1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/**CFile****************************************************************
FileName [ivyIsop.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [And-Inverter Graph package.]
Synopsis [Computing irredundant SOP using truth table.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - May 11, 2006.]
Revision [$Id: ivyIsop.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ivy.h"
#include "mem.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// ISOP computation fails if intermediate memory usage exceed this limit
#define IVY_ISOP_MEM_LIMIT 16*4096
// intermediate ISOP representation
typedef struct Ivy_Sop_t_ Ivy_Sop_t;
struct Ivy_Sop_t_
{
unsigned * pCubes;
int nCubes;
};
// static procedures to compute ISOP
static unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore );
static unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes ISOP from TT.]
Description [Returns the cover in vCover. Uses the rest of array in vCover
as an intermediate memory storage. Returns the cover with -1 cubes, if the
the computation exceeded the memory limit (IVY_ISOP_MEM_LIMIT words of
intermediate data).]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBoth )
{
Ivy_Sop_t cRes, * pcRes = &cRes;
Ivy_Sop_t cRes2, * pcRes2 = &cRes2;
unsigned * pResult;
int RetValue = 0;
assert( nVars >= 0 && nVars < 16 );
// if nVars < 5, make sure it does not depend on those vars
// for ( i = nVars; i < 5; i++ )
// assert( !Extra_TruthVarInSupport(puTruth, 5, i) );
// prepare memory manager
Vec_IntClear( vCover );
Vec_IntGrow( vCover, IVY_ISOP_MEM_LIMIT );
// compute ISOP for the direct polarity
pResult = Ivy_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vCover );
if ( pcRes->nCubes == -1 )
{
vCover->nSize = -1;
return 0;
}
assert( Extra_TruthIsEqual( puTruth, pResult, nVars ) );
if ( fTryBoth )
{
// compute ISOP for the complemented polarity
Extra_TruthNot( puTruth, puTruth, nVars );
pResult = Ivy_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vCover );
if ( pcRes2->nCubes >= 0 )
{
assert( Extra_TruthIsEqual( puTruth, pResult, nVars ) );
if ( pcRes->nCubes > pcRes2->nCubes )
{
RetValue = 1;
pcRes = pcRes2;
}
}
Extra_TruthNot( puTruth, puTruth, nVars );
}
// printf( "%d ", vCover->nSize );
// move the cover representation to the beginning of the memory buffer
memmove( vCover->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) );
Vec_IntShrink( vCover, pcRes->nCubes );
return RetValue;
}
/**Function*************************************************************
Synopsis [Computes ISOP 6 variables or more.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore )
{
Ivy_Sop_t cRes0, cRes1, cRes2;
Ivy_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2;
unsigned * puRes0, * puRes1, * puRes2;
unsigned * puOn0, * puOn1, * puOnDc0, * puOnDc1, * pTemp, * pTemp0, * pTemp1;
int i, k, Var, nWords, nWordsAll;
// assert( Extra_TruthIsImply( puOn, puOnDc, nVars ) );
// allocate room for the resulting truth table
nWordsAll = Extra_TruthWordNum( nVars );
pTemp = Vec_IntFetch( vStore, nWordsAll );
if ( pTemp == NULL )
{
pcRes->nCubes = -1;
return NULL;
}
// check for constants
if ( Extra_TruthIsConst0( puOn, nVars ) )
{
pcRes->nCubes = 0;
pcRes->pCubes = NULL;
Extra_TruthClear( pTemp, nVars );
return pTemp;
}
if ( Extra_TruthIsConst1( puOnDc, nVars ) )
{
pcRes->nCubes = 1;
pcRes->pCubes = Vec_IntFetch( vStore, 1 );
if ( pcRes->pCubes == NULL )
{
pcRes->nCubes = -1;
return NULL;
}
pcRes->pCubes[0] = 0;
Extra_TruthFill( pTemp, nVars );
return pTemp;
}
assert( nVars > 0 );
// find the topmost var
for ( Var = nVars-1; Var >= 0; Var-- )
if ( Extra_TruthVarInSupport( puOn, nVars, Var ) ||
Extra_TruthVarInSupport( puOnDc, nVars, Var ) )
break;
assert( Var >= 0 );
// consider a simple case when one-word computation can be used
if ( Var < 5 )
{
unsigned uRes = Ivy_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore );
for ( i = 0; i < nWordsAll; i++ )
pTemp[i] = uRes;
return pTemp;
}
assert( Var >= 5 );
nWords = Extra_TruthWordNum( Var );
// cofactor
puOn0 = puOn; puOn1 = puOn + nWords;
puOnDc0 = puOnDc; puOnDc1 = puOnDc + nWords;
pTemp0 = pTemp; pTemp1 = pTemp + nWords;
// solve for cofactors
Extra_TruthSharp( pTemp0, puOn0, puOnDc1, Var );
puRes0 = Ivy_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore );
if ( pcRes0->nCubes == -1 )
{
pcRes->nCubes = -1;
return NULL;
}
Extra_TruthSharp( pTemp1, puOn1, puOnDc0, Var );
puRes1 = Ivy_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore );
if ( pcRes1->nCubes == -1 )
{
pcRes->nCubes = -1;
return NULL;
}
Extra_TruthSharp( pTemp0, puOn0, puRes0, Var );
Extra_TruthSharp( pTemp1, puOn1, puRes1, Var );
Extra_TruthOr( pTemp0, pTemp0, pTemp1, Var );
Extra_TruthAnd( pTemp1, puOnDc0, puOnDc1, Var );
puRes2 = Ivy_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore );
if ( pcRes2->nCubes == -1 )
{
pcRes->nCubes = -1;
return NULL;
}
// create the resulting cover
pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes;
pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes );
if ( pcRes->pCubes == NULL )
{
pcRes->nCubes = -1;
return NULL;
}
k = 0;
for ( i = 0; i < pcRes0->nCubes; i++ )
pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+1));
for ( i = 0; i < pcRes1->nCubes; i++ )
pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+0));
for ( i = 0; i < pcRes2->nCubes; i++ )
pcRes->pCubes[k++] = pcRes2->pCubes[i];
assert( k == pcRes->nCubes );
// create the resulting truth table
Extra_TruthOr( pTemp0, puRes0, puRes2, Var );
Extra_TruthOr( pTemp1, puRes1, puRes2, Var );
// copy the table if needed
nWords <<= 1;
for ( i = 1; i < nWordsAll/nWords; i++ )
for ( k = 0; k < nWords; k++ )
pTemp[i*nWords + k] = pTemp[k];
// verify in the end
// assert( Extra_TruthIsImply( puOn, pTemp, nVars ) );
// assert( Extra_TruthIsImply( pTemp, puOnDc, nVars ) );
return pTemp;
}
/**Function*************************************************************
Synopsis [Computes ISOP for 5 variables or less.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore )
{
unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
Ivy_Sop_t cRes0, cRes1, cRes2;
Ivy_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2;
unsigned uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2;
int i, k, Var;
assert( nVars <= 5 );
assert( (uOn & ~uOnDc) == 0 );
if ( uOn == 0 )
{
pcRes->nCubes = 0;
pcRes->pCubes = NULL;
return 0;
}
if ( uOnDc == 0xFFFFFFFF )
{
pcRes->nCubes = 1;
pcRes->pCubes = Vec_IntFetch( vStore, 1 );
if ( pcRes->pCubes == NULL )
{
pcRes->nCubes = -1;
return 0;
}
pcRes->pCubes[0] = 0;
return 0xFFFFFFFF;
}
assert( nVars > 0 );
// find the topmost var
for ( Var = nVars-1; Var >= 0; Var-- )
if ( Extra_TruthVarInSupport( &uOn, 5, Var ) ||
Extra_TruthVarInSupport( &uOnDc, 5, Var ) )
break;
assert( Var >= 0 );
// cofactor
uOn0 = uOn1 = uOn;
uOnDc0 = uOnDc1 = uOnDc;
Extra_TruthCofactor0( &uOn0, Var + 1, Var );
Extra_TruthCofactor1( &uOn1, Var + 1, Var );
Extra_TruthCofactor0( &uOnDc0, Var + 1, Var );
Extra_TruthCofactor1( &uOnDc1, Var + 1, Var );
// solve for cofactors
uRes0 = Ivy_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore );
if ( pcRes0->nCubes == -1 )
{
pcRes->nCubes = -1;
return 0;
}
uRes1 = Ivy_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore );
if ( pcRes1->nCubes == -1 )
{
pcRes->nCubes = -1;
return 0;
}
uRes2 = Ivy_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore );
if ( pcRes2->nCubes == -1 )
{
pcRes->nCubes = -1;
return 0;
}
// create the resulting cover
pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes;
pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes );
if ( pcRes->pCubes == NULL )
{
pcRes->nCubes = -1;
return 0;
}
k = 0;
for ( i = 0; i < pcRes0->nCubes; i++ )
pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+1));
for ( i = 0; i < pcRes1->nCubes; i++ )
pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+0));
for ( i = 0; i < pcRes2->nCubes; i++ )
pcRes->pCubes[k++] = pcRes2->pCubes[i];
assert( k == pcRes->nCubes );
// derive the final truth table
uRes2 |= (uRes0 & ~uMasks[Var]) | (uRes1 & uMasks[Var]);
// assert( (uOn & ~uRes2) == 0 );
// assert( (uRes2 & ~uOnDc) == 0 );
return uRes2;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|