summaryrefslogtreecommitdiffstats
path: root/src
ModeNameSize
d---------aig215logstatsplain
d---------base212logstatsplain
d---------bdd213logstatsplain
d---------bool213logstatsplain
-rw-r--r--demo.c5842logstatsplain
-rw-r--r--generic.c1415logstatsplain
-rw-r--r--generic.h1983logstatsplain
d---------map276logstatsplain
d---------misc490logstatsplain
d---------opt481logstatsplain
d---------phys / place32logstatsplain
d---------proof394logstatsplain
d---------python418logstatsplain
d---------sat247logstatsplain
-rw-r--r--starter.c5852logstatsplain
-rw-r--r--template.c2679logstatsplain
86'>286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *                2019  Eddie Hung    <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// Convert negative-polarity reset to positive-polarity
(* techmap_celltype = "$_DFF_NN0_" *)
module _90_dff_nn0_to_np0 (input D, C, R, output Q); \$_DFF_NP0_  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN0_" *)
module _90_dff_pn0_to_pp0 (input D, C, R, output Q); \$_DFF_PP0_  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_NN1_" *)
module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1_   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN1_" *)
module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1_   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule

(* techmap_celltype = "$__DFFE_NN0" *)
module _90_dffe_nn0_to_np0 (input D, C, R, E, output Q); \$__DFFE_NP0  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFE_PN0" *)
module _90_dffe_pn0_to_pp0 (input D, C, R, E, output Q); \$__DFFE_PP0  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFE_NN1" *)
module _90_dffe_nn1_to_np1 (input D, C, R, E, output Q); \$__DFFE_NP1   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFE_PN1" *)
module _90_dffe_pn1_to_pp1 (input D, C, R, E, output Q); \$__DFFE_PP1   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule

(* techmap_celltype = "$__DFFS_NN0_" *)
module _90_dffs_nn0_to_np0 (input D, C, R, output Q); \$__DFFS_NP0_  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFS_PN0_" *)
module _90_dffs_pn0_to_pp0 (input D, C, R, output Q); \$__DFFS_PP0_  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFS_NN1_" *)
module _90_dffs_nn1_to_np1 (input D, C, R, output Q); \$__DFFS_NP1_   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFS_PN1_" *)
module _90_dffs_pn1_to_pp1 (input D, C, R, output Q); \$__DFFS_PP1_   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule

(* techmap_celltype = "$__DFFSE_NN0" *)
module _90_dffse_nn0_to_np0 (input D, C, R, E, output Q); \$__DFFSE_NP0  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFSE_PN0" *)
module _90_dffse_pn0_to_pp0 (input D, C, R, E, output Q); \$__DFFSE_PP0  _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFSE_NN1" *)
module _90_dffse_nn1_to_np1 (input D, C, R, E, output Q); \$__DFFSE_NP1   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFSE_PN1" *)
module _90_dffse_pn1_to_pp1 (input D, C, R, E, output Q); \$__DFFSE_PP1   _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule

module \$__SHREG_ (input C, input D, input E, output Q);
  parameter DEPTH = 0;
  parameter [DEPTH-1:0] INIT = 0;
  parameter CLKPOL = 1;
  parameter ENPOL = 2;

  \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
endmodule

module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
  parameter DEPTH = 0;
  parameter [DEPTH-1:0] INIT = 0;
  parameter CLKPOL = 1;
  parameter ENPOL = 2;

  // shregmap's INIT parameter shifts out LSB first;
  // however Xilinx expects MSB first
  function [DEPTH-1:0] brev;
    input [DEPTH-1:0] din;
    integer i;
    begin
      for (i = 0; i < DEPTH; i=i+1)
        brev[i] = din[DEPTH-1-i];
    end
  endfunction
  localparam [DEPTH-1:0] INIT_R = brev(INIT);

  parameter _TECHMAP_CONSTMSK_L_ = 0;

  wire CE;
  generate
    if (ENPOL == 0)
      assign CE = ~E;
    else if (ENPOL == 1)
      assign CE = E;
    else
      assign CE = 1'b1;
    if (DEPTH == 1) begin
      if (CLKPOL)
          FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
      else
          FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
    end else
    if (DEPTH <= 16) begin
      SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
    end else
    if (DEPTH > 17 && DEPTH <= 32) begin
      SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
    end else
    if (DEPTH > 33 && DEPTH <= 64) begin
      wire T0, T1, T2;
      SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
      \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
      if (&_TECHMAP_CONSTMSK_L_)
        assign Q = T2;
      else
        MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
    end else
    if (DEPTH > 65 && DEPTH <= 96) begin
      wire T0, T1, T2, T3, T4, T5, T6;
      SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
      SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
      \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
      if (&_TECHMAP_CONSTMSK_L_)
        assign Q = T4;
      else
        \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q));
    end else
    if (DEPTH > 97 && DEPTH < 128) begin
      wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
      SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
      SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
      SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
      \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
      if (&_TECHMAP_CONSTMSK_L_)
        assign Q = T6;
      else
        \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
    end
    else if (DEPTH == 128) begin
      wire T0, T1, T2, T3, T4, T5, T6;
      SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
      SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
      SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
      SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
      if (&_TECHMAP_CONSTMSK_L_)
        assign Q = T6;
      else
        \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
    end
    // For fixed length, if just 1 over a convenient value, decompose
    else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin
      wire T;
      \$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl      (.C(C), .D(D), .L({32{1'b1}}), .E(E), .Q(T));
      \$__XILINX_SHREG_ #(.DEPTH(1),       .INIT(INIT[0]),         .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(T), .L(L), .E(E), .Q(Q));
    end
    // For variable length, if just 1 over a convenient value, then bump up one more
    else if (DEPTH < 129 && ~&_TECHMAP_CONSTMSK_L_)
      \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
    else begin
      localparam depth0 = 128;
      localparam num_srl128 = DEPTH / depth0;
      localparam depthN = DEPTH % depth0;
      wire [num_srl128 + (depthN > 0 ? 1 : 0) - 1:0] T;
      wire [num_srl128 + (depthN > 0 ? 1 : 0) :0] S;
      assign S[0] = D;
      genvar i;
      for (i = 0; i < num_srl128; i++)
        \$__XILINX_SHREG_ #(.DEPTH(depth0), .INIT(INIT[DEPTH-1-i*depth0-:depth0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl      (.C(C), .D(S[i]),          .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[i]), .SO(S[i+1]));

      if (depthN > 0)
        \$__XILINX_SHREG_ #(.DEPTH(depthN), .INIT(INIT[depthN-1:0]),               .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(S[num_srl128]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[num_srl128]));

      if (&_TECHMAP_CONSTMSK_L_)
        assign Q = T[num_srl128 + (depthN > 0 ? 1 : 0) - 1];
      else
        assign Q = T[L[DEPTH-1:$clog2(depth0)]];
    end
  endgenerate
endmodule

`ifdef MIN_MUX_INPUTS
module \$__XILINX_SHIFTX (A, B, Y);
  parameter A_SIGNED = 0;
  parameter B_SIGNED = 0;
  parameter A_WIDTH = 1;
  parameter B_WIDTH = 1;
  parameter Y_WIDTH = 1;

  input [A_WIDTH-1:0] A;
  input [B_WIDTH-1:0] B;
  output [Y_WIDTH-1:0] Y;

  parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
  parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
  parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
  parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;

  function integer A_WIDTH_trimmed;
    input integer start;
  begin
    A_WIDTH_trimmed = start;
    while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx)
      A_WIDTH_trimmed = A_WIDTH_trimmed - 1;
  end
  endfunction

  generate
    genvar i, j;
    // Bit-blast
    if (Y_WIDTH > 1) begin
      for (i = 0; i < Y_WIDTH; i++)
        \$__XILINX_SHIFTX  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
    end
    // If the LSB of B is constant zero (and Y_WIDTH is 1) then
    //   we can optimise by removing every other entry from A
    //   and popping the constant zero from B
    else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
      wire [(A_WIDTH+1)/2-1:0] A_i;
      for (i = 0; i < (A_WIDTH+1)/2; i++)
        assign A_i[i] = A[i*2];
      \$__XILINX_SHIFTX  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
    end
    // Trim off any leading 1'bx -es in A
    else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin
      localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1);
      \$__XILINX_SHIFTX  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y));
    end
    else if (A_WIDTH < `MIN_MUX_INPUTS) begin
      wire _TECHMAP_FAIL_ = 1;
    end
    else if (A_WIDTH == 2) begin
      MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y));
    end
    else if (A_WIDTH <= 4) begin
      wire [4-1:0] Ax;
      if (A_WIDTH == 4)
        assign Ax = A;
      else
        // Rather than extend with 1'bx which gets flattened to 1'b0
        // causing the "don't care" status to get lost, extend with
        // the same driver of F7B.I0 so that we can optimise F7B away
        // later
        assign Ax = {A[1], A};
      \$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y));
    end
    // Note that the following decompositions are 'backwards' in that
    // the LSBs are placed on the hard resources, and the soft resources
    // are used for MSBs.
    // This has the effect of more effectively utilising the hard mux;
    // take for example a 5:1 multiplexer, currently this would map as:
    //
    //     A[0] \___  __                             A[0] \__  __
    //     A[4] /   \|  \       whereas the more     A[1] /  \|  \
    //     A[1] _____|   |      obvious mapping      A[2] \___|   |
    //     A[2] _____|   |--    of MSBs to hard      A[3] /   |   |__
    //     A[3]______|   |      resources would      A[4] ____|   |
    //               |__/       lead to:             1'bx ____|   |
    //                ||                                      |__/
    //                ||                                       ||
    //              B[1:0]                                   B[1:2]
    //
    // Expectation would be that the 'forward' mapping (right) is more
    // area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers
    // on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs)
    // but that the 'backwards' mapping (left) is more delay efficient
    // since smaller LUTs are faster than wider ones.
    else if (A_WIDTH <= 8) begin
      wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A};
      wire T0 = B[2] ? Ax[4] : Ax[0];
      wire T1 = B[2] ? Ax[5] : Ax[1];
      wire T2 = B[2] ? Ax[6] : Ax[2];
      wire T3 = B[2] ? Ax[7] : Ax[3];
      \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
    end
    else if (A_WIDTH <= 16) begin
      wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A};
      wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4]
                     : B[3] ? Ax[ 8] : Ax[0];
      wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5]
                     : B[3] ? Ax[ 9] : Ax[1];
      wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6]
                     : B[3] ? Ax[10] : Ax[2];
      wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7]
                     : B[3] ? Ax[11] : Ax[3];
      \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
    end
    else begin
      localparam num_mux16 = (A_WIDTH+15) / 16;
      localparam clog2_num_mux16 = $clog2(num_mux16);
      wire [num_mux16-1:0] T;
      wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A};
      for (i = 0; i < num_mux16; i++)
        \$__XILINX_SHIFTX  #(
          .A_SIGNED(A_SIGNED),
          .B_SIGNED(B_SIGNED),
          .A_WIDTH(16),
          .B_WIDTH(4),
          .Y_WIDTH(Y_WIDTH)
        ) fpga_mux (
          .A(Ax[i*16+:16]),
          .B(B[3:0]),
          .Y(T[i])
        );
      \$__XILINX_SHIFTX  #(
          .A_SIGNED(A_SIGNED),
          .B_SIGNED(B_SIGNED),
          .A_WIDTH(num_mux16),
          .B_WIDTH(clog2_num_mux16),
          .Y_WIDTH(Y_WIDTH)
      ) _TECHMAP_REPLACE_ (
          .A(T),
          .B(B[B_WIDTH-1-:clog2_num_mux16]),
          .Y(Y));
    end
  endgenerate
endmodule

(* techmap_celltype = "$__XILINX_SHIFTX" *)
module _90__XILINX_SHIFTX (A, B, Y);
  parameter A_SIGNED = 0;
  parameter B_SIGNED = 0;
  parameter A_WIDTH = 1;
  parameter B_WIDTH = 1;
  parameter Y_WIDTH = 1;

  input [A_WIDTH-1:0] A;
  input [B_WIDTH-1:0] B;
  output [Y_WIDTH-1:0] Y;

  \$shiftx  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
endmodule

module \$_MUX_ (A, B, S, Y);
  input A, B, S;
  output Y;
  generate
    if (`MIN_MUX_INPUTS == 2)
      \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y));
    else
      wire _TECHMAP_FAIL_ = 1;
  endgenerate
endmodule

module \$_MUX4_ (A, B, C, D, S, T, Y);
  input A, B, C, D, S, T;
  output Y;
  \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y));
endmodule

module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y);
  input A, B, C, D, E, F, G, H, S, T, U;
  output Y;
  \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y));
endmodule

module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y);
  input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V;
  output Y;
  \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y));
endmodule
`endif

module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1);
  output O;
  input I0, I1, I2, I3, S0, S1;
  wire T0, T1;
  parameter _TECHMAP_BITS_CONNMAP_ = 0;
  parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0;
  parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0;
  parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0;
  parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0;
  parameter _TECHMAP_CONSTMSK_S0_ = 0;
  parameter _TECHMAP_CONSTVAL_S0_ = 0;
  parameter _TECHMAP_CONSTMSK_S1_ = 0;
  parameter _TECHMAP_CONSTVAL_S1_ = 0;
  if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
    assign T0 = I1;
  else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_)
    assign T0 = I0;
  else
    MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0));
  if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
    assign T1 = I3;
  else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)
    assign T1 = I2;
  else
    MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1));
  if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1)
    assign O = T1;
  else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_))
    assign O = T0;
  else
    MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O));
endmodule

module \$__XILINX_TINOUTPAD (input I, OE, output O, inout IO);
  IOBUF _TECHMAP_REPLACE_ (.I(I), .O(O), .T(~OE), .IO(IO));
endmodule

module \$__XILINX_TOUTPAD (input I, OE, output O);
  OBUFT _TECHMAP_REPLACE_ (.I(I), .O(O), .T(~OE));
endmodule