_Rec.Kind /= Wire_None);
      return Wire_Rec.Kind;
   end Get_Kind;

   procedure Set_Wire_Gate (Wid : Wire_Id; Gate : Net) is
   begin
      --  Cannot override a gate.
      pragma Assert (Wire_Id_Table.Table (Wid).Gate = No_Net);

      Wire_Id_Table.Table (Wid).Gate := Gate;
   end Set_Wire_Gate;

   procedure Replace_Wire_Gate (Wid : Wire_Id; Gate : Net)
   is
      Old : constant Net := Wire_Id_Table.Table (Wid).Gate;
      Inst : constant Instance := Get_Net_Parent (Old);
   begin
      Redirect_Inputs (Old, Gate);
      Remove_Instance (Inst);
      Set_Location (Get_Net_Parent (Gate), Get_Location (Inst));
      --  FIXME: attributes ?
      Wire_Id_Table.Table (Wid).Gate := Gate;
   end Replace_Wire_Gate;

   function Get_Wire_Gate (Wid : Wire_Id) return Net is
   begin
      return Wire_Id_Table.Table (Wid).Gate;
   end Get_Wire_Gate;

   function Get_Wire_Id (W : Seq_Assign) return Wire_Id is
   begin
      return Assign_Table.Table (W).Id;
   end Get_Wire_Id;

   function Get_Assign_Prev (Asgn : Seq_Assign) return Seq_Assign is
   begin
      return Assign_Table.Table (Asgn).Prev;
   end Get_Assign_Prev;

   function Get_Assign_Chain (Asgn : Seq_Assign) return Seq_Assign is
   begin
      return Assign_Table.Table (Asgn).Chain;
   end Get_Assign_Chain;

   procedure Set_Assign_Chain (Asgn : Seq_Assign; Chain : Seq_Assign) is
   begin
      Assign_Table.Table (Asgn).Chain := Chain;
   end Set_Assign_Chain;

   function Get_Assign_Is_Static (Asgn : Seq_Assign) return Boolean is
   begin
      return Assign_Table.Table (Asgn).Val.Is_Static = True;
   end Get_Assign_Is_Static;

   function Get_Assign_Static_Val (Asgn : Seq_Assign) return Static_Type is
   begin
      return Assign_Table.Table (Asgn).Val.Val;
   end Get_Assign_Static_Val;

   function Get_Assign_Partial (Asgn : Seq_Assign) return Partial_Assign is
   begin
      --  Note: fails if the value is static.
      --  Use Get_Assign_Partial_Force if you want to automatically convert
      --  the value to a Partial_Assign (a net).
      return Assign_Table.Table (Asgn).Val.Asgns;
   end Get_Assign_Partial;

   function Get_Seq_Assign_Value (Asgn : Seq_Assign) return Seq_Assign_Value is
   begin
      return Assign_Table.Table (Asgn).Val;
   end Get_Seq_Assign_Value;

   function New_Partial_Assign (Val : Net; Offset : Uns32)
                               return Partial_Assign is
   begin
      Partial_Assign_Table.Append ((Next => No_Partial_Assign,
                                    Value => Val,
                                    Offset => Offset));
      return Partial_Assign_Table.Last;
   end New_Partial_Assign;

   function Get_Partial_Offset (Asgn : Partial_Assign) return Uns32 is
   begin
      return Partial_Assign_Table.Table (Asgn).Offset;
   end Get_Partial_Offset;

   function Get_Partial_Value (Asgn : Partial_Assign) return Net is
   begin
      return Partial_Assign_Table.Table (Asgn).Value;
   end Get_Partial_Value;

   function Get_Partial_Next (Asgn : Partial_Assign) return Partial_Assign is
   begin
      return Partial_Assign_Table.Table (Asgn).Next;
   end Get_Partial_Next;

   procedure Set_Partial_Next (Asgn : Partial_Assign;
                               Chain : Partial_Assign) is
   begin
      Partial_Assign_Table.Table (Asgn).Next := Chain;
   end Set_Partial_Next;

   function Current_Phi return Phi_Id is
   begin
      return Phis_Table.Last;
   end Current_Phi;

   procedure Push_Phi is
   begin
      Phis_Table.Append ((First => No_Seq_Assign,
                          Last => No_Seq_Assign,
                          Nbr => 0,
                          En => No_Wire_Id));
   end Push_Phi;

   procedure Mark (M : out Wire_Id) is
   begin
      M := Wire_Id_Table.Last;
   end Mark;

   procedure Release (M : in out Wire_Id)
   is
      Last : Wire_Id;
   begin
      --  Check all wires to be released are free.
      Last := M;
      for I in M + 1 .. Wire_Id_Table.Last loop
         declare
            Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (I);
            Asgn : Seq_Assign;
         begin
            case Wire_Rec.Kind is
               when Wire_None =>
                  null;
               when Wire_Enable =>
                  --  Keep.  This renames the wire, but the only references
                  --  must be in the wire.
                  Last := Last + 1;
                  if Last /= I then
                     --  Renames.
                     Asgn := Wire_Rec.Cur_Assign;
                     while Asgn /= No_Seq_Assign loop
                        Assign_Table.Table (Asgn).Id := Last;
                        Asgn := Get_Assign_Prev (Asgn);
                     end loop;
                     Wire_Id_Table.Table (Last) := Wire_Rec;
                  end if;
               when others =>
                  raise Internal_Error;
            end case;
         end;
      end loop;

      --  Release.
      Wire_Id_Table.Set_Last (Last);

      M := No_Wire_Id;
   end Release;

   procedure All_Released is
   begin
      if Wire_Id_Table.Last /= No_Wire_Id then
         raise Internal_Error;
      end if;
   end All_Released;

   --  Concatenate when possible partial assignments of HEAD.
   procedure Merge_Partial_Assignments
     (Ctxt : Context_Acc; Head : Seq_Assign_Value)
   is
      use Netlists.Concats;
      First : Partial_Assign;
      Next : Partial_Assign;
      Concat : Concat_Type;
      Expected_Next_Off : Uns32;
      Next_Off : Uns32;
      Next_Val : Net;
   begin
      if Head.Is_Static /= False then
         return;
      end if;

      First := Head.Asgns;
      loop
         exit when First = No_Partial_Assign;

         Next := Get_Partial_Next (First);
         exit when Next = No_Partial_Assign;
         Expected_Next_Off := Get_Partial_Offset (First)
           + Get_Width (Get_Partial_Value (First));
         Next_Off := Get_Partial_Offset (Next);
         if Expected_Next_Off = Next_Off then
            --  Merge First and Next.
            Next_Val := Get_Partial_Value (Next);
            Append (Concat, Get_Partial_Value (First));
            Append (Concat, Next_Val);
            Expected_Next_Off := Next_Off + Get_Width (Next_Val);
            --  Merge as long as possible.
            loop
               Next := Get_Partial_Next (Next);
               exit when Next = No_Partial_Assign;

               Next_Off := Get_Partial_Offset (Next);
               Next_Val := Get_Partial_Value (Next);
               exit when  Next_Off /= Expected_Next_Off;
               Append (Concat, Next_Val);
               Expected_Next_Off := Next_Off + Get_Width (Next_Val);
            end loop;

            --  Replace.
            declare
               First_Record : Partial_Assign_Record renames
                 Partial_Assign_Table.Table (First);
            begin
               Build (Ctxt, Concat, First_Record.Value);
               First_Record.Next := Next;

            end;
         end if;
         First := Next;
      end loop;
   end Merge_Partial_Assignments;

   --  Get list of assignments for this current block.
   procedure Pop_Phi (Phi : out Phi_Type)
   is
      Cur_Phi : constant Phi_Id := Current_Phi;
      Asgn : Seq_Assign;
   begin
      --  Pop.
      Phi := Phis_Table.Table (Cur_Phi);
      Phis_Table.Decrement_Last;

      --  Point to previous wires.  The current values are the ones before
      --  the block.
      Asgn := Phi.First;
      while Asgn /= No_Seq_Assign loop
         pragma Assert (Assign_Table.Table (Asgn).Phi = Cur_Phi);
         Wire_Id_Table.Table (Get_Wire_Id (Asgn)).Cur_Assign :=
           Get_Assign_Prev (Asgn);
         Asgn := Get_Assign_Chain (Asgn);
      end loop;
   end Pop_Phi;

   procedure Phi_Discard_Wires (Wid1 : Wire_Id; Wid2 : Wire_Id)
   is
      Phi : Phi_Type renames Phis_Table.Table (Current_Phi);
      Asgn, Next_Asgn : Seq_Assign;
      Wid : Wire_Id;
   begin
      Asgn := Phi.First;
      Phi := (First => No_Seq_Assign,
              Last => No_Seq_Assign,
              Nbr => 0,
              En => No_Wire_Id);
      while Asgn /= No_Seq_Assign loop
         pragma Assert (Assign_Table.Table (Asgn).Phi = Current_Phi);
         Next_Asgn := Get_Assign_Chain (Asgn);
         Set_Assign_Chain (Asgn, No_Seq_Assign);

         Wid := Get_Wire_Id (Asgn);
         if Wid = Wid1 or Wid = Wid2 then
            --  Discard.
            pragma Assert (Wid /= No_Wire_Id);
            Wire_Id_Table.Table (Wid).Cur_Assign := No_Seq_Assign;
         else
            --  Append.
            if Phi.First = No_Seq_Assign then
               Phi.First := Asgn;
            else
               Set_Assign_Chain (Phi.Last, Asgn);
            end if;
            Phi.Nbr := Phi.Nbr + 1;
            Phi.Last := Asgn;
         end if;
         Asgn := Next_Asgn;
      end loop;
   end Phi_Discard_Wires;

   function Get_Conc_Offset (Asgn : Conc_Assign) return Uns32 is
   begin
      return Conc_Assign_Table.Table (Asgn).Offset;
   end Get_Conc_Offset;

   function Get_Conc_Value (Asgn : Conc_Assign) return Net is
   begin
      return Conc_Assign_Table.Table (Asgn).Value;
   end Get_Conc_Value;

   function Get_Conc_Chain (Asgn : Conc_Assign) return Conc_Assign is
   begin
      return Conc_Assign_Table.Table (Asgn).Next;
   end Get_Conc_Chain;

   procedure Set_Conc_Chain (Asgn : Conc_Assign; Chain : Conc_Assign) is
   begin
      Conc_Assign_Table.Table (Asgn).Next := Chain;
   end Set_Conc_Chain;

   procedure Add_Conc_Assign (Wid : Wire_Id; Val : Net; Off : Uns32)
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
   begin
      pragma Assert (Wire_Rec.Kind /= Wire_None);
      Conc_Assign_Table.Append ((Next => Wire_Rec.Final_Assign,
                                 Value => Val,
                                 Offset => Off));
      Wire_Rec.Final_Assign := Conc_Assign_Table.Last;
      Wire_Rec.Nbr_Final_Assign := Wire_Rec.Nbr_Final_Assign + 1;
   end Add_Conc_Assign;

   procedure Pop_And_Merge_Phi_Wire (Ctxt : Builders.Context_Acc;
                                     Asgn_Rec : Seq_Assign_Record;
                                     Loc : Location_Type)
   is
      Wid : constant Wire_Id := Asgn_Rec.Id;
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
      Outport : constant Net := Wire_Rec.Gate;
      --  Must be connected to an Id_Output or Id_Signal
      pragma Assert (Outport /= No_Net);
      P : Partial_Assign;
      Res : Net;
   begin
      --  Check output is not already assigned.
      pragma Assert (Get_Input_Net (Get_Net_Parent (Outport), 0) = No_Net);

      case Asgn_Rec.Val.Is_Static is
         when Unknown =>
            raise Internal_Error;
         when True =>
            --  Create a net.  No inference to do.
            Res := Static_To_Net (Ctxt, Asgn_Rec.Val.Val);
            if Wire_Rec.Kind = Wire_Enable then
               Connect (Get_Input (Get_Net_Parent (Outport), 0), Res);
            else
               Add_Conc_Assign (Wid, Res, 0);
            end if;
         when False =>
            P := Asgn_Rec.Val.Asgns;
            pragma Assert (P /= No_Partial_Assign);
            while P /= No_Partial_Assign loop
               declare
                  Pa : Partial_Assign_Record renames
                    Partial_Assign_Table.Table (P);
               begin
                  if Synth.Flags.Flag_Debug_Noinference then
                     Add_Conc_Assign (Wid, Pa.Value, Pa.Offset);
                  elsif Wire_Rec.Kind = Wire_Enable then
                     --  Possibly infere a idff/iadff.
                     pragma Assert (Pa.Offset = 0);
                     pragma Assert (Pa.Next = No_Partial_Assign);
                     Res := Inference.Infere_Assert
                       (Ctxt, Pa.Value, Outport, Loc);
                     Connect (Get_Input (Get_Net_Parent (Outport), 0), Res);
                  else
                     --  Note: lifetime is currently based on the kind of the
                     --   wire (variable -> not reused beyond this process).
                     --   This is OK for vhdl but not general.
                     Res := Inference.Infere
                       (Ctxt, Pa.Value, Pa.Offset, Outport, Loc,
                        Wire_Rec.Kind = Wire_Variable);
                     Add_Conc_Assign (Wid, Res, Pa.Offset);
                  end if;
                  P := Pa.Next;
               end;
            end loop;
      end case;
   end Pop_And_Merge_Phi_Wire;

   --  This procedure is called after each concurrent statement to assign
   --  values to signals.
   procedure Pop_And_Merge_Phi (Ctxt : Builders.Context_Acc;
                                Loc : Location_Type)
   is
      Phi : Phi_Type;
      Asgn : Seq_Assign;
   begin
      Pop_Phi (Phi);
      --  Must be the last phi.
      pragma Assert (Phis_Table.Last = No_Phi_Id);

      --  It is possible that the same value is assigned to different targets.
      --  Example:
      --    if rising_edge(clk) then
      --      a := c;
      --    end if;
      --    b := a;
      --  Because the assignment is not yet done, only the net is stored in
      --  the partial assign.  When the net for variable A is infered and
      --  changed to a dff, it is not known that it will also be assigned to
      --  variable B.
      --
      --  Mark gates that will be infered.  And if already marked, insert
      --  a nop.
      Asgn := Phi.First;
      while Asgn /= No_Seq_Assign loop
         declare
            Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
            P : Partial_Assign;
         begin
            if Asgn_Rec.Val.Is_Static = False then
               P := Asgn_Rec.Val.Asgns;
               pragma Assert (P /= No_Partial_Assign);
               while P /= No_Partial_Assign loop
                  declare
                     Pa : Partial_Assign_Record
                       renames Partial_Assign_Table.Table (P);
                     Res_Inst : constant Instance := Get_Net_Parent (Pa.Value);
                  begin
                     if Get_Mark_Flag (Res_Inst)
                       and then Get_Id (Res_Inst) = Gates.Id_Mux2
                     then
                        --  A nop is needed iff the value is reused and will be
                        --  inferred (which is only possible for Id_Mux2).
                        Pa.Value := Build_Nop (Ctxt, Pa.Value);
                     else
                        Set_Mark_Flag (Res_Inst, True);
                     end if;

                     P := Pa.Next;
                  end;
               end loop;
            end if;
            Asgn := Asgn_Rec.Chain;
         end;
      end loop;

      --  Clear mark flag.
      Asgn := Phi.First;
      while Asgn /= No_Seq_Assign loop
         declare
            Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
            P : Partial_Assign;
         begin
            if Asgn_Rec.Val.Is_Static = False then
               P := Asgn_Rec.Val.Asgns;
               pragma Assert (P /= No_Partial_Assign);
               while P /= No_Partial_Assign loop
                  declare
                     Pa : Partial_Assign_Record
                       renames Partial_Assign_Table.Table (P);
                     Res_Inst : constant Instance := Get_Net_Parent (Pa.Value);
                  begin
                     Set_Mark_Flag (Res_Inst, False);

                     P := Pa.Next;
                  end;
               end loop;
            end if;
            Asgn := Asgn_Rec.Chain;
         end;
      end loop;

      Asgn := Phi.First;
      while Asgn /= No_Seq_Assign loop
         declare
            Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
         begin
            Pop_And_Merge_Phi_Wire (Ctxt, Asgn_Rec, Loc);
            Asgn := Asgn_Rec.Chain;
         end;
      end loop;
   end Pop_And_Merge_Phi;

   procedure Propagate_Phi_Until_Mark (Ctxt : Builders.Context_Acc;
                                       Phi : Phi_Type;
                                       Mark : Wire_Id)
   is
      Asgn, Next_Asgn : Seq_Assign;
   begin
      Asgn := Phi.First;
      while Asgn /= No_Seq_Assign loop
         declare
            Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
            Wid : constant Wire_Id := Asgn_Rec.Id;
            Pasgn, Next_Pasgn : Partial_Assign;
         begin
            --  FIXME: Asgn_Rec may become invalid due to allocation by
            --  Phi_Assign.  So we read what is needed before calling
            --  Phi_Assign.
            Next_Asgn := Asgn_Rec.Chain;
            if Wid <= Mark then
               case Asgn_Rec.Val.Is_Static is
                  when Unknown =>
                     raise Internal_Error;
                  when True =>
                     Phi_Assign_Static (Wid, Asgn_Rec.Val.Val);
                  when False =>
                     Pasgn := Asgn_Rec.Val.Asgns;
                     while Pasgn /= No_Partial_Assign loop
                        Next_Pasgn := Get_Partial_Next (Pasgn);
                        Set_Partial_Next (Pasgn, No_Partial_Assign);
                        Phi_Assign (Ctxt, Wid, Pasgn);
                        Pasgn := Next_Pasgn;
                     end loop;
               end case;
            end if;
            Asgn := Next_Asgn;
         end;
      end loop;
   end Propagate_Phi_Until_Mark;

   --  Adjust connections to NEW_OUTPORT, the new output of a wire gate.
   --  OUTPORT is the old outport.
   --  Used just below when an initialization is found.
   procedure Add_Init_Input (Outport : Net; New_Outport : Net)
   is
      Gate : constant Instance := Get_Net_Parent (Outport);
      Inp : constant Input := Get_Input (Gate, 0);
      New_Gate : constant Instance := Get_Net_Parent (New_Outport);
      Drv : Net;
   begin
      Set_Location (New_Gate, Get_Location (Gate));
      Redirect_Inputs (Outport, New_Outport);
      Drv := Get_Driver (Inp);
      if Drv /= No_Net then
         Disconnect (Inp);
         Connect (Get_Input (New_Gate, 0), Drv);
      end if;
   end Add_Init_Input;

   procedure Pop_And_Merge_Initial_Phi (Ctxt : Builders.Context_Acc;
                                        Loc : Location_Type)
   is
      pragma Unreferenced (Loc);
      Phi : Phi_Type;
      Asgn : Seq_Assign;
   begin
      Pop_Phi (Phi);
      --  Must be the last phi.
      pragma Assert (Phis_Table.Last = No_Phi_Id);

      Asgn := Phi.First;
      while Asgn /= No_Seq_Assign loop
         declare
            use Netlists.Gates;
            Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
            pragma Assert (Asgn_Rec.Val.Is_Static = True);

            Wid : constant Wire_Id := Asgn_Rec.Id;
            Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
            Outport : constant Net := Wire_Rec.Gate;
            --  Must be connected to an Id_Output or Id_Signal
            pragma Assert (Outport /= No_Net);
            Gate : constant Instance := Get_Net_Parent (Outport);
            New_Outport : Net;
            Val : Net;
         begin
            Val := Static_To_Net (Ctxt, Asgn_Rec.Val.Val);
            case Get_Id (Gate) is
               when Id_Output =>
                  --  Transform to Id_Ioutput.
                  New_Outport := Build_Ioutput (Ctxt, Val);
                  Add_Init_Input (Outport, New_Outport);
                  Wire_Rec.Gate := New_Outport;

                  --  Unset kind so that it can be set in normal processes.
                  Wire_Rec.Kind := Wire_Unset;
               when Id_Signal =>
                  --  Transform to Id_Isignal
                  New_Outport := Build_Isignal
                    (Ctxt, Get_Instance_Name (Gate), Val);
                  Add_Init_Input (Outport, New_Outport);
                  Wire_Rec.Gate := New_Outport;

                  --  Unset kind so that it can be set in normal processes.
                  Wire_Rec.Kind := Wire_Unset;

               when others =>
                  raise Internal_Error;
            end case;
            Asgn := Asgn_Rec.Chain;
         end;
      end loop;
   end Pop_And_Merge_Initial_Phi;

   --  Merge sort of conc_assign by offset.
   function Le_Conc_Assign (Left, Right : Conc_Assign) return Boolean is
   begin
      if Get_Conc_Offset (Left) < Get_Conc_Offset (Right) then
         return True;
      end if;
      if Get_Conc_Offset (Left) = Get_Conc_Offset (Right) then
         return (Get_Width (Get_Conc_Value (Left))
                   < Get_Width (Get_Conc_Value (Right)));
      else
         return False;
      end if;
   end Le_Conc_Assign;

   procedure Sort_Conc_Assign (Chain : Conc_Assign;
                               Len : Natural;
                               First : out Conc_Assign;
                               Next : out Conc_Assign)
   is
      Left, Right : Conc_Assign;
      Last : Conc_Assign;
      El : Conc_Assign;
   begin
      if Len = 0 then
         First := No_Conc_Assign;
         Next := Chain;
      elsif Len = 1 then
         First := Chain;
         Next := Get_Conc_Chain (Chain);
         Set_Conc_Chain (Chain, No_Conc_Assign);
      else
         --  Divide.
         Sort_Conc_Assign (Chain, Len / 2, Left, Right);
         Sort_Conc_Assign (Right, Len - Len / 2, Right, Next);

         First := No_Conc_Assign;
         Last := No_Conc_Assign;
         for I in 1 .. Len loop
            pragma Assert (not (Left = No_Conc_Assign
                                  and Right = No_Conc_Assign));
            if Right = No_Conc_Assign
              or else
              (Left /= No_Conc_Assign and then Le_Conc_Assign (Left, Right))
            then
               El := Left;
               Left := Get_Conc_Chain (Left);
            else
               pragma Assert (Right /= No_Conc_Assign);
               El := Right;
               Right := Get_Conc_Chain (Right);
            end if;
            --  Append
            if First = No_Conc_Assign then
               First := El;
            else
               Set_Conc_Chain (Last, El);
            end if;
            Last := El;
         end loop;
         Set_Conc_Chain (Last, No_Conc_Assign);
      end if;
   end Sort_Conc_Assign;

   --  Return True iff PREV and NEXT are two concurrent assignments for
   --  a multiport memory.
   function Is_Finalize_Assignment_Multiport (Prev, Next : Conc_Assign)
                                             return Boolean
   is
      use Netlists.Gates;
      P_Val : Net;
      N_Val : Net;
   begin
      --  The assignemnts must fully overlap (same offset and same width).
      if Get_Conc_Offset (Prev) /= Get_Conc_Offset (Next) then
         return False;
      end if;
      P_Val := Get_Conc_Value (Prev);
      N_Val := Get_Conc_Value (Next);
      if Get_Width (P_Val) /= Get_Width (N_Val) then
         return False;
      end if;

      --  Both assignments must be a dff.
      case Get_Id (Get_Net_Parent (P_Val)) is
         when Id_Dyn_Insert_En =>
            null;
         when others =>
            return False;
      end case;
      case Get_Id (Get_Net_Parent (N_Val)) is
         when Id_Dyn_Insert_En =>
            null;
         when others =>
            return False;
      end case;

      return True;
   end Is_Finalize_Assignment_Multiport;

   function Is_Tribuf_Net (N : Net) return Boolean
   is
      use Netlists.Gates;
   begin
      case Get_Id (Get_Net_Parent (N)) is
         when Id_Tri
           | Id_Resolver
           | Id_Port =>
            return True;
         when others =>
            return False;
      end case;
   end Is_Tribuf_Net;

   function Is_Tribuf_Assignment (Prev, Next : Conc_Assign) return Boolean
   is
      P_Val : Net;
      N_Val : Net;
   begin
      --  The assignemnts must fully overlap (same offset and same width).
      if Get_Conc_Offset (Prev) /= Get_Conc_Offset (Next) then
         return False;
      end if;
      P_Val := Get_Conc_Value (Prev);
      N_Val := Get_Conc_Value (Next);
      if Get_Width (P_Val) /= Get_Width (N_Val) then
         return False;
      end if;

      --  Both assignments must be a tri or a resolver.
      return Is_Tribuf_Net (P_Val)
        and then Is_Tribuf_Net (N_Val);
   end Is_Tribuf_Assignment;

   --  Compute the VALUE to be assigned to WIRE_REC.  Handle partial
   --  assignment, multiple assignments and error cases.
   procedure Finalize_Complex_Assignment (Ctxt : Builders.Context_Acc;
                                          Wire_Rec : Wire_Id_Record;
                                          Value : out Net)
   is
      Wire_Width : constant Width := Get_Width (Wire_Rec.Gate);
      First_Assign : Conc_Assign;
      Asgn : Conc_Assign;
      Last_Asgn : Conc_Assign;
      New_Asgn : Conc_Assign;
      Next_Off : Uns32;
      Expected_Off : Uns32;
      Nbr_Assign : Natural;
   begin
      Nbr_Assign := Wire_Rec.Nbr_Final_Assign;
      --  Sort assignments by offset.
      Asgn := Wire_Rec.Final_Assign;
      Sort_Conc_Assign (Asgn, Nbr_Assign, Asgn, Last_Asgn);
      First_Assign := Asgn;

      --  Report overlaps and holes, count number of inputs
      Last_Asgn := No_Conc_Assign;
      Expected_Off := 0;
      while (Expected_Off < Wire_Width) or Asgn /= No_Conc_Assign loop
         --  NEXT_OFF is the offset of the next assignment.
         --  EXPECTED_OFF is the offset just after the previous assignment.
         if Asgn /= No_Conc_Assign then
            Next_Off := Get_Conc_Offset (Asgn);
         else
            --  If there is no more assignment, simulate a hole until the end.
            Next_Off := Wire_Width;
         end if;

         if Next_Off = Expected_Off then
            --  Normal case.
            pragma Assert (Asgn /= No_Conc_Assign);
            Expected_Off := Expected_Off + Get_Width (Get_Conc_Value (Asgn));
            Last_Asgn := Asgn;
            Asgn := Get_Conc_Chain (Asgn);
         elsif Next_Off > Expected_Off then
            --  There is an hole.
            Warning_No_Assignment (Wire_Rec.Decl, Expected_Off, Next_Off - 1);

            --  Insert conc_assign with initial value.
            --  FIXME: handle initial values.
            Conc_Assign_Table.Append
              ((Next => Asgn,
                Value => Build_Const_Z (Ctxt, Next_Off - Expected_Off),
                Offset => Expected_Off));
            New_Asgn := Conc_Assign_Table.Last;
            if Last_Asgn = No_Conc_Assign then
               First_Assign := New_Asgn;
            else
               Set_Conc_Chain (Last_Asgn, New_Asgn);
            end if;
            Last_Asgn := New_Asgn;
            Nbr_Assign := Nbr_Assign + 1;

            Expected_Off := Next_Off;
         else
            --  Overlap.
            pragma Assert (Next_Off < Expected_Off);
            pragma Assert (Asgn /= No_Conc_Assign);

            if Wire_Rec.Kind = Wire_Variable
              and then Is_Finalize_Assignment_Multiport (Last_Asgn, Asgn)
            then
               --  Insert a multiport (for shared variable).
               declare
                  Last_Asgn_Rec : Conc_Assign_Record renames
                    Conc_Assign_Table.Table (Last_Asgn);
               begin
                  Last_Asgn_Rec.Value := Build_Mem_Multiport
                    (Ctxt, Last_Asgn_Rec.Value, Get_Conc_Value (Asgn));
               end;
               --  Remove this assignment.
               Nbr_Assign := Nbr_Assign - 1;
               Set_Conc_Chain (Last_Asgn, Get_Conc_Chain (Asgn));
            elsif Is_Tribuf_Assignment (Last_Asgn, Asgn) then
               --  Insert a resolver.
               declare
                  Last_Asgn_Rec : Conc_Assign_Record renames
                    Conc_Assign_Table.Table (Last_Asgn);
                  V : constant Net := Last_Asgn_Rec.Value;
               begin
                  Last_Asgn_Rec.Value := Build_Resolver
                    (Ctxt, V, Get_Conc_Value (Asgn));
                  Copy_Location (Last_Asgn_Rec.Value, V);
               end;
               --  Remove this assignment.
               Nbr_Assign := Nbr_Assign - 1;
               Set_Conc_Chain (Last_Asgn, Get_Conc_Chain (Asgn));
            else
               declare
                  Asgn_Wd : constant Width :=
                    Get_Width (Get_Conc_Value (Asgn));
                  Overlap_Wd : Width;
               begin
                  Overlap_Wd := Asgn_Wd;
                  if Next_Off + Overlap_Wd > Expected_Off then
                     Overlap_Wd := Expected_Off - Next_Off;
                  end if;

                  Error_Multiple_Assignments
                    (Wire_Rec.Decl, Next_Off, Next_Off + Overlap_Wd - 1);

                  if Next_Off + Asgn_Wd < Expected_Off then
                     --  Remove this assignment
                     Nbr_Assign := Nbr_Assign - 1;
                     Set_Conc_Chain (Last_Asgn, Get_Conc_Chain (Asgn));
                  else
                     Expected_Off := Next_Off + Asgn_Wd;
                     Last_Asgn := Asgn;
                  end if;
               end;
            end if;
            Asgn := Get_Conc_Chain (Asgn);
         end if;
      end loop;

      --  Create concat
      --  Set concat inputs
      if Nbr_Assign = 1 then
         Value := Get_Conc_Value (First_Assign);
      elsif Nbr_Assign = 2 then
         Value := Build_Concat2 (Ctxt,
                                 Get_Conc_Value (Last_Asgn),
                                 Get_Conc_Value (First_Assign));
      else
         Value := Build_Concatn (Ctxt, Wire_Width, Uns32 (Nbr_Assign));
         declare
            Inst : constant Instance := Get_Net_Parent (Value);
         begin
            Asgn := First_Assign;
            for I in reverse 0 .. Nbr_Assign - 1 loop
               Connect (Get_Input (Inst, Port_Idx (I)), Get_Conc_Value (Asgn));
               Asgn := Get_Conc_Chain (Asgn);
            end loop;
         end;
      end if;
   end Finalize_Complex_Assignment;

   procedure Finalize_Assignment
     (Ctxt : Builders.Context_Acc; Wid : Wire_Id)
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
      Gate_Inst : constant Instance := Get_Net_Parent (Wire_Rec.Gate);
      Inp : constant Input := Get_Input (Gate_Inst, 0);
      Value : Net;
   begin
      case Wire_Rec.Nbr_Final_Assign is
         when 0 =>
            --  TODO: use initial value ?
            --  TODO: fix that in synth-decls.finalize_object.
            if Wire_Rec.Kind = Wire_Output then
               Warning_No_Assignment (Wire_Rec.Decl, 1, 0);
               if Get_Id (Gate_Inst) = Gates.Id_Iinout then
                  Value := Get_Input_Net (Gate_Inst, 1);
               else
                  Value := Build_Const_Z (Ctxt, Get_Width (Wire_Rec.Gate));
               end if;
            else
               return;
            end if;
         when 1 =>
            declare
               Conc_Asgn : Conc_Assign_Record renames
                 Conc_Assign_Table.Table (Wire_Rec.Final_Assign);
            begin
               if Conc_Asgn.Offset = 0
                 and then (Get_Width (Conc_Asgn.Value)
                             = Get_Width (Wire_Rec.Gate))
               then
                  --  Single and full assignment.
                  Value := Conc_Asgn.Value;
               else
                  --  Partial assignment.
                  Finalize_Complex_Assignment (Ctxt, Wire_Rec, Value);
               end if;
            end;
            Wire_Rec.Final_Assign := No_Conc_Assign;
         when others =>
            --  Multiple assignments.
            Finalize_Complex_Assignment (Ctxt, Wire_Rec, Value);
            Wire_Rec.Final_Assign := No_Conc_Assign;
      end case;

      Connect (Inp, Value);
   end Finalize_Assignment;

   procedure Finalize_Wires is
   begin
      pragma Assert (Phis_Table.Last = No_Phi_Id);
      --  pragma Assert (Assign_Table.Last = No_Seq_Assign);

      for Wid in Wire_Id_Table.First + 1 .. Wire_Id_Table.Last loop
         declare
            Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
         begin
            pragma Assert (Wire_Rec.Kind = Wire_None
                             or Wire_Rec.Kind = Wire_Enable);
            pragma Assert (Wire_Rec.Final_Assign = No_Conc_Assign);
            null;
         end;
      end loop;

      Wire_Id_Table.Set_Last (No_Wire_Id);
   end Finalize_Wires;

   --  Sort the LEN first wires of chain W (linked by Chain) in Id increasing
   --  values.  The result is assigned to FIRST and the first non-sorted wire
   --  (the one after LEN) is assigned to NEXT.  The chain headed by FIRST
   --  is truncated to LEN elements.
   --  Use a merge sort.
   procedure Sort_Wires (Asgn : Seq_Assign;
                         Len : Uns32;
                         First : out Seq_Assign;
                         Next : out Seq_Assign)
   is
      Left, Right : Seq_Assign;
      Last : Seq_Assign;
      El : Seq_Assign;
   begin
      if Len = 0 then
         --  Empty chain.
         First := No_Seq_Assign;
         Next := Asgn;
         return;
      elsif Len = 1 then
         --  Chain with one element.
         First := Asgn;
         Next := Get_Assign_Chain (First);
         Set_Assign_Chain (First, No_Seq_Assign);
         return;
      else
         --  Divide.
         Sort_Wires (Asgn, Len / 2, Left, Right);
         Sort_Wires (Right, Len - Len / 2, Right, Next);

         --  Conquer: merge.
         First := No_Seq_Assign;
         Last := No_Seq_Assign;
         for I in 1 .. Len loop
            if Left /= No_Seq_Assign
              and then (Right = No_Seq_Assign
                          or else Get_Wire_Id (Left) <= Get_Wire_Id (Right))
            then
               El := Left;
               Left := Get_Assign_Chain (Left);
            else
               pragma Assert (Right /= No_Seq_Assign);
               El := Right;
               Right := Get_Assign_Chain (Right);
            end if;

            --  Append
            if First = No_Seq_Assign then
               First := El;
            else
               Set_Assign_Chain (Last, El);
            end if;
            Last := El;
         end loop;
         Set_Assign_Chain (Last, No_Seq_Assign);
      end if;
   end Sort_Wires;

   function Sort_Phi (P : Phi_Type) return Seq_Assign
   is
      Res, Last : Seq_Assign;
   begin
      Sort_Wires (P.First, P.Nbr, Res, Last);
      pragma Assert (Last = No_Seq_Assign);
      return Res;
   end Sort_Phi;

   function Get_Assign_Value (Ctxt : Builders.Context_Acc; Asgn : Seq_Assign)
                             return Net
   is
      Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
      Wid_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Asgn_Rec.Id);
      W : constant Width := Get_Width (Wid_Rec.Gate);
   begin
      case Wid_Rec.Kind is
         when Wire_Signal | Wire_Output | Wire_Inout
           | Wire_Variable | Wire_Unset =>
            null;
         when Wire_Input | Wire_Enable | Wire_None =>
            raise Internal_Error;
      end case;

      if Asgn_Rec.Val.Is_Static = True then
         return Static_To_Net (Ctxt, Asgn_Rec.Val.Val);
      end if;

      --  Cannot be empty.
      pragma Assert (Asgn_Rec.Val.Asgns /= No_Partial_Assign);

      --  Simple case: fully assigned.
      declare
         Pasgn : Partial_Assign_Record renames
           Partial_Assign_Table.Table (Asgn_Rec.Val.Asgns);
      begin
         if Pasgn.Offset = 0 and then Get_Width (Pasgn.Value) = W then
            return Pasgn.Value;
         end if;
      end;

      return Get_Current_Assign_Value (Ctxt, Asgn_Rec.Id, 0, W);
   end Get_Assign_Value;

   function Get_Gate_Value (Wid : Wire_Id) return Net
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
      pragma Assert (Wire_Rec.Kind /= Wire_None);
   begin
      return Wire_Rec.Gate;
   end Get_Gate_Value;

   function Get_Assigned_Value (Ctxt : Builders.Context_Acc; Wid : Wire_Id)
                               return Net
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
      pragma Assert (Wire_Rec.Kind /= Wire_None);
   begin
      if Wire_Rec.Cur_Assign = No_Seq_Assign then
         --  The variable was never assigned, so the variable value is
         --  the initial value.
         --  FIXME: use initial value directly ?
         return Wire_Rec.Gate;
      else
         return Get_Assign_Value (Ctxt, Wire_Rec.Cur_Assign);
      end if;
   end Get_Assigned_Value;

   function Get_Current_Value (Ctxt : Builders.Context_Acc; Wid : Wire_Id)
                              return Net
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
      pragma Assert (Wire_Rec.Kind /= Wire_None);
   begin
      case Wire_Rec.Kind is
         when Wire_Variable =>
            if Wire_Rec.Cur_Assign = No_Seq_Assign then
               --  The variable was never assigned, so the variable value is
               --  the initial value.
               --  FIXME: use initial value directly ?
               return Wire_Rec.Gate;
            else
               return Get_Assign_Value (Ctxt, Wire_Rec.Cur_Assign);
            end if;
         when Wire_Signal | Wire_Output | Wire_Inout | Wire_Input
           | Wire_Enable =>
            --  For signals, always read the previous value.
            return Wire_Rec.Gate;
         when Wire_Unset =>
            pragma Assert (Wire_Rec.Cur_Assign = No_Seq_Assign);
            return Wire_Rec.Gate;
         when Wire_None =>
            raise Internal_Error;
      end case;
   end Get_Current_Value;

   --  Get the current value of W for WD bits at offset OFF.
   function Get_Current_Assign_Value
     (Ctxt : Context_Acc; Wid : Wire_Id; Off : Uns32; Wd : Width)
     return Net
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
      pragma Assert (Wire_Rec.Kind /= Wire_None);
      First_Seq : Seq_Assign;
   begin
      --  Latest seq assign
      First_Seq := Wire_Rec.Cur_Assign;

      --  If no seq assign, return current value.
      if First_Seq = No_Seq_Assign then
         return Build2_Extract_Push (Ctxt, Wire_Rec.Gate, Off, Wd);
      end if;

      --  If the current value is static, just return it.
      if Get_Assign_Is_Static (First_Seq) then
         return Partial_Static_To_Net
           (Ctxt, Get_Assign_Static_Val (First_Seq), Off, Wd);
      end if;

      --  If the range is the same as the seq assign, return the value.
      declare
         P : constant Partial_Assign := Get_Assign_Partial (First_Seq);
         V : Net;
      begin
         if Get_Partial_Offset (P) = Off then
            V := Get_Partial_Value (P);
            if Get_Width (V) = Wd then
               return V;
            end if;
         end if;
      end;

      --  Build a vector
      declare
         use Netlists.Concats;
         Vec : Concat_Type;
         Seq : Seq_Assign;
         P : Partial_Assign;
         Cur_Off : Uns32;
         Cur_Wd : Width;

         Res : Net;
      begin
         Cur_Off := Off;
         Cur_Wd := Wd;
         pragma Assert (Wd > 0);
         loop
            --  Find value at CUR_OFF from assignment.  Start at the top
            --  phi (which is not a static value).
            Seq := First_Seq;
            P := Get_Assign_Partial (Seq);
            loop
               pragma Assert (P /= No_Partial_Assign);
               declare
                  Pr : Partial_Assign_Record renames
                    Partial_Assign_Table.Table (P);
                  Pw : constant Width := Get_Width (Pr.Value);
               begin
                  if Pr.Offset <= Cur_Off
                    and then Pr.Offset + Pw > Cur_Off
                  then
                     --  Found.
                     if Pr.Offset = Cur_Off and then Pw <= Cur_Wd then
                        --  No need to extract.
                        Append (Vec, Pr.Value);
                        Cur_Wd := Pw;
                     else
                        Cur_Wd := Width'Min
                          (Cur_Wd, Pw - (Cur_Off - Pr.Offset));
                        Append
                          (Vec,
                           Build2_Extract_Push (Ctxt, Pr.Value,
                                                Cur_Off - Pr.Offset, Cur_Wd));
                     end if;
                     exit;
                  end if;
                  if Pr.Offset + Pw <= Cur_Off then
                     --  Skip this partial, it is before what we are searching.
                     P := Pr.Next;
                  elsif Pr.Offset > Cur_Off
                    and then Pr.Offset < Cur_Off + Cur_Wd
                  then
                     --  There is a partial assignment that should be
                     --  considered, but first we need some values before it.
                     --  Reduce WD and continue to search in previous;
                     Cur_Wd := Pr.Offset - Cur_Off;
                     P := No_Partial_Assign;
                  else
                     --  The next partial assignment is beyond what we are
                     --  searching.
                     --  Continue to search in previous.
                     P := No_Partial_Assign;
                  end if;
                  if P = No_Partial_Assign then
                     Seq := Get_Assign_Prev (Seq);
                     if Seq = No_Seq_Assign then
                        --  Extract from gate.
                        Append (Vec, Build2_Extract_Push (Ctxt, Wire_Rec.Gate,
                                                          Cur_Off, Cur_Wd));
                        exit;
                     end if;
                     if Get_Assign_Is_Static (Seq) then
                        --  Extract from static value.
                        Append (Vec, Partial_Static_To_Net
                                  (Ctxt, Get_Assign_Static_Val (Seq),
                                   Cur_Off, Cur_Wd));
                        exit;
                     end if;
                     P := Get_Assign_Partial (Seq);
                  end if;
               end;
            end loop;

            Cur_Off := Cur_Off + Cur_Wd;
            Cur_Wd := Wd - (Cur_Off - Off);
            exit when Cur_Off = Off + Wd;
         end loop;

         --  Concat
         Build (Ctxt, Vec, Res);
         return Res;
      end;
   end Get_Current_Assign_Value;

   --  P is an array of Partial_Assign.  Each element is a list
   --  of partial assign from a different basic block.
   --  Extract the value to nets N of the maximal partial assignment starting
   --  at offset OFF for all partial assignments.  Fully handled partial
   --  assignments are poped.  Set the offset and width to OFF and WD of the
   --  result.
   procedure Extract_Merge_Partial_Assigns (Ctxt : Builders.Context_Acc;
                                            P : in out Seq_Assign_Value_Array;
                                            N : out Net_Array;
                                            Off : in out Uns32;
                                            Wd : out Width)
   is
      Min_Off : Uns32;
   begin
      Min_Off := Off;

      --  Look for the partial assign with the least offset (but still
      --  greather than Min_Off).  Also extract the least width.
      Off := Uns32'Last;
      Wd := Width'Last;
      for I in P'Range loop
         case P (I).Is_Static is
            when Unknown =>
               --  No assignment.
               null;
            when True =>
               declare
                  P_Wd : constant Width := Get_Width (P (I).Val); --.Typ.W;
               begin
                  if Min_Off >= P_Wd then
                     --  No net can be beyond the width.
                     pragma Assert (Off = Uns32'Last);
                     pragma Assert (Wd = Width'Last);
                     return;
                  end if;

                  if Off > Min_Off and then Off < P_Wd then
                     --  There is already an assignment for an offset after
                     --  the minimum.  Stick to the min!
                     Wd := Off - Min_Off;
                     Off := Min_Off;
                  else
                     --  Either no assignment, or an assignment at Min_Off.
                     Off := Min_Off;
                     Wd := Width'Min (Wd, P_Wd - Min_Off);
                  end if;
               end;
            when False =>
               declare
                  pragma Assert (P (I).Asgns /= No_Partial_Assign);
                  Pa : Partial_Assign_Record
                    renames Partial_Assign_Table.Table (P (I).Asgns);
                  N_Wd : Width;
                  N_Off : Uns32;
               begin
                  if Pa.Offset < Off and then Min_Off < Off then
                     --  There is an assignment for an offset before the
                     --  current one.  Handle it.
                     pragma Assert (Off >= Min_Off);
                     N_Off := Uns32'Max (Pa.Offset, Min_Off);
                     N_Wd := Get_Width (Pa.Value) - (N_Off - Pa.Offset);
                     Wd := Width'Min (N_Wd, Off - N_Off);
                     Off := N_Off;
                  elsif Pa.Offset = Off
                    or else (Off = Min_Off and then Pa.Offset < Off)
                  then
                     --  Reduce the width if the assignment is shorter.
                     Wd := Width'Min
                       (Wd, Get_Width (Pa.Value) - (Off - Pa.Offset));
                  elsif Pa.Offset < Off + Wd then
                     --  Reduce the width when there is an assignment after
                     --  the current offset.
                     Wd := Pa.Offset - Off;
                  end if;
               end;
         end case;
      end loop;

      --  No more assignments.
      if Off = Uns32'Last and Wd = Width'Last then
         return;
      end if;

      --  Get the values for that offset/width.  Update lists.
      for I in P'Range loop
         --  Default: no partial assignment.  Get extract previous value.
         N (I) := No_Net;

         case P (I).Is_Static is
            when Unknown =>
               null;
            when True =>
               N (I) := Partial_Static_To_Net (Ctxt, P (I).Val, Off, Wd);
            when False =>
               if Get_Partial_Offset (P (I).Asgns) <= Off then
                  declare
                     Asgn : constant Partial_Assign := P (I).Asgns;
                     Val : constant Net := Get_Partial_Value (Asgn);
                     P_W : constant Width := Get_Width (Val);
                     P_Off : constant Uns32 := Get_Partial_Offset (Asgn);
                  begin
                     --  There is a partial assignment.
                     if P_Off = Off and then P_W = Wd then
                        --  Full covered.
                        N (I) := Val;
                        P (I).Asgns := Get_Partial_Next (Asgn);
                     else
                        N (I) := Build_Extract (Ctxt, Val, Off - P_Off, Wd);
                        if P_Off + P_W = Off + Wd then
                           P (I).Asgns := Get_Partial_Next (Asgn);
                        end if;
                     end if;
                  end;
                  if P (I).Asgns = No_Partial_Assign then
                     P (I) := No_Seq_Assign_Value;
                  end if;
               end if;
         end case;
      end loop;
   end Extract_Merge_Partial_Assigns;

   procedure Partial_Assign_Init (List : out Partial_Assign_List) is
   begin
      List := (First | Last => No_Partial_Assign);
   end Partial_Assign_Init;

   procedure Partial_Assign_Append (List : in out Partial_Assign_List;
                                    Pasgn : Partial_Assign) is
   begin
      if List.First = No_Partial_Assign then
         List.First := Pasgn;
      else
         Set_Partial_Next (List.Last, Pasgn);
      end if;
      List.Last := Pasgn;
   end Partial_Assign_Append;

   procedure Merge_Partial_Assigns (Ctxt : Builders.Context_Acc;
                                    Wid : Wire_Id;
                                    List : in out Partial_Assign_List)
   is
      Pasgn : Partial_Assign;
   begin
      while List.First /= No_Partial_Assign loop
         Pasgn := Get_Partial_Next (List.First);
         Set_Partial_Next (List.First, No_Partial_Assign);
         Phi_Assign (Ctxt, Wid, List.First);
         List.First := Pasgn;
      end loop;
   end Merge_Partial_Assigns;

   --  Sub-routine of Merge_Assigns when the net is a dyn_insert
   --  Try to transform it to a dyn_insert_en
   function Merge_Dyn_Insert (Ctxt : Builders.Context_Acc;
                              Sel : Net;
                              N1_Inst : Instance;
                              N0 : Net) return Net
   is
      V : Net;
      New_Inst : Instance;
   begin
      --  TODO: handle a serie of dyn_insert
      --  TODO: also handle dyn_insert_en
      --  TODO: negative SEL ?
      V := Get_Input_Net (N1_Inst, 0);
      if Same_Net (V, N0) then
         New_Inst := Add_Enable_To_Dyn_Insert (Ctxt, N1_Inst, Sel);
         return Get_Output (New_Inst, 0);
      else
         return Build_Mux2 (Ctxt, Sel, N0, Get_Output (N1_Inst, 0));
      end if;
   end Merge_Dyn_Insert;

   procedure Merge_Assigns (Ctxt : Builders.Context_Acc;
                            Wid : Wire_Id;
                            Sel : Net;
                            F_Asgns : Seq_Assign_Value;
                            T_Asgns : Seq_Assign_Value;
                            Loc : Location_Type)
   is
      use Netlists.Gates;
      use Netlists.Gates_Ports;
      P : Seq_Assign_Value_Array (0 .. 1);
      N : Net_Array (0 .. 1);
      Min_Off : Uns32;
      Off : Uns32;
      Wd : Width;
      Res : Net;
      List : Partial_Assign_List;
      Pasgn : Partial_Assign;
      N1_Inst : Instance;
   begin
      P := (0 => F_Asgns, 1 => T_Asgns);
      Partial_Assign_Init (List);

      Min_Off := 0;
      loop
         Off := Min_Off;
         Extract_Merge_Partial_Assigns (Ctxt, P, N, Off, Wd);

         --  No more assignments.
         exit when Off = Uns32'Last and Wd = Width'Last;

         for I in N'Range loop
            if N (I) = No_Net then
               --  No partial assignment.  Get extract previous value.
               N (I) := Get_Current_Assign_Value (Ctxt, Wid, Off, Wd);
            end if;
         end loop;

         --  Possible optimizations:
         --  if C1 then            _               _                 _
         --    if C2 then      R0-|0\          R0-|0\           R0 -|0\
         --      R := V;   ==>    |  |-- T --+    |  |- R   ==>     |  |- R
         --    end if;          V-|_/        +----|_/             V-|_/
         --  end if;               C2              C1                C1.C2
         --
         --  Note:  N (0) ~ R0,  N (1) ~ T = first mux input
         --
         --  This really helps inference as the net R0 doesn't have to be
         --  walked twice (in absence of memoization).
         --  This optimization is not performed if T is used.  This check is
         --  not really necessary as if T is assigned it will also be handled
         --  in this procedure and will be muxed by C1.  But this simplifies
         --  memory handling.

         --  Build mux.
         N1_Inst := Get_Net_Parent (N (1));
         if Get_Id (N1_Inst) = Id_Mux2
           and then not Is_Connected (N (1))
           and then Same_Net (Get_Driver (Get_Mux2_I0 (N1_Inst)), N (0))
         then
            declare
               N1_Net : Net;
               N1_Sel : Input;
               N1_Sel_Net : Net;
            begin
               N1_Net := Get_Output (N1_Inst, 0);
               N1_Sel := Get_Input (N1_Inst, 0);
               N1_Sel_Net := Get_Driver (N1_Sel);
               if not Is_Connected (N1_Net) then
                  --  If the previous mux2 is not used, just modify it.
                  Res := N1_Net;
                  Disconnect (N1_Sel);
                  N1_Sel_Net := Build_Dyadic (Ctxt, Id_And, Sel, N1_Sel_Net);
                  Set_Location (N1_Sel_Net, Loc);
                  Connect (N1_Sel, N1_Sel_Net);
               else
                  Res := Build_Dyadic (Ctxt, Id_And, Sel, N1_Sel_Net);
                  Set_Location (Res, Loc);
                  Res := Build_Mux2
                    (Ctxt, Res, N (0), Get_Driver (Get_Mux2_I1 (N1_Inst)));
               end if;
            end;
         elsif not Flags.Flag_Debug_Nomemory1
           and then Get_Id (N1_Inst) = Id_Dyn_Insert
           and then not Is_Connected (N (1))
         then
            Res := Merge_Dyn_Insert (Ctxt, Sel, N1_Inst, N (0));
         elsif N (0) = N (1) then
            --  Minor optimization: no need to add a mux if both sides are
            --  equal.  But this is important for the control wires.
            Res := N (0);
         else
            Res := Build_Mux2 (Ctxt, Sel, N (0), N (1));
         end if;
         Set_Location (Res, Loc);

         --  Keep the result in a list.
         Pasgn := New_Partial_Assign (Res, Off);
         Partial_Assign_Append (List, Pasgn);

         Min_Off := Off + Wd;
      end loop;

      --  Do the assignments from the result list.
      --  It cannot be done before because the assignments will overwrite the
      --  last assignments which are read to create a partial assignment.
      Merge_Partial_Assigns (Ctxt, Wid, List);
   end Merge_Assigns;

   function Merge_Static_Assigns (Wid : Wire_Id; Tv, Fv : Seq_Assign_Value)
                                 return Boolean
   is
      Prev : Static_Type;
   begin
      --  First case: both TV and FV are static.
      if Tv.Is_Static = True and then Fv.Is_Static = True then
         if Is_Equal (Tv.Val, Fv.Val) then
            Phi_Assign_Static (Wid, Tv.Val);
            return True;
         else
            return False;
         end if;
      end if;

      --  If either TV or FV are nets, they cannot be merged.
      if Tv.Is_Static = False or else Fv.Is_Static = False then
         return False;
      end if;

      --  Get the previous value.
      declare
         Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
         pragma Assert (Wire_Rec.Kind /= Wire_None);
         First_Seq : Seq_Assign;
      begin
         --  Latest seq assign
         First_Seq := Wire_Rec.Cur_Assign;

         --  If no seq assign, fails.
         if First_Seq = No_Seq_Assign then
            return False;
         end if;

         if not Get_Assign_Is_Static (First_Seq) then
            return False;
         end if;
         Prev := Get_Assign_Static_Val (First_Seq);
      end;

      if Tv.Is_Static = True then
         pragma Assert (Fv = No_Seq_Assign_Value);
         return Is_Equal (Tv.Val, Prev);
      else
         pragma Assert (Fv.Is_Static = True);
         pragma Assert (Tv = No_Seq_Assign_Value);
         return Is_Equal (Fv.Val, Prev);
      end if;
   end Merge_Static_Assigns;

   --  Add muxes for two lists T and F of assignments.
   procedure Merge_Phis (Ctxt : Builders.Context_Acc;
                         Sel : Net;
                         T, F : Phi_Type;
                         Loc : Location_Type)
   is
      T_Asgns : Seq_Assign;
      F_Asgns : Seq_Assign;
      W : Wire_Id;
      Tv, Fv : Seq_Assign_Value;
   begin
      T_Asgns := Sort_Phi (T);
      F_Asgns := Sort_Phi (F);

      while T_Asgns /= No_Seq_Assign or F_Asgns /= No_Seq_Assign loop
         --  Extract a wire.
         if T_Asgns = No_Seq_Assign
           or else (F_Asgns /= No_Seq_Assign
                      and then Get_Wire_Id (F_Asgns) < Get_Wire_Id (T_Asgns))
         then
            --  Has an assignment only for the false branch.
            W := Get_Wire_Id (F_Asgns);
            Fv := Get_Seq_Assign_Value (F_Asgns);
            Tv := No_Seq_Assign_Value;
            F_Asgns := Get_Assign_Chain (F_Asgns);
         elsif F_Asgns = No_Seq_Assign
           or else (T_Asgns /= No_Seq_Assign
                      and then Get_Wire_Id (T_Asgns) < Get_Wire_Id (F_Asgns))
         then
            --  Has an assignment only for the true branch.
            W := Get_Wire_Id (T_Asgns);
            Fv := No_Seq_Assign_Value;
            Tv := Get_Seq_Assign_Value (T_Asgns);
            T_Asgns := Get_Assign_Chain (T_Asgns);
         else
            --  Has assignments for both the true and the false branch.
            pragma Assert (Get_Wire_Id (F_Asgns) = Get_Wire_Id (T_Asgns));
            W := Get_Wire_Id (F_Asgns);
            Fv := Get_Seq_Assign_Value (F_Asgns);
            Tv := Get_Seq_Assign_Value (T_Asgns);
            T_Asgns := Get_Assign_Chain (T_Asgns);
            F_Asgns := Get_Assign_Chain (F_Asgns);
         end if;
         --  Merge partial assigns as much as possible.  This reduce
         --  propagation of splits.
         Merge_Partial_Assignments (Ctxt, Fv);
         Merge_Partial_Assignments (Ctxt, Tv);
         if not Merge_Static_Assigns (W, Tv, Fv) then
            Merge_Assigns (Ctxt, W, Sel, Fv, Tv, Loc);
         end if;

      end loop;
   end Merge_Phis;

   procedure Phi_Append_Assign (P : in out Phi_Type; Asgn : Seq_Assign) is
   begin
      --  Chain assignment in the current sequence.
      if P.First = No_Seq_Assign then
         P.First := Asgn;
      else
         Set_Assign_Chain (P.Last, Asgn);
      end if;
      P.Last := Asgn;
      P.Nbr := P.Nbr + 1;
   end Phi_Append_Assign;

   procedure Phi_Append_Assign (Asgn : Seq_Assign)
   is
      pragma Assert (Asgn /= No_Seq_Assign);
      Asgn_Rec : Seq_Assign_Record renames Assign_Table.Table (Asgn);
      pragma Assert (Asgn_Rec.Phi = Current_Phi);
      pragma Assert (Asgn_Rec.Chain = No_Seq_Assign);
   begin
      Phi_Append_Assign (Phis_Table.Table (Phis_Table.Last), Asgn);
   end Phi_Append_Assign;

   function Phi_Enable (Ctxt : Builders.Context_Acc;
                        Decl : Decl_Type;
                        Val_0 : Static_Type;
                        Val_1 : Static_Type;
                        Loc : Location_Type) return Net
   is
      Last : constant Phi_Id := Phis_Table.Last;
      Wid : Wire_Id;
      N : Net;
      Asgn : Seq_Assign;
   begin
      if Last = No_Phi_Id then
         --  Can be called only when a phi is created.
         raise Internal_Error;
      end if;
      if Last = No_Phi_Id + 1 then
         --  That's the first phi, which is always enabled.
         return No_Net;
      end if;

      --  Cached value.
      Wid := Phis_Table.Table (Last).En;
      if Wid = No_Wire_Id then
         Wid := Alloc_Wire (Wire_Enable, Decl);
         Phis_Table.Table (Last).En := Wid;

         --  Create the Enable gate.
         N := Build_Enable (Ctxt);
         Set_Location (N, Loc);
         Set_Wire_Gate (Wid, N);

         --  Initialize to '0'.
         --  This is really cheating, as it is like assigning in the first
         --  phi.
         Assign_Table.Append ((Phi => No_Phi_Id + 1,
                               Id => Wid,
                               Prev => No_Seq_Assign,
                               Chain => No_Seq_Assign,
                               Val => (Is_Static => True, Val => Val_0)));
         Asgn := Assign_Table.Last;
         Wire_Id_Table.Table (Wid).Cur_Assign := Asgn;
         Phi_Append_Assign (Phis_Table.Table (No_Phi_Id + 1), Asgn);

         --  Assign to '1'.
         Phi_Assign_Static (Wid, Val_1);
         return N;
      else
         return Get_Current_Value (Ctxt, Wid);
      end if;
   end Phi_Enable;

   --  Check consistency:
   --  - ordered.
   --  - no overlaps.
   procedure Check (Seq : Seq_Assign)
   is
      Seq_Asgn : Seq_Assign_Record renames Assign_Table.Table (Seq);
      Prev_El : Partial_Assign;
   begin
      Prev_El := Seq_Asgn.Val.Asgns;
      if Prev_El = No_Partial_Assign then
         --  It's empty!
         return;
      end if;
      loop
         declare
            Prev : Partial_Assign_Record
              renames Partial_Assign_Table.Table (Prev_El);
            El : constant Partial_Assign := Prev.Next;
         begin
            if El = No_Partial_Assign then
               --  Done.
               exit;
            end if;
            declare
               Cur : Partial_Assign_Record
                 renames Partial_Assign_Table.Table (El);
            begin
               --  Check no overlap.
               if Cur.Offset < Prev.Offset + Get_Width (Prev.Value) then
                  raise Internal_Error;
               end if;
            end;
            Prev_El := El;
         end;
      end loop;
   end Check;

   --  Insert partial assignment ASGN to list SEQ.
   --  Deal with overrides.  Place it correctly.
   procedure Insert_Partial_Assign
     (Ctxt : Builders.Context_Acc; Seq : Seq_Assign; Asgn : Partial_Assign)
   is
      V : Partial_Assign_Record renames Partial_Assign_Table.Table (Asgn);
      V_Next : constant Uns32 := V.Offset + Get_Width (V.Value);
      Seq_Asgn : Seq_Assign_Record renames Assign_Table.Table (Seq);
      El, Last_El : Partial_Assign;
      Inserted : Boolean;
   begin
      Inserted := False;
      Last_El := No_Partial_Assign;
      El := Seq_Asgn.Val.Asgns;
      while El /= No_Partial_Assign loop
         declare
            P : Partial_Assign_Record renames Partial_Assign_Table.Table (El);
            P_Next : constant Uns32 := P.Offset + Get_Width (P.Value);
         begin
            if V.Offset < P_Next and then V_Next > P.Offset then
               --  Override.
               if V.Offset <= P.Offset and then V_Next >= P_Next then
                  --  Full override:
                  --     V.Off               V.Next
                  --     |------------------||
                  --           |----------||
                  --          P.Off        P.Next
                  --  Remove it.
                  --  FIXME: free it.
                  if not Inserted then
                     if Last_El /= No_Partial_Assign then
                        Partial_Assign_Table.Table (Last_El).Next := Asgn;
                     else
                        Seq_Asgn.Val.Asgns := Asgn;
                     end if;
                     V.Next := P.Next;
                     Inserted := True;
                     Last_El := Asgn;
                  else
                     pragma Assert (Last_El /= No_Partial_Assign);
                     Partial_Assign_Table.Table (Last_El).Next := P.Next;
                  end if;
               elsif V.Offset <= P.Offset and then V_Next < P_Next then
                  --  Overrides the beginning of EL.
                  --     V.Off           V.Next
                  --     |--------------||
                  --           |----------||
                  --          P.Off        P.Next
                  --  Shrink EL.
                  P.Value := Build2_Extract_Push (Ctxt, P.Value,
                                                  Off => V_Next - P.Offset,
                                                  W => P_Next - V_Next);
                  P.Offset := V_Next;
                  if not Inserted then
                     if Last_El /= No_Partial_Assign then
                        Partial_Assign_Table.Table (Last_El).Next := Asgn;
                     else
                        Seq_Asgn.Val.Asgns := Asgn;
                     end if;
                     V.Next := El;
                     Inserted := True;
                  end if;
                  --  No more possible overlaps.
                  exit;
               elsif V.Offset > P.Offset and then P_Next <= V_Next then
                  --  Overrides the end of EL.
                  --             V.Off               V.Next
                  --             |------------------||
                  --           |----------||
                  --          P.Off        P.Next
                  --  Shrink EL.
                  P.Value := Build2_Extract_Push (Ctxt, P.Value,
                                                  Off => 0,
                                                  W => V.Offset - P.Offset);
                  pragma Assert (not Inserted);
                  V.Next := P.Next;
                  P.Next := Asgn;
                  Last_El := Asgn;
                  Inserted := True;
               elsif V.Offset > P.Offset and then V_Next < P_Next then
                  --  Contained within EL.
                  --             V.Off       V.Next
                  --             |----------||
                  --           |---------------||
                  --          P.Off             P.Next
                  --  Split EL.
                  pragma Assert (not Inserted);
                  Partial_Assign_Table.Append
                    ((Next => P.Next,
                      Value => Build2_Extract_Push (Ctxt, P.Value,
                                                    Off => V_Next - P.Offset,
                                                    W => P_Next - V_Next),
                      Offset => V_Next));
                  V.Next := Partial_Assign_Table.Last;
                  P.Value := Build2_Extract_Push (Ctxt, P.Value,
                                                  Off => 0,
                                                  W => V.Offset - P.Offset);
                  P.Next := Asgn;
                  Inserted := True;
                  --  No more possible overlaps.
                  exit;
               else
                  --  No other case.
                  raise Internal_Error;
               end if;
            else
               if V.Offset < P.Offset then
                  --  Insert before P (if not already inserted).
                  if not Inserted then
                     if Last_El /= No_Partial_Assign then
                        Partial_Assign_Table.Table (Last_El).Next := Asgn;
                     else
                        Seq_Asgn.Val.Asgns := Asgn;
                     end if;
                     V.Next := El;
                     Inserted := True;
                  end if;
                  exit;
               elsif P.Next = No_Partial_Assign then
                  if not Inserted then
                     --  Insert after P.
                     P.Next := Asgn;
                     Inserted := True;
                  end if;
                  exit;
               else
                  Last_El := El;
               end if;
            end if;

            El := P.Next;
         end;
      end loop;
      pragma Assert (Inserted);
      pragma Debug (Check (Seq));
   end Insert_Partial_Assign;

   procedure Phi_Assign
     (Ctxt : Builders.Context_Acc; Dest : Wire_Id; Pasgn : Partial_Assign)
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Dest);
      pragma Assert (Wire_Rec.Kind /= Wire_None);
      Cur_Asgn : constant Seq_Assign := Wire_Rec.Cur_Assign;
   begin
      if Cur_Asgn = No_Seq_Assign
        or else Assign_Table.Table (Cur_Asgn).Phi < Current_Phi
      then
         --  Never assigned, or first assignment in that level
         Assign_Table.Append ((Phi => Current_Phi,
                               Id => Dest,
                               Prev => Cur_Asgn,
                               Chain => No_Seq_Assign,
                               Val => (Is_Static => False, Asgns => Pasgn)));
         Wire_Rec.Cur_Assign := Assign_Table.Last;
         Phi_Append_Assign (Assign_Table.Last);
      else
         --  Overwrite.
         if Get_Assign_Is_Static (Cur_Asgn) then
            --  Force seq_assign to be a net.
            declare
               Asgn_Rec : Seq_Assign_Record renames
                 Assign_Table.Table (Cur_Asgn);
               N : Net;
               Pa : Partial_Assign;
            begin
               N := Static_To_Net (Ctxt, Asgn_Rec.Val.Val);
               Pa := New_Partial_Assign (N, 0);
               Asgn_Rec.Val := (Is_Static => False, Asgns => Pa);
            end;
         end if;

         Insert_Partial_Assign (Ctxt, Cur_Asgn, Pasgn);
      end if;
   end Phi_Assign;

   procedure Phi_Assign_Net
     (Ctxt : Builders.Context_Acc; Dest : Wire_Id; Val : Net; Offset : Uns32)
   is
      Pasgn : Partial_Assign;
   begin
      Pasgn := New_Partial_Assign (Val, Offset);

      Phi_Assign (Ctxt, Dest, Pasgn);
   end Phi_Assign_Net;

   procedure Phi_Assign_Static (Dest : Wire_Id; Val : Static_Type)
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Dest);
      pragma Assert (Wire_Rec.Kind /= Wire_None);
      Cur_Asgn : constant Seq_Assign := Wire_Rec.Cur_Assign;
   begin
      if Cur_Asgn = No_Seq_Assign
        or else Assign_Table.Table (Cur_Asgn).Phi < Current_Phi
      then
         --  Never assigned, or first assignment in that level
         Assign_Table.Append ((Phi => Current_Phi,
                               Id => Dest,
                               Prev => Cur_Asgn,
                               Chain => No_Seq_Assign,
                               Val => (Is_Static => True, Val => Val)));
         Wire_Rec.Cur_Assign := Assign_Table.Last;
         Phi_Append_Assign (Assign_Table.Last);
      else
         Assign_Table.Table (Cur_Asgn).Val := (Is_Static => True, Val => Val);
      end if;
   end Phi_Assign_Static;

   function Is_Static_Wire (Wid : Wire_Id) return Boolean
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
   begin
      if Wire_Rec.Cur_Assign = No_Seq_Assign then
         return False;
      end if;
      return Get_Assign_Is_Static (Wire_Rec.Cur_Assign);
   end Is_Static_Wire;

   function Get_Static_Wire (Wid : Wire_Id) return Static_Type
   is
      Wire_Rec : Wire_Id_Record renames Wire_Id_Table.Table (Wid);
   begin
      return Get_Assign_Static_Val (Wire_Rec.Cur_Assign);
   end Get_Static_Wire;
begin
   Wire_Id_Table.Append ((Kind => Wire_None,
                          Mark_Flag => False,
                          Decl => <>,
                          Gate => No_Net,
                          Cur_Assign => No_Seq_Assign,
                          Final_Assign => No_Conc_Assign,
                          Nbr_Final_Assign => 0));
   pragma Assert (Wire_Id_Table.Last = No_Wire_Id);

   Assign_Table.Append ((Phi => No_Phi_Id,
                         Id => No_Wire_Id,
                         Prev => No_Seq_Assign,
                         Chain => No_Seq_Assign,
                         Val => (Is_Static => False,
                                 Asgns => No_Partial_Assign)));
   pragma Assert (Assign_Table.Last = No_Seq_Assign);

   Partial_Assign_Table.Append ((Next => No_Partial_Assign,
                                 Value => No_Net,
                                 Offset => 0));
   pragma Assert (Partial_Assign_Table.Last = No_Partial_Assign);

   Phis_Table.Append ((First => No_Seq_Assign,
                       Last => No_Seq_Assign,
                       Nbr => 0,
                       En => No_Wire_Id));
   pragma Assert (Phis_Table.Last = No_Phi_Id);

   Conc_Assign_Table.Append ((Next => No_Conc_Assign,
                              Value => No_Net,
                              Offset => 0));
   pragma Assert (Conc_Assign_Table.Last = No_Conc_Assign);
end Synth.Environment;