1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/**CFile****************************************************************
FileName [ivyOper.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [And-Inverter Graph package.]
Synopsis [AIG operations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - May 11, 2006.]
Revision [$Id: ivyOper.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ivy.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// procedure to detect an EXOR gate
static inline int Ivy_ObjIsExorType( Ivy_Obj_t * p0, Ivy_Obj_t * p1, Ivy_Obj_t ** ppFan0, Ivy_Obj_t ** ppFan1 )
{
if ( !Ivy_IsComplement(p0) || !Ivy_IsComplement(p1) )
return 0;
p0 = Ivy_Regular(p0);
p1 = Ivy_Regular(p1);
if ( !Ivy_ObjIsAnd(p0) || !Ivy_ObjIsAnd(p1) )
return 0;
if ( Ivy_ObjFanin0(p0) != Ivy_ObjFanin0(p1) || Ivy_ObjFanin1(p0) != Ivy_ObjFanin1(p1) )
return 0;
if ( Ivy_ObjFaninC0(p0) == Ivy_ObjFaninC0(p1) || Ivy_ObjFaninC1(p0) == Ivy_ObjFaninC1(p1) )
return 0;
*ppFan0 = Ivy_ObjChild0(p0);
*ppFan1 = Ivy_ObjChild1(p0);
return 1;
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Perform one operation.]
Description [The argument nodes can be complemented.]
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Oper( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1, Ivy_Type_t Type )
{
if ( Type == IVY_AND )
return Ivy_And( p, p0, p1 );
if ( Type == IVY_EXOR )
return Ivy_Exor( p, p0, p1 );
assert( 0 );
return NULL;
}
/**Function*************************************************************
Synopsis [Performs canonicization step.]
Description [The argument nodes can be complemented.]
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_And( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 )
{
// Ivy_Obj_t * pFan0, * pFan1;
// check trivial cases
if ( p0 == p1 )
return p0;
if ( p0 == Ivy_Not(p1) )
return Ivy_Not(p->pConst1);
if ( Ivy_Regular(p0) == p->pConst1 )
return p0 == p->pConst1 ? p1 : Ivy_Not(p->pConst1);
if ( Ivy_Regular(p1) == p->pConst1 )
return p1 == p->pConst1 ? p0 : Ivy_Not(p->pConst1);
// check if it can be an EXOR gate
// if ( Ivy_ObjIsExorType( p0, p1, &pFan0, &pFan1 ) )
// return Ivy_CanonExor( pFan0, pFan1 );
return Ivy_CanonAnd( p, p0, p1 );
}
/**Function*************************************************************
Synopsis [Performs canonicization step.]
Description [The argument nodes can be complemented.]
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Exor( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 )
{
/*
// check trivial cases
if ( p0 == p1 )
return Ivy_Not(p->pConst1);
if ( p0 == Ivy_Not(p1) )
return p->pConst1;
if ( Ivy_Regular(p0) == p->pConst1 )
return Ivy_NotCond( p1, p0 == p->pConst1 );
if ( Ivy_Regular(p1) == p->pConst1 )
return Ivy_NotCond( p0, p1 == p->pConst1 );
// check the table
return Ivy_CanonExor( p, p0, p1 );
*/
return Ivy_Or( p, Ivy_And(p, p0, Ivy_Not(p1)), Ivy_And(p, Ivy_Not(p0), p1) );
}
/**Function*************************************************************
Synopsis [Implements Boolean OR.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Or( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 )
{
return Ivy_Not( Ivy_And( p, Ivy_Not(p0), Ivy_Not(p1) ) );
}
/**Function*************************************************************
Synopsis [Implements ITE operation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Mux( Ivy_Man_t * p, Ivy_Obj_t * pC, Ivy_Obj_t * p1, Ivy_Obj_t * p0 )
{
Ivy_Obj_t * pTempA1, * pTempA2, * pTempB1, * pTempB2, * pTemp;
int Count0, Count1;
// consider trivial cases
if ( p0 == Ivy_Not(p1) )
return Ivy_Exor( p, pC, p0 );
// other cases can be added
// implement the first MUX (F = C * x1 + C' * x0)
pTempA1 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pC, p1, IVY_AND, IVY_INIT_NONE) );
pTempA2 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pC), p0, IVY_AND, IVY_INIT_NONE) );
if ( pTempA1 && pTempA2 )
{
pTemp = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pTempA1), Ivy_Not(pTempA2), IVY_AND, IVY_INIT_NONE) );
if ( pTemp ) return Ivy_Not(pTemp);
}
Count0 = (pTempA1 != NULL) + (pTempA2 != NULL);
// implement the second MUX (F' = C * x1' + C' * x0')
pTempB1 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pC, Ivy_Not(p1), IVY_AND, IVY_INIT_NONE) );
pTempB2 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pC), Ivy_Not(p0), IVY_AND, IVY_INIT_NONE) );
if ( pTempB1 && pTempB2 )
{
pTemp = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pTempB1), Ivy_Not(pTempB2), IVY_AND, IVY_INIT_NONE) );
if ( pTemp ) return pTemp;
}
Count1 = (pTempB1 != NULL) + (pTempB2 != NULL);
// compare and decide which one to implement
if ( Count0 >= Count1 )
{
pTempA1 = pTempA1? pTempA1 : Ivy_And(p, pC, p1);
pTempA2 = pTempA2? pTempA2 : Ivy_And(p, Ivy_Not(pC), p0);
return Ivy_Or( p, pTempA1, pTempA2 );
}
pTempB1 = pTempB1? pTempB1 : Ivy_And(p, pC, Ivy_Not(p1));
pTempB2 = pTempB2? pTempB2 : Ivy_And(p, Ivy_Not(pC), Ivy_Not(p0));
return Ivy_Not( Ivy_Or( p, pTempB1, pTempB2 ) );
// return Ivy_Or( Ivy_And(pC, p1), Ivy_And(Ivy_Not(pC), p0) );
}
/**Function*************************************************************
Synopsis [Implements ITE operation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Maj( Ivy_Man_t * p, Ivy_Obj_t * pA, Ivy_Obj_t * pB, Ivy_Obj_t * pC )
{
return Ivy_Or( p, Ivy_Or(p, Ivy_And(p, pA, pB), Ivy_And(p, pA, pC)), Ivy_And(p, pB, pC) );
}
/**Function*************************************************************
Synopsis [Implements the miter.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Miter( Ivy_Man_t * p, Vec_Ptr_t * vPairs )
{
int i;
assert( vPairs->nSize > 0 );
assert( vPairs->nSize % 2 == 0 );
// go through the cubes of the node's SOP
for ( i = 0; i < vPairs->nSize; i += 2 )
vPairs->pArray[i/2] = Ivy_Not( Ivy_Exor( p, vPairs->pArray[i], vPairs->pArray[i+1] ) );
vPairs->nSize = vPairs->nSize/2;
return Ivy_Not( Ivy_Multi_rec( p, (Ivy_Obj_t **)vPairs->pArray, vPairs->nSize, IVY_AND ) );
}
/**Function*************************************************************
Synopsis [Performs canonicization step.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_Latch( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Init_t Init )
{
return Ivy_CanonLatch( p, pObj, Init );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|