/* * This file is part of the flashrom project. * * Copyright (C) 2000 Silicon Integrated System Corporation * Copyright (C) 2000 Ronald G. Minnich * Copyright (C) 2005-2009 coresystems GmbH * Copyright (C) 2006-2009 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #ifndef __FLASH_H__ #define __FLASH_H__ 1 #include #include #include #include #include #include #if IS_WINDOWS #include #undef min #undef max #endif #include "libflashrom.h" #include "layout.h" #include "writeprotect.h" #define KiB (1024) #define MiB (1024 * KiB) #define BIT(x) (1<<(x)) /* Assumes `n` and `a` are at most 64-bit wide (to avoid typeof() operator). */ #define ALIGN_DOWN(n, a) ((n) & ~((uint64_t)(a) - 1)) #define ERROR_PTR ((void*)-1) /* Error codes */ #define ERROR_OOM -100 #define TIMEOUT_ERROR -101 /* TODO: check using code for correct usage of types */ typedef uintptr_t chipaddr; #define PRIxPTR_WIDTH ((int)(sizeof(uintptr_t)*2)) int register_shutdown(int (*function) (void *data), void *data); struct registered_master; void *master_map_flash_region(const struct registered_master *mast, const char *descr, uintptr_t phys_addr, size_t len); void master_unmap_flash_region(const struct registered_master *mast, void *virt_addr, size_t len); /* NOTE: flashctx is not used in internal_delay. In this case, a context should be NULL. */ void programmer_delay(const struct flashrom_flashctx *flash, unsigned int usecs); #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) enum chipbustype { BUS_NONE = 0, BUS_PARALLEL = 1 << 0, BUS_LPC = 1 << 1, BUS_FWH = 1 << 2, BUS_SPI = 1 << 3, BUS_PROG = 1 << 4, BUS_NONSPI = BUS_PARALLEL | BUS_LPC | BUS_FWH, }; /* * The following enum defines possible write granularities of flash chips. These tend to reflect the properties * of the actual hardware not necessarily the write function(s) defined by the respective struct flashchip. * The latter might (and should) be more precisely specified, e.g. they might bail out early if their execution * would result in undefined chip contents. */ enum write_granularity { /* We assume 256 byte granularity by default. */ write_gran_256bytes = 0,/* If less than 256 bytes are written, the unwritten bytes are undefined. */ write_gran_1bit, /* Each bit can be cleared individually. */ write_gran_1byte, /* A byte can be written once. Further writes to an already written byte cause * its contents to be either undefined or to stay unchanged. */ write_gran_128bytes, /* If less than 128 bytes are written, the unwritten bytes are undefined. */ write_gran_264bytes, /* If less than 264 bytes are written, the unwritten bytes are undefined. */ write_gran_512bytes, /* If less than 512 bytes are written, the unwritten bytes are undefined. */ write_gran_528bytes, /* If less than 528 bytes are written, the unwritten bytes are undefined. */ write_gran_1024bytes, /* If less than 1024 bytes are written, the unwritten bytes are undefined. */ write_gran_1056bytes, /* If less than 1056 bytes are written, the unwritten bytes are undefined. */ write_gran_1byte_implicit_erase, /* EEPROMs and other chips with implicit erase and 1-byte writes. */ }; /* * How many different contiguous runs of erase blocks with one size each do * we have for a given erase function? */ #define NUM_ERASEREGIONS 5 /* * How many different erase functions do we have per chip? * Macronix MX25L25635F has 8 different functions. */ #define NUM_ERASEFUNCTIONS 8 #define MAX_CHIP_RESTORE_FUNCTIONS 4 /* Feature bits used for non-SPI only */ #define FEATURE_REGISTERMAP (1 << 0) #define FEATURE_LONG_RESET (0 << 4) #define FEATURE_SHORT_RESET (1 << 4) #define FEATURE_EITHER_RESET FEATURE_LONG_RESET #define FEATURE_RESET_MASK (FEATURE_LONG_RESET | FEATURE_SHORT_RESET) #define FEATURE_ADDR_FULL (0 << 2) #define FEATURE_ADDR_MASK (3 << 2) #define FEATURE_ADDR_2AA (1 << 2) #define FEATURE_ADDR_AAA (2 << 2) #define FEATURE_ADDR_SHIFTED (1 << 5) /* Feature bits used for SPI only */ #define FEATURE_WRSR_EWSR (1 << 6) #define FEATURE_WRSR_WREN (1 << 7) #define FEATURE_WRSR_EITHER (FEATURE_WRSR_EWSR | FEATURE_WRSR_WREN) #define FEATURE_OTP (1 << 8) #define FEATURE_QPI (1 << 9) #define FEATURE_4BA_ENTER (1 << 10) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 w/o WREN */ #define FEATURE_4BA_ENTER_WREN (1 << 11) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 after WREN */ #define FEATURE_4BA_ENTER_EAR7 (1 << 12) /**< Can enter/exit 4BA mode by setting bit7 of the ext addr reg */ #define FEATURE_4BA_EAR_C5C8 (1 << 13) /**< Regular 3-byte operations can be used by writing the most significant address byte into an extended address register (using 0xc5/0xc8 instructions). */ #define FEATURE_4BA_EAR_1716 (1 << 14) /**< Like FEATURE_4BA_EAR_C5C8 but with 0x17/0x16 instructions. */ #define FEATURE_4BA_READ (1 << 15) /**< Native 4BA read instruction (0x13) is supported. */ #define FEATURE_4BA_FAST_READ (1 << 16) /**< Native 4BA fast read instruction (0x0c) is supported. */ #define FEATURE_4BA_WRITE (1 << 17) /**< Native 4BA byte program (0x12) is supported. */ /* 4BA Shorthands */ #define FEATURE_4BA_EAR_ANY (FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_EAR_1716) #define FEATURE_4BA_NATIVE (FEATURE_4BA_READ | FEATURE_4BA_FAST_READ | FEATURE_4BA_WRITE) #define FEATURE_4BA (FEATURE_4BA_ENTER | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE) #define FEATURE_4BA_WREN (FEATURE_4BA_ENTER_WREN | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE) #define FEATURE_4BA_EAR7 (FEATURE_4BA_ENTER_EAR7 | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE) /* * Most flash chips are erased to ones and programmed to zeros. However, some * other flash chips, such as the ENE KB9012 internal flash, work the opposite way. */ #define FEATURE_ERASED_ZERO (1 << 18) #define FEATURE_NO_ERASE (1 << 19) #define FEATURE_WRSR_EXT2 (1 << 20) #define FEATURE_WRSR2 (1 << 21) #define FEATURE_WRSR_EXT3 ((1 << 22) | FEATURE_WRSR_EXT2) #define FEATURE_WRSR3 (1 << 23) /* * Whether chip has security register (RDSCUR/WRSCUR commands). * Not to be confused with "secure registers" of OTP. */ #define FEATURE_SCUR (1 << 24) #define ERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0x00 : 0xff) #define UNERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0xff : 0x00) enum test_state { OK = 0, NT = 1, /* Not tested */ BAD, /* Known to not work */ DEP, /* Support depends on configuration (e.g. Intel flash descriptor) */ NA, /* Not applicable (e.g. write support on ROM chips) */ }; #define TEST_UNTESTED (struct tested){ .probe = NT, .read = NT, .erase = NT, .write = NT, .wp = NT } #define TEST_OK_PROBE (struct tested){ .probe = OK, .read = NT, .erase = NT, .write = NT, .wp = NT } #define TEST_OK_PR (struct tested){ .probe = OK, .read = OK, .erase = NT, .write = NT, .wp = NT } #define TEST_OK_PRE (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = NT, .wp = NT } #define TEST_OK_PREW (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = NT } #define TEST_OK_PREWB (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = OK } #define TEST_BAD_PROBE (struct tested){ .probe = BAD, .read = NT, .erase = NT, .write = NT, .wp = NT } #define TEST_BAD_PR (struct tested){ .probe = BAD, .read = BAD, .erase = NT, .write = NT, .wp = NT } #define TEST_BAD_PRE (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = NT, .wp = NT } #define TEST_BAD_PREW (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = NT } #define TEST_BAD_PREWB (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = BAD } struct flashrom_flashctx; #define flashctx flashrom_flashctx /* TODO: Agree on a name and convert all occurrences. */ typedef int (erasefunc_t)(struct flashctx *flash, unsigned int addr, unsigned int blocklen); enum flash_reg { INVALID_REG = 0, STATUS1, STATUS2, STATUS3, SECURITY, MAX_REGISTERS }; struct reg_bit_info { /* Register containing the bit */ enum flash_reg reg; /* Bit index within register */ uint8_t bit_index; /* * Writability of the bit. RW does not guarantee the bit will be * writable, for example if status register protection is enabled. */ enum { RO, /* Read only */ RW, /* Readable and writable */ OTP /* One-time programmable */ } writability; }; struct wp_bits; enum decode_range_func { NO_DECODE_RANGE_FUNC = 0, /* 0 indicates no range decode funciton is set. */ DECODE_RANGE_SPI25 = 1, }; typedef void (decode_range_func_t)(size_t *start, size_t *len, const struct wp_bits *, size_t chip_len); enum probe_func { NO_PROBE_FUNC = 0, /* 0 indicates no probe function set. */ PROBE_JEDEC = 1, PROBE_JEDEC_29GL, PROBE_OPAQUE, PROBE_EDI_KB9012, PROBE_AT82802AB, PROBE_W29EE011, PROBE_EN29LV640B, PROBE_SPI_AT25F, PROBE_SPI_AT45DB, PROBE_SPI_BIG_SPANSION, PROBE_SPI_RDID, PROBE_SPI_RDID4, PROBE_SPI_REMS, PROBE_SPI_RES1, PROBE_SPI_RES2, PROBE_SPI_SFDP, PROBE_SPI_ST95, }; enum write_func { NO_WRITE_FUNC = 0, /* 0 indicates no write function set. */ WRITE_JEDEC = 1, WRITE_JEDEC1, WRITE_OPAQUE, SPI_CHIP_WRITE1, SPI_CHIP_WRITE256, SPI_WRITE_AAI, SPI_WRITE_AT45DB, WRITE_28SF040, WRITE_82802AB, WRITE_EN29LV640B, EDI_CHIP_WRITE, TEST_WRITE_INJECTOR, /* special case must come last. */ }; typedef int (write_func_t)(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len); enum read_func { NO_READ_FUNC = 0, /* 0 indicates no read function set. */ SPI_CHIP_READ = 1, READ_OPAQUE, READ_MEMMAPPED, EDI_CHIP_READ, SPI_READ_AT45DB, SPI_READ_AT45DB_E8, TEST_READ_INJECTOR, /* special case must come last. */ }; typedef int (read_func_t)(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len); int read_flash(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len); enum block_erase_func { NO_BLOCK_ERASE_FUNC = 0, /* 0 indicates no block erase function set. */ SPI_BLOCK_ERASE_EMULATION = 1, SPI_BLOCK_ERASE_20, SPI_BLOCK_ERASE_21, SPI_BLOCK_ERASE_40, SPI_BLOCK_ERASE_50, SPI_BLOCK_ERASE_52, SPI_BLOCK_ERASE_53, SPI_BLOCK_ERASE_5C, SPI_BLOCK_ERASE_60, SPI_BLOCK_ERASE_62, SPI_BLOCK_ERASE_81, SPI_BLOCK_ERASE_C4, SPI_BLOCK_ERASE_C7, SPI_BLOCK_ERASE_D7, SPI_BLOCK_ERASE_D8, SPI_BLOCK_ERASE_DB, SPI_BLOCK_ERASE_DC, S25FL_BLOCK_ERASE, S25FS_BLOCK_ERASE_D8, JEDEC_SECTOR_ERASE, JEDEC_BLOCK_ERASE, JEDEC_CHIP_BLOCK_ERASE, OPAQUE_ERASE, SPI_ERASE_AT45CS_SECTOR, SPI_ERASE_AT45DB_BLOCK, SPI_ERASE_AT45DB_CHIP, SPI_ERASE_AT45DB_PAGE, SPI_ERASE_AT45DB_SECTOR, ERASE_CHIP_28SF040, ERASE_SECTOR_28SF040, ERASE_BLOCK_82802AB, ERASE_SECTOR_49LFXXXC, STM50_SECTOR_ERASE, EDI_CHIP_BLOCK_ERASE, TEST_ERASE_INJECTOR, /* special case must come last. */ }; struct flashchip { const char *vendor; const char *name; enum chipbustype bustype; /* * With 32bit manufacture_id and model_id we can cover IDs up to * (including) the 4th bank of JEDEC JEP106W Standard Manufacturer's * Identification code. */ uint32_t manufacture_id; uint32_t model_id; /* Total chip size in kilobytes */ unsigned int total_size; /* Chip page size in bytes */ unsigned int page_size; int feature_bits; /* Indicate how well flashrom supports different operations of this flash chip. */ struct tested { enum test_state probe; enum test_state read; enum test_state erase; enum test_state write; enum test_state wp; } tested; /* * Group chips that have common command sets. This should ensure that * no chip gets confused by a probing command for a very different class * of chips. */ enum { /* SPI25 is very common. Keep it at zero so we don't have to specify it for each and every chip in the database.*/ SPI25 = 0, SPI_EDI = 1, } spi_cmd_set; enum probe_func probe; /* Delay after "enter/exit ID mode" commands in microseconds. * NB: negative values have special meanings, see TIMING_* below. */ signed int probe_timing; /* * Erase blocks and associated erase function. Any chip erase function * is stored as chip-sized virtual block together with said function. * The first one that fits will be chosen. There is currently no way to * influence that behaviour. For testing just comment out the other * elements or set the function pointer to NULL. */ struct block_eraser { struct eraseblock { unsigned int size; /* Eraseblock size in bytes */ unsigned int count; /* Number of contiguous blocks with that size */ } eraseblocks[NUM_ERASEREGIONS]; /* a block_erase function should try to erase one block of size * 'blocklen' at address 'blockaddr' and return 0 on success. */ enum block_erase_func block_erase; } block_erasers[NUM_ERASEFUNCTIONS]; int (*printlock) (struct flashctx *flash); int (*unlock) (struct flashctx *flash); enum write_func write; enum read_func read; struct voltage { uint16_t min; uint16_t max; } voltage; enum write_granularity gran; struct reg_bit_map { /* Status register protection bit (SRP) */ struct reg_bit_info srp; /* Status register lock bit (SRP) */ struct reg_bit_info srl; /* * Note: some datasheets refer to configuration bits that * function like TB/SEC/CMP bits as BP bits (e.g. BP3 for a bit * that functions like TB). * * As a convention, any config bit that functions like a * TB/SEC/CMP bit should be assigned to the respective * tb/sec/cmp field in this structure, even if the datasheet * uses a different name. */ /* Block protection bits (BP) */ /* Extra element for terminator */ struct reg_bit_info bp[MAX_BP_BITS + 1]; /* Top/bottom protection bit (TB) */ struct reg_bit_info tb; /* Sector/block protection bit (SEC) */ struct reg_bit_info sec; /* Complement bit (CMP) */ struct reg_bit_info cmp; /* Write Protect Selection (per sector protection when set) */ struct reg_bit_info wps; } reg_bits; /* * Function that takes a set of WP config bits (e.g. BP, SEC, TB, etc) * and determines what protection range they select. */ enum decode_range_func decode_range; }; typedef int (*chip_restore_fn_cb_t)(struct flashctx *flash, uint8_t status); struct flashrom_flashctx { struct flashchip *chip; /* FIXME: The memory mappings should be saved in a more structured way. */ /* The physical_* fields store the respective addresses in the physical address space of the CPU. */ uintptr_t physical_memory; /* The virtual_* fields store where the respective physical address is mapped into flashrom's address * space. A value equivalent to (chipaddr)ERROR_PTR indicates an invalid mapping (or none at all). */ chipaddr virtual_memory; /* Some flash devices have an additional register space; semantics are like above. */ uintptr_t physical_registers; chipaddr virtual_registers; struct registered_master *mst; const struct flashrom_layout *layout; struct flashrom_layout *default_layout; struct { bool force; bool force_boardmismatch; bool verify_after_write; bool verify_whole_chip; } flags; /* We cache the state of the extended address register (highest byte * of a 4BA for 3BA instructions) and the state of the 4BA mode here. * If possible, we enter 4BA mode early. If that fails, we make use * of the extended address register. */ int address_high_byte; bool in_4ba_mode; int chip_restore_fn_count; struct chip_restore_func_data { chip_restore_fn_cb_t func; uint8_t status; } chip_restore_fn[MAX_CHIP_RESTORE_FUNCTIONS]; /* Progress reporting */ flashrom_progress_callback *progress_callback; struct flashrom_progress *progress_state; }; /* Timing used in probe routines. ZERO is -2 to differentiate between an unset * field and zero delay. * * SPI devices will always have zero delay and ignore this field. */ #define TIMING_FIXME -1 /* this is intentionally same value as fixme */ #define TIMING_IGNORED -1 #define TIMING_ZERO -2 extern const struct flashchip flashchips[]; extern const unsigned int flashchips_size; /* parallel.c */ void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr); void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr); void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr); void chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len); uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr); uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr); uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr); void chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len); /* print.c */ int print_supported(void); void print_supported_wiki(void); /* helpers.c */ uint32_t address_to_bits(uint32_t addr); unsigned int bitcount(unsigned long a); #undef MIN #define MIN(a, b) ((a) < (b) ? (a) : (b)) #undef MAX #define MAX(a, b) ((a) > (b) ? (a) : (b)) int max(int a, int b); int min(int a, int b); char *strcat_realloc(char *dest, const char *src); void tolower_string(char *str); uint8_t reverse_byte(uint8_t x); void reverse_bytes(uint8_t *dst, const uint8_t *src, size_t length); #ifdef __MINGW32__ char* strtok_r(char *str, const char *delim, char **nextp); char *strndup(const char *str, size_t size); #endif #if defined(__DJGPP__) || (!defined(__LIBPAYLOAD__) && !defined(HAVE_STRNLEN)) size_t strnlen(const char *str, size_t n); #endif /* flashrom.c */ extern const char flashrom_version[]; char *flashbuses_to_text(enum chipbustype bustype); int map_flash(struct flashctx *flash); void unmap_flash(struct flashctx *flash); int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len); int erase_flash(struct flashctx *flash); int probe_flash(struct registered_master *mst, int startchip, struct flashctx *flash, int force, const char *const chip_to_probe); int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len); void emergency_help_message(void); void print_version(void); void print_buildinfo(void); void print_banner(void); void list_programmers_linebreak(int startcol, int cols, int paren); int selfcheck(void); int read_buf_from_file(unsigned char *buf, unsigned long size, const char *filename); int write_buf_to_file(const unsigned char *buf, unsigned long size, const char *filename); int prepare_flash_access(struct flashctx *, bool read_it, bool write_it, bool erase_it, bool verify_it); void finalize_flash_access(struct flashctx *); int register_chip_restore(chip_restore_fn_cb_t func, struct flashctx *flash, uint8_t status); /* Something happened that shouldn't happen, but we can go on. */ #define ERROR_FLASHROM_NONFATAL 0x100 /* Something happened that shouldn't happen, we'll abort. */ #define ERROR_FLASHROM_FATAL -0xee #define ERROR_FLASHROM_BUG -200 /* We reached one of the hardcoded limits of flashrom. This can be fixed by * increasing the limit of a compile-time allocation or by switching to dynamic * allocation. * Note: If this warning is triggered, check first for runaway registrations. */ #define ERROR_FLASHROM_LIMIT -201 /* cli_common.c */ void print_chip_support_status(const struct flashchip *chip); /* cli_output.c */ extern enum flashrom_log_level verbose_screen; extern enum flashrom_log_level verbose_logfile; int open_logfile(const char * const filename); int close_logfile(void); void start_logging(void); int flashrom_print_cb(enum flashrom_log_level level, const char *fmt, va_list ap); void flashrom_progress_cb(struct flashrom_flashctx *flashctx); /* Let gcc and clang check for correct printf-style format strings. */ int print(enum flashrom_log_level level, const char *fmt, ...) #ifdef __MINGW32__ # ifndef __MINGW_PRINTF_FORMAT # define __MINGW_PRINTF_FORMAT gnu_printf # endif __attribute__((format(__MINGW_PRINTF_FORMAT, 2, 3))); #else __attribute__((format(printf, 2, 3))); #endif #define msg_gerr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* general errors */ #define msg_perr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* programmer errors */ #define msg_cerr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* chip errors */ #define msg_gwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* general warnings */ #define msg_pwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* programmer warnings */ #define msg_cwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* chip warnings */ #define msg_ginfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* general info */ #define msg_pinfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* programmer info */ #define msg_cinfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* chip info */ #define msg_gdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* general debug */ #define msg_pdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* programmer debug */ #define msg_cdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* chip debug */ #define msg_gdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* general debug2 */ #define msg_pdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* programmer debug2 */ #define msg_cdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* chip debug2 */ #define msg_gspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* general debug spew */ #define msg_pspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* programmer debug spew */ #define msg_cspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* chip debug spew */ void update_progress(struct flashctx *flash, enum flashrom_progress_stage stage, size_t current, size_t total); /* spi.c */ struct spi_command { unsigned int writecnt; unsigned int readcnt; const unsigned char *writearr; unsigned char *readarr; }; #define NULL_SPI_CMD { 0, 0, NULL, NULL, } int spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr); int spi_send_multicommand(const struct flashctx *flash, struct spi_command *cmds); enum chipbustype get_buses_supported(void); #endif /* !__FLASH_H__ */