summaryrefslogtreecommitdiffstats
path: root/src/sat/msat/msatOrderH.c
blob: 956e7fc6ca891ac77c5db78653b24276275e3e76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/**CFile****************************************************************

  FileName    [msatOrder.c]

  PackageName [A C version of SAT solver MINISAT, originally developed 
  in C++ by Niklas Een and Niklas Sorensson, Chalmers University of 
  Technology, Sweden: http://www.cs.chalmers.se/~een/Satzoo.]

  Synopsis    [The manager of variable assignment.]

  Author      [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - January 1, 2004.]

  Revision    [$Id: msatOrder.c,v 1.0 2005/05/30 1:00:00 alanmi Exp $]

***********************************************************************/

#include "msatInt.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

// the variable package data structure
struct Msat_Order_t_
{
    Msat_Solver_t *      pSat;         // the SAT solver 
    Msat_IntVec_t *      vIndex;       // the heap
    Msat_IntVec_t *      vHeap;        // the mapping of var num into its heap num
};

//The solver can communicate to the variable order the following parts:
//- the array of current assignments (pSat->pAssigns)
//- the array of variable activities (pSat->pdActivity)
//- the array of variables currently in the cone (pSat->vConeVars)
//- the array of arrays of variables adjucent to each(pSat->vAdjacents)

#define HLEFT(i)               ((i)<<1)
#define HRIGHT(i)             (((i)<<1)+1)
#define HPARENT(i)             ((i)>>1)
#define HCOMPARE(p, i, j)      ((p)->pSat->pdActivity[i] > (p)->pSat->pdActivity[j])
#define HHEAP(p, i)            ((p)->vHeap->pArray[i])
#define HSIZE(p)               ((p)->vHeap->nSize)
#define HOKAY(p, i)            ((i) >= 0 && (i) < (p)->vIndex->nSize)
#define HINHEAP(p, i)          (HOKAY(p, i) && (p)->vIndex->pArray[i] != 0)
#define HEMPTY(p)              (HSIZE(p) == 1)

static int Msat_HeapCheck_rec( Msat_Order_t * p, int i );
static int Msat_HeapGetTop( Msat_Order_t * p );
static void Msat_HeapInsert( Msat_Order_t * p, int n );
static void Msat_HeapIncrease( Msat_Order_t * p, int n );
static void Msat_HeapPercolateUp( Msat_Order_t * p, int i );
static void Msat_HeapPercolateDown( Msat_Order_t * p, int i );

extern int timeSelect;

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Allocates the ordering structure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Msat_Order_t * Msat_OrderAlloc( Msat_Solver_t * pSat )
{
    Msat_Order_t * p;
    p = ALLOC( Msat_Order_t, 1 );
    memset( p, 0, sizeof(Msat_Order_t) );
    p->pSat   = pSat;
    p->vIndex = Msat_IntVecAlloc( 0 );
    p->vHeap  = Msat_IntVecAlloc( 0 );
    Msat_OrderSetBounds( p, pSat->nVarsAlloc );
    return p;
}

/**Function*************************************************************

  Synopsis    [Sets the bound of the ordering structure.]

  Description [Should be called whenever the SAT solver is resized.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_OrderSetBounds( Msat_Order_t * p, int nVarsMax )
{
    Msat_IntVecGrow( p->vIndex, nVarsMax );
    Msat_IntVecGrow( p->vHeap, nVarsMax + 1 );
    p->vIndex->nSize = nVarsMax;
    p->vHeap->nSize = 0;
}

/**Function*************************************************************

  Synopsis    [Cleans the ordering structure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_OrderClean( Msat_Order_t * p, Msat_IntVec_t * vCone )
{
    int i;
    for ( i = 0; i < p->vIndex->nSize; i++ )
        p->vIndex->pArray[i] = 0;
    for ( i = 0; i < vCone->nSize; i++ )
    {
        assert( i+1 < p->vHeap->nCap );
        p->vHeap->pArray[i+1] = vCone->pArray[i];

        assert( vCone->pArray[i] < p->vIndex->nSize );
        p->vIndex->pArray[vCone->pArray[i]] = i+1;
    }
    p->vHeap->nSize = vCone->nSize + 1;
}

/**Function*************************************************************

  Synopsis    [Checks that the J-boundary is okay.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Msat_OrderCheck( Msat_Order_t * p )
{
    return Msat_HeapCheck_rec( p, 1 );
}

/**Function*************************************************************

  Synopsis    [Frees the ordering structure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_OrderFree( Msat_Order_t * p )
{
    Msat_IntVecFree( p->vHeap );
    Msat_IntVecFree( p->vIndex );
    free( p );
}



/**Function*************************************************************

  Synopsis    [Selects the next variable to assign.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Msat_OrderVarSelect( Msat_Order_t * p )
{
    // Activity based decision:
//    while (!heap.empty()){
//        Var next = heap.getmin();
//        if (toLbool(assigns[next]) == l_Undef)
//            return next;
//    }
//    return var_Undef;

    int Var;
    int clk = clock();

    while ( !HEMPTY(p) )
    {
        Var = Msat_HeapGetTop(p);
        if ( (p)->pSat->pAssigns[Var] == MSAT_VAR_UNASSIGNED )
        {
//assert( Msat_OrderCheck(p) );
timeSelect += clock() - clk;
            return Var;
        }
    }
    return MSAT_ORDER_UNKNOWN;
}

/**Function*************************************************************

  Synopsis    [Updates J-boundary when the variable is assigned.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_OrderVarAssigned( Msat_Order_t * p, int Var )
{
}

/**Function*************************************************************

  Synopsis    [Updates the order after a variable is unassigned.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_OrderVarUnassigned( Msat_Order_t * p, int Var )
{
//    if (!heap.inHeap(x))
//        heap.insert(x);

    int clk = clock();
    if ( !HINHEAP(p,Var) )
        Msat_HeapInsert( p, Var );
timeSelect += clock() - clk;
}

/**Function*************************************************************

  Synopsis    [Updates the order after a variable changed weight.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_OrderUpdate( Msat_Order_t * p, int Var )
{
//    if (heap.inHeap(x))
//        heap.increase(x);

    int clk = clock();
    if ( HINHEAP(p,Var) )
        Msat_HeapIncrease( p, Var );
timeSelect += clock() - clk;
}




/**Function*************************************************************

  Synopsis    [Checks the heap property recursively.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Msat_HeapCheck_rec( Msat_Order_t * p, int i )
{
    return i >= HSIZE(p) ||
        ( HPARENT(i) == 0 || !HCOMPARE(p, HHEAP(p, i), HHEAP(p, HPARENT(i))) ) &&
        Msat_HeapCheck_rec( p, HLEFT(i) ) && Msat_HeapCheck_rec( p, HRIGHT(i) );
}

/**Function*************************************************************

  Synopsis    [Retrieves the minimum element.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Msat_HeapGetTop( Msat_Order_t * p )
{
    int Result, NewTop;
    Result                    = HHEAP(p, 1);
    NewTop                    = Msat_IntVecPop( p->vHeap );
    p->vHeap->pArray[1]       = NewTop;
    p->vIndex->pArray[NewTop] = 1;
    p->vIndex->pArray[Result] = 0;
    if ( p->vHeap->nSize > 1 )
        Msat_HeapPercolateDown( p, 1 );
    return Result;
}

/**Function*************************************************************

  Synopsis    [Inserts the new element.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_HeapInsert( Msat_Order_t * p, int n )
{
    assert( HOKAY(p, n) );
    p->vIndex->pArray[n] = HSIZE(p);
    Msat_IntVecPush( p->vHeap, n );
    Msat_HeapPercolateUp( p, p->vIndex->pArray[n] );
}

/**Function*************************************************************

  Synopsis    [Inserts the new element.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_HeapIncrease( Msat_Order_t * p, int n )
{
    Msat_HeapPercolateUp( p, p->vIndex->pArray[n] );
}

/**Function*************************************************************

  Synopsis    [Moves the entry up.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_HeapPercolateUp( Msat_Order_t * p, int i )
{
    int x = HHEAP(p, i);
    while ( HPARENT(i) != 0 && HCOMPARE(p, x, HHEAP(p, HPARENT(i))) )
    {
        p->vHeap->pArray[i]            = HHEAP(p, HPARENT(i));
        p->vIndex->pArray[HHEAP(p, i)] = i;
        i                              = HPARENT(i);
    }
    p->vHeap->pArray[i]  = x;
    p->vIndex->pArray[x] = i;
}

/**Function*************************************************************

  Synopsis    [Moves the entry down.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Msat_HeapPercolateDown( Msat_Order_t * p, int i )
{
    int x = HHEAP(p, i);
    int Child;
    while ( HLEFT(i) < HSIZE(p) )
    {
        if ( HRIGHT(i) < HSIZE(p) && HCOMPARE(p, HHEAP(p, HRIGHT(i)), HHEAP(p, HLEFT(i))) )
            Child = HRIGHT(i);
        else
            Child = HLEFT(i);
        if ( !HCOMPARE(p, HHEAP(p, Child), x) )
            break;
        p->vHeap->pArray[i]            = HHEAP(p, Child);
        p->vIndex->pArray[HHEAP(p, i)] = i;
        i                              = Child;
    }
    p->vHeap->pArray[i]  = x;
    p->vIndex->pArray[x] = i;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////