1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko
#ifndef ABC__sat__bsat__satSolver_h
#define ABC__sat__bsat__satSolver_h
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "satVec.h"
#include "satClause.h"
#include "misc/vec/vecSet.h"
ABC_NAMESPACE_HEADER_START
//#define USE_FLOAT_ACTIVITY
//=================================================================================================
// Public interface:
struct sat_solver_t;
typedef struct sat_solver_t sat_solver;
extern sat_solver* sat_solver_new(void);
extern void sat_solver_delete(sat_solver* s);
extern int sat_solver_addclause(sat_solver* s, lit* begin, lit* end);
extern int sat_solver_simplify(sat_solver* s);
extern int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
extern void sat_solver_rollback( sat_solver* s );
extern int sat_solver_nvars(sat_solver* s);
extern int sat_solver_nclauses(sat_solver* s);
extern int sat_solver_nconflicts(sat_solver* s);
extern double sat_solver_memory(sat_solver* s);
extern void sat_solver_setnvars(sat_solver* s,int n);
extern int sat_solver_get_var_value(sat_solver* s, int v);
extern void Sat_SolverWriteDimacs( sat_solver * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars );
extern void Sat_SolverPrintStats( FILE * pFile, sat_solver * p );
extern int * Sat_SolverGetModel( sat_solver * p, int * pVars, int nVars );
extern void Sat_SolverDoubleClauses( sat_solver * p, int iVar );
// trace recording
extern void Sat_SolverTraceStart( sat_solver * pSat, char * pName );
extern void Sat_SolverTraceStop( sat_solver * pSat );
extern void Sat_SolverTraceWrite( sat_solver * pSat, int * pBeg, int * pEnd, int fRoot );
// clause storage
extern void sat_solver_store_alloc( sat_solver * s );
extern void sat_solver_store_write( sat_solver * s, char * pFileName );
extern void sat_solver_store_free( sat_solver * s );
extern void sat_solver_store_mark_roots( sat_solver * s );
extern void sat_solver_store_mark_clauses_a( sat_solver * s );
extern void * sat_solver_store_release( sat_solver * s );
//=================================================================================================
// Solver representation:
//struct clause_t;
//typedef struct clause_t clause;
struct varinfo_t;
typedef struct varinfo_t varinfo;
struct sat_solver_t
{
int size; // nof variables
int cap; // size of varmaps
int qhead; // Head index of queue.
int qtail; // Tail index of queue.
// clauses
Sat_Mem_t Mem;
int hLearnts; // the first learnt clause
int hBinary; // the special binary clause
clause * binary;
veci* wlists; // watcher lists
veci act_clas; // contain clause activities
// activities
#ifdef USE_FLOAT_ACTIVITY
double var_inc; // Amount to bump next variable with.
double var_decay; // INVERSE decay factor for variable activity: stores 1/decay.
float cla_inc; // Amount to bump next clause with.
float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay.
double* activity; // A heuristic measurement of the activity of a variable.
#else
int var_inc; // Amount to bump next variable with.
int cla_inc; // Amount to bump next clause with.
unsigned* activity; // A heuristic measurement of the activity of a variable.
#endif
// varinfo * vi; // variable information
int* levels; //
char* assigns; // Current values of variables.
char* polarity; //
char* tags; //
int* orderpos; // Index in variable order.
int* reasons; //
lit* trail;
veci tagged; // (contains: var)
veci stack; // (contains: var)
veci order; // Variable order. (heap) (contains: var)
veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int)
// veci model; // If problem is solved, this vector contains the model (contains: lbool).
int * model; // If problem is solved, this vector contains the model (contains: lbool).
veci conf_final; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
int root_level; // Level of first proper decision.
int simpdb_assigns;// Number of top-level assignments at last 'simplifyDB()'.
int simpdb_props; // Number of propagations before next 'simplifyDB()'.
double random_seed;
double progress_estimate;
int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything
int fVerbose;
stats_t stats;
int nLearntMax; // max number of learned clauses
int nLearntStart; // starting learned clause limit
int nLearntDelta; // delta of learned clause limit
int nLearntRatio; // ratio percentage of learned clauses
int nDBreduces; // number of DB reductions
ABC_INT64_T nConfLimit; // external limit on the number of conflicts
ABC_INT64_T nInsLimit; // external limit on the number of implications
clock_t nRuntimeLimit; // external limit on runtime
veci act_vars; // variables whose activity has changed
double* factors; // the activity factors
int nRestarts; // the number of local restarts
int nCalls; // the number of local restarts
int nCalls2; // the number of local restarts
int fSkipSimplify; // set to one to skip simplification of the clause database
int fNotUseRandom; // do not allow random decisions with a fixed probability
int * pGlobalVars; // for experiments with global vars during interpolation
// clause store
void * pStore;
int fSolved;
// trace recording
FILE * pFile;
int nClauses;
int nRoots;
veci temp_clause; // temporary storage for a CNF clause
};
static inline clause * clause_read( sat_solver * s, cla h )
{
return Sat_MemClauseHand( &s->Mem, h );
}
static int sat_solver_var_value( sat_solver* s, int v )
{
assert( v >= 0 && v < s->size );
return (int)(s->model[v] == l_True);
}
static int sat_solver_var_literal( sat_solver* s, int v )
{
assert( v >= 0 && v < s->size );
return toLitCond( v, s->model[v] != l_True );
}
static void sat_solver_act_var_clear(sat_solver* s)
{
int i;
for (i = 0; i < s->size; i++)
s->activity[i] = 0.0;
s->var_inc = 1.0;
}
static void sat_solver_compress(sat_solver* s)
{
if ( s->qtail != s->qhead )
{
int RetValue = sat_solver_simplify(s);
assert( RetValue != 0 );
}
}
static int sat_solver_final(sat_solver* s, int ** ppArray)
{
*ppArray = s->conf_final.ptr;
return s->conf_final.size;
}
static clock_t sat_solver_set_runtime_limit(sat_solver* s, clock_t Limit)
{
clock_t nRuntimeLimit = s->nRuntimeLimit;
s->nRuntimeLimit = Limit;
return nRuntimeLimit;
}
static int sat_solver_set_random(sat_solver* s, int fNotUseRandom)
{
int fNotUseRandomOld = s->fNotUseRandom;
s->fNotUseRandom = fNotUseRandom;
return fNotUseRandomOld;
}
static inline int sat_solver_add_const( sat_solver * pSat, int iVar, int fCompl )
{
lit Lits[1];
int Cid;
assert( iVar >= 0 );
Lits[0] = toLitCond( iVar, fCompl );
Cid = sat_solver_addclause( pSat, Lits, Lits + 1 );
assert( Cid );
return 1;
}
static inline int sat_solver_add_buffer( sat_solver * pSat, int iVarA, int iVarB, int fCompl )
{
lit Lits[2];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 );
Lits[0] = toLitCond( iVarA, 0 );
Lits[1] = toLitCond( iVarB, !fCompl );
Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVarA, 1 );
Lits[1] = toLitCond( iVarB, fCompl );
Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
return 2;
}
static inline int sat_solver_add_and( sat_solver * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1 )
{
lit Lits[3];
int Cid;
Lits[0] = toLitCond( iVar, 1 );
Lits[1] = toLitCond( iVar0, fCompl0 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVar, 1 );
Lits[1] = toLitCond( iVar1, fCompl1 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVar, 0 );
Lits[1] = toLitCond( iVar0, !fCompl0 );
Lits[2] = toLitCond( iVar1, !fCompl1 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 3;
}
static inline int sat_solver_add_xor( sat_solver * pSat, int iVarA, int iVarB, int iVarC, int fCompl )
{
lit Lits[3];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );
Lits[0] = toLitCond( iVarA, !fCompl );
Lits[1] = toLitCond( iVarB, 1 );
Lits[2] = toLitCond( iVarC, 1 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, !fCompl );
Lits[1] = toLitCond( iVarB, 0 );
Lits[2] = toLitCond( iVarC, 0 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, fCompl );
Lits[1] = toLitCond( iVarB, 1 );
Lits[2] = toLitCond( iVarC, 0 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, fCompl );
Lits[1] = toLitCond( iVarB, 0 );
Lits[2] = toLitCond( iVarC, 1 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 4;
}
static inline int sat_solver_add_constraint( sat_solver * pSat, int iVar, int iVar2, int fCompl )
{
lit Lits[2];
int Cid;
assert( iVar >= 0 );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar2, 0 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar2, 1 );
Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
return 2;
}
ABC_NAMESPACE_HEADER_END
#endif
|