summaryrefslogtreecommitdiffstats
path: root/src/sat/bsat/satProof.c
blob: 1eaf440709dfe4faf36e64132e526f5e03bc1899 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/**CFile****************************************************************

  FileName    [satProof.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [SAT solver.]

  Synopsis    [Proof manipulation procedures.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: satProof.c,v 1.4 2005/09/16 22:55:03 casem Exp $]

***********************************************************************/

#include "satSolver2.h"
#include "src/misc/vec/vec.h"
#include "src/aig/aig/aig.h"
#include "satTruth.h"
#include "vecRec.h"

ABC_NAMESPACE_IMPL_START


/*
    Proof is represented as a vector of integers.
    The first entry is -1.
    A resolution record is represented by a handle (an offset in this array).
    A resolution record entry is <size><label><ant1><ant2>...<antN>
    Label is initialized to 0.
    Root clauses are given by their handles.
    They are marked by bitshifting by 2 bits up and setting the LSB to 1
*/


/*
typedef struct satset_t satset;
struct satset_t 
{
    unsigned learnt :  1;
    unsigned mark   :  1;
    unsigned partA  :  1;
    unsigned nEnts  : 29;
    int      Id;
    lit      pEnts[0];
};

#define satset_foreach_entry( p, c, h, s )  \
    for ( h = s; (h < veci_size(p)) && (((c) = satset_read(p, h)), 1); h += satset_size(c->nEnts) )
*/

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static inline satset* Proof_NodeRead    (Vec_Int_t* p, cla h)     { return satset_read( (veci*)p, h );   }
//static inline cla     Proof_NodeHandle  (Vec_Int_t* p, satset* c) { return satset_handle( (veci*)p, c ); }
//static inline int     Proof_NodeCheck   (Vec_Int_t* p, satset* c) { return satset_check( (veci*)p, c );  }
static inline int     Proof_NodeSize    (int nEnts)               { return sizeof(satset)/4 + nEnts;     }

static inline satset* Proof_ResolveRead (Vec_Rec_t* p, cla h)     { return (satset*)Vec_RecEntryP(p, h); }

// iterating through nodes in the proof
#define Proof_ForeachNode( p, pNode, h )                         \
    for ( h = 1; (h < Vec_IntSize(p)) && ((pNode) = Proof_NodeRead(p, h)); h += Proof_NodeSize(pNode->nEnts) )
#define Proof_ForeachNodeVec( pVec, p, pNode, i )            \
    for ( i = 0; (i < Vec_IntSize(pVec)) && ((pNode) = Proof_NodeRead(p, Vec_IntEntry(pVec,i))); i++ )

// iterating through fanins of a proof node
#define Proof_NodeForeachFanin( p, pNode, pFanin, i )        \
    for ( i = 0; (i < (int)pNode->nEnts) && (((pFanin) = (pNode->pEnts[i] & 1) ? NULL : Proof_NodeRead(p, pNode->pEnts[i] >> 2)), 1); i++ )
#define Proof_NodeForeachLeaf( pClauses, pNode, pLeaf, i )   \
    for ( i = 0; (i < (int)pNode->nEnts) && (((pLeaf) = (pNode->pEnts[i] & 1) ? Proof_NodeRead(pClauses, pNode->pEnts[i] >> 2) : NULL), 1); i++ )
#define Proof_NodeForeachFaninLeaf( p, pClauses, pNode, pFanin, i )    \
    for ( i = 0; (i < (int)pNode->nEnts) && ((pFanin) = (pNode->pEnts[i] & 1) ? Proof_NodeRead(pClauses, pNode->pEnts[i] >> 2) : Proof_NodeRead(p, pNode->pEnts[i] >> 2)); i++ )


////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Returns the number of proof nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Proof_CountAll( Vec_Int_t * p )
{
    satset * pNode;
    int hNode, Counter = 0;
    Proof_ForeachNode( p, pNode, hNode )
        Counter++;
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Collects all resolution nodes belonging to the proof.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Proof_CollectAll( Vec_Int_t * p )
{
    Vec_Int_t * vUsed;
    satset * pNode;
    int hNode;
    vUsed = Vec_IntAlloc( 1000 );
    Proof_ForeachNode( p, pNode, hNode )
        Vec_IntPush( vUsed, hNode );
    return vUsed;
}

/**Function*************************************************************

  Synopsis    [Cleans collected resultion nodes belonging to the proof.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Proof_CleanCollected( Vec_Int_t * vProof, Vec_Int_t * vUsed )
{
    satset * pNode;
    int hNode;
    Proof_ForeachNodeVec( vUsed, vProof, pNode, hNode )
        pNode->Id = 0;
}

/**Function*************************************************************

  Synopsis    [Recursively visits useful proof nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Proof_CollectUsed_iter( Vec_Int_t * vProof, int hNode, Vec_Int_t * vUsed, Vec_Int_t * vStack )
{
    satset * pNext, * pNode = Proof_NodeRead( vProof, hNode );
    int i;
    if ( pNode->Id )
        return;
    // start with node
    pNode->Id = 1;
    Vec_IntPush( vStack, hNode << 1 );
    // perform DFS search
    while ( Vec_IntSize(vStack) )
    {
        hNode = Vec_IntPop( vStack );
        if ( hNode & 1 ) // extracted second time
        {
            Vec_IntPush( vUsed, hNode >> 1 );
            continue;
        }
        // extracted first time        
        Vec_IntPush( vStack, hNode ^ 1 ); // add second time
        // add its anticedents        ;
        pNode = Proof_NodeRead( vProof, hNode >> 1 );
        Proof_NodeForeachFanin( vProof, pNode, pNext, i )
            if ( pNext && !pNext->Id )
            {
                pNext->Id = 1;
                Vec_IntPush( vStack, (pNode->pEnts[i] >> 2) << 1 ); // add first time
            }
    }
}

/**Function*************************************************************

  Synopsis    [Recursively visits useful proof nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Proof_CollectUsedIter( Vec_Int_t * vProof, Vec_Int_t * vRoots, int hRoot )
{
    Vec_Int_t * vUsed, * vStack;
    int clk = clock();
    int i, Entry, iPrev = 0;
    assert( (hRoot > 0) ^ (vRoots != NULL) );
    vUsed = Vec_IntAlloc( 1000 );
    vStack = Vec_IntAlloc( 1000 );
    if ( hRoot )
        Proof_CollectUsed_iter( vProof, hRoot, vUsed, vStack );
    else
    {
        Vec_IntForEachEntry( vRoots, Entry, i )
            Proof_CollectUsed_iter( vProof, Entry, vUsed, vStack );
    }
    Vec_IntFree( vStack );
//    Abc_PrintTime( 1, "Iterative clause collection time", clock() - clk );

/*
    // verify topological order
    iPrev = 0;
    Vec_IntForEachEntry( vUsed, Entry, i )
    {
        printf( "%d ", Entry - iPrev );
        iPrev = Entry;
    }
*/
    clk = clock();
//    Vec_IntSort( vUsed, 0 );
    Abc_Sort( Vec_IntArray(vUsed), Vec_IntSize(vUsed) );
//    Abc_PrintTime( 1, "Postprocessing with sorting time", clock() - clk );

    // verify topological order
    iPrev = 0;
    Vec_IntForEachEntry( vUsed, Entry, i )
    {
        if ( iPrev >= Entry )
            printf( "Out of topological order!!!\n" );
        assert( iPrev < Entry );
        iPrev = Entry;
    }
    return vUsed;
}

/**Function*************************************************************

  Synopsis    [Recursively visits useful proof nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Proof_CollectUsed_rec( Vec_Int_t * vProof, int hNode, Vec_Int_t * vUsed )
{
    satset * pNext, * pNode = Proof_NodeRead( vProof, hNode );
    int i;
    if ( pNode->Id )
        return;
    pNode->Id = 1;
    Proof_NodeForeachFanin( vProof, pNode, pNext, i )
        if ( pNext && !pNext->Id )
            Proof_CollectUsed_rec( vProof, pNode->pEnts[i] >> 2, vUsed );
    Vec_IntPush( vUsed, hNode );
}

/**Function*************************************************************

  Synopsis    [Recursively visits useful proof nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Proof_CollectUsedRec( Vec_Int_t * vProof, Vec_Int_t * vRoots, int hRoot )
{
    Vec_Int_t * vUsed;
    assert( (hRoot > 0) ^ (vRoots != NULL) );
    vUsed = Vec_IntAlloc( 1000 );
    if ( hRoot )
        Proof_CollectUsed_rec( vProof, hRoot, vUsed );
    else
    {
        int i, Entry;
        Vec_IntForEachEntry( vRoots, Entry, i )
            Proof_CollectUsed_rec( vProof, Entry, vUsed );
    }
    return vUsed;
}



  
/**Function*************************************************************

  Synopsis    [Checks the validity of the check point.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sat_ProofReduceCheck_rec( Vec_Int_t * vProof, Vec_Int_t * vClauses, satset * pNode, int hClausePivot, Vec_Ptr_t * vVisited )
{
    satset * pFanin;
    int k;
    if ( pNode->Id )
        return;
    pNode->Id = -1;
    Proof_NodeForeachFaninLeaf( vProof, vClauses, pNode, pFanin, k )
        if ( (pNode->pEnts[k] & 1) == 0 ) // proof node
            Sat_ProofReduceCheck_rec( vProof, vClauses, pFanin, hClausePivot, vVisited );
        else // problem clause
            assert( (pNode->pEnts[k] >> 2) < hClausePivot );
    Vec_PtrPush( vVisited, pNode );
}
void Sat_ProofReduceCheckOne( sat_solver2 * s, int iLearnt, Vec_Ptr_t * vVisited )
{
    Vec_Int_t * vProof   = (Vec_Int_t *)&s->proofs;
    Vec_Int_t * vClauses = (Vec_Int_t *)&s->clauses;
    Vec_Int_t * vRoots   = (Vec_Int_t *)&s->claProofs;
    int hProofNode = Vec_IntEntry( vRoots, iLearnt );
    satset * pNode = Proof_NodeRead( vProof, hProofNode );
    Sat_ProofReduceCheck_rec( vProof, vClauses, pNode, s->hClausePivot, vVisited );
}
void Sat_ProofReduceCheck( sat_solver2 * s )
{
    Vec_Ptr_t * vVisited;
    satset * c;
    int h, i = 1;
    vVisited = Vec_PtrAlloc( 1000 );
    sat_solver_foreach_learnt( s, c, h )
        if ( h < s->hLearntPivot )
            Sat_ProofReduceCheckOne( s, i++, vVisited );
    Vec_PtrForEachEntry( satset *, vVisited, c, i )
        c->Id = 0;
    Vec_PtrFree( vVisited );
}

/**Function*************************************************************

  Synopsis    [Reduces the proof to contain only roots and their children.]

  Description [The result is updated proof and updated roots.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sat_ProofReduce( sat_solver2 * s )
{
    Vec_Int_t * vProof   = (Vec_Int_t *)&s->proofs;
    Vec_Int_t * vRoots   = (Vec_Int_t *)&s->claProofs;
    Vec_Int_t * vClauses = (Vec_Int_t *)&s->clauses;

    int fVerbose = 0;
    Vec_Int_t * vUsed;
    satset * pNode, * pFanin;
    int i, k, hTemp, hNewHandle = 1, clk = clock();
    static int TimeTotal = 0;

    // collect visited nodes
    vUsed = Proof_CollectUsedIter( vProof, vRoots, 0 );
//    printf( "The proof uses %d out of %d proof nodes (%.2f %%)\n", 
//        Vec_IntSize(vUsed), Proof_CountAll(vProof), 
//        100.0 * Vec_IntSize(vUsed) / Proof_CountAll(vProof) );

    // relabel nodes to use smaller space
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
    {
        pNode->Id = hNewHandle; hNewHandle += Proof_NodeSize(pNode->nEnts);
        Proof_NodeForeachFaninLeaf( vProof, vClauses, pNode, pFanin, k )
            if ( (pNode->pEnts[k] & 1) == 0 ) // proof node
                pNode->pEnts[k] = (pFanin->Id << 2) | (pNode->pEnts[k] & 2);
            else // problem clause
                assert( (int*)pFanin >= Vec_IntArray(vClauses) && (int*)pFanin < Vec_IntArray(vClauses)+Vec_IntSize(vClauses) );
    }
    // update roots
    Proof_ForeachNodeVec( vRoots, vProof, pNode, i )
        Vec_IntWriteEntry( vRoots, i, pNode->Id );
    // compact the nodes
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
    {
        hTemp = pNode->Id; pNode->Id = 0;
        memmove( Vec_IntArray(vProof) + hTemp, pNode, sizeof(int)*Proof_NodeSize(pNode->nEnts) );
    }
    Vec_IntFree( vUsed );

    // report the result
    if ( fVerbose )
    {
        printf( "The proof was reduced from %10d to %10d integers (by %6.2f %%)  ", 
            Vec_IntSize(vProof), hNewHandle, 100.0 * (Vec_IntSize(vProof) - hNewHandle) / Vec_IntSize(vProof) );
        TimeTotal += clock() - clk;
        Abc_PrintTime( 1, "Time", TimeTotal );
    }
    Vec_IntShrink( vProof, hNewHandle );

    Sat_ProofReduceCheck( s );
}


/**Function*************************************************************

  Synopsis    [Performs one resultion step.]

  Description [Returns ID of the resolvent if success, and -1 if failure.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sat_ProofCheckResolveOne( Vec_Rec_t * p, satset * c1, satset * c2, Vec_Int_t * vTemp )
{
    satset * c;
    int h, i, k, Var = -1, Count = 0;
    // find resolution variable
    for ( i = 0; i < (int)c1->nEnts; i++ )
    for ( k = 0; k < (int)c2->nEnts; k++ )
        if ( (c1->pEnts[i] ^ c2->pEnts[k]) == 1 )
        {
            Var = (c1->pEnts[i] >> 1);
            Count++;
        }
    if ( Count == 0 )
    {
        printf( "Cannot find resolution variable\n" );
        return 0;
    }
    if ( Count > 1 )
    {
        printf( "Found more than 1 resolution variables\n" );
        return 0;
    }
    // perform resolution
    Vec_IntClear( vTemp );
    Vec_IntPush( vTemp, 0 ); // placeholder
    Vec_IntPush( vTemp, 0 );
    for ( i = 0; i < (int)c1->nEnts; i++ )
        if ( (c1->pEnts[i] >> 1) != Var )
            Vec_IntPush( vTemp, c1->pEnts[i] );
    for ( i = 0; i < (int)c2->nEnts; i++ )
        if ( (c2->pEnts[i] >> 1) != Var )
            Vec_IntPushUnique( vTemp, c2->pEnts[i] );
    // create new resolution entry
    h = Vec_RecPush( p, Vec_IntArray(vTemp), Vec_IntSize(vTemp) );
    // return the new entry
    c = Proof_ResolveRead( p, h );
    c->nEnts = Vec_IntSize(vTemp)-2;
    return h;
}

/**Function*************************************************************

  Synopsis    [Checks the proof for consitency.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
satset * Sat_ProofCheckReadOne( Vec_Int_t * vClauses, Vec_Int_t * vProof, Vec_Rec_t * vResolves, int iAnt )
{
    satset * pAnt;
    if ( iAnt & 1 )
        return Proof_NodeRead( vClauses, iAnt >> 2 );
    assert( iAnt > 0 );
    pAnt = Proof_NodeRead( vProof, iAnt >> 2 );
    assert( pAnt->Id > 0 );
    return Proof_ResolveRead( vResolves, pAnt->Id );
}

/**Function*************************************************************

  Synopsis    [Checks the proof for consitency.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sat_ProofCheck( sat_solver2 * s )
{
    Vec_Int_t * vClauses = (Vec_Int_t *)&s->clauses;
    Vec_Int_t * vProof   = (Vec_Int_t *)&s->proofs;
    Vec_Rec_t * vResolves;
    Vec_Int_t * vUsed, * vTemp;
    satset * pSet, * pSet0, * pSet1;
    int i, k, hRoot, Handle, Counter = 0, clk = clock(); 
//    if ( s->hLearntLast < 0 )
//        return;
//    hRoot = veci_begin(&s->claProofs)[satset_read(&s->learnts, s->hLearntLast>>1)->Id];
    hRoot = s->hProofLast;
    if ( hRoot == -1 )
        return;

    // collect visited clauses
    vUsed = Proof_CollectUsedIter( vProof, NULL, hRoot );
    Proof_CleanCollected( vProof, vUsed );
    // perform resolution steps
    vTemp = Vec_IntAlloc( 1000 );
    vResolves = Vec_RecAlloc();
    Proof_ForeachNodeVec( vUsed, vProof, pSet, i )
    {
        pSet0 = Sat_ProofCheckReadOne( vClauses, vProof, vResolves, pSet->pEnts[0] );
        for ( k = 1; k < (int)pSet->nEnts; k++ )
        {
            pSet1  = Sat_ProofCheckReadOne( vClauses, vProof, vResolves, pSet->pEnts[k] );
            Handle = Sat_ProofCheckResolveOne( vResolves, pSet0, pSet1, vTemp );
            pSet0  = Proof_ResolveRead( vResolves, Handle );
        }
        pSet->Id = Handle;
//printf( "Clause for proof %d: ", Vec_IntEntry(vUsed, i) );
//satset_print( pSet0 );
        Counter++;
    }
    Vec_IntFree( vTemp );
    // clean the proof
    Proof_CleanCollected( vProof, vUsed );
    // compare the final clause
    printf( "Used %6.2f Mb for resolvents.\n", 4.0 * Vec_RecSize(vResolves) / (1<<20) );
    if ( pSet0->nEnts > 0 )
        printf( "Derived clause with %d lits instead of the empty clause.  ", pSet0->nEnts );
    else
        printf( "Proof verification successful.  " );
    Abc_PrintTime( 1, "Time", clock() - clk );
    // cleanup
    Vec_RecFree( vResolves );
    Vec_IntFree( vUsed );
}


/**Function*************************************************************

  Synopsis    [Collects nodes belonging to the UNSAT core.]

  Description [The resulting array contains 1-based IDs of root clauses.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Sat_ProofCollectCore( Vec_Int_t * vClauses, Vec_Int_t * vProof, Vec_Int_t * vUsed, int fUseIds )
{
    Vec_Int_t * vCore;
    satset * pNode, * pFanin;
    int i, k, clk = clock();
    vCore = Vec_IntAlloc( 1000 );
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
    {
        pNode->Id = 0;
        Proof_NodeForeachLeaf( vClauses, pNode, pFanin, k )
            if ( pFanin && !pFanin->mark )
            {
                pFanin->mark = 1;
                Vec_IntPush( vCore, pNode->pEnts[k] >> 2 );
            }
    }
    // clean core clauses and reexpress core in terms of clause IDs
    Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
    {
        assert( (int*)pNode < Vec_IntArray(vClauses)+Vec_IntSize(vClauses) );
        pNode->mark = 0;
        if ( fUseIds )
//            Vec_IntWriteEntry( vCore, i, pNode->Id - 1 );
            Vec_IntWriteEntry( vCore, i, pNode->Id );
    }
    return vCore;
}

/**Function*************************************************************

  Synopsis    [Verifies that variables are labeled correctly.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sat_ProofInterpolantCheckVars( sat_solver2 * s, Vec_Int_t * vGloVars )
{
    satset* c; 
    Vec_Int_t * vVarMap;
    int i, k, Entry, * pMask;
    int Counts[5] = {0};
    // map variables into their type (A, B, or AB)
    vVarMap = Vec_IntStart( s->size );
    sat_solver_foreach_clause( s, c, i )
        for ( k = 0; k < (int)c->nEnts; k++ )
            *Vec_IntEntryP(vVarMap, lit_var(c->pEnts[k])) |= 2 - c->partA;
    // analyze variables
    Vec_IntForEachEntry( vGloVars, Entry, i )
    {
        pMask = Vec_IntEntryP(vVarMap, Entry);
        assert( *pMask >= 0 && *pMask <= 3 );
        Counts[(*pMask & 3)]++;
        *pMask = 0;
    }
    // count the number of global variables not listed
    Vec_IntForEachEntry( vVarMap, Entry, i )
        if ( Entry == 3 )
            Counts[4]++;
    Vec_IntFree( vVarMap );
    // report
    if ( Counts[0] )
        printf( "Warning: %6d variables listed as global do not appear in clauses (this is normal)\n", Counts[0] );
    if ( Counts[1] )
        printf( "Warning: %6d variables listed as global appear only in A-clauses (this is a BUG)\n", Counts[1] );
    if ( Counts[2] )
        printf( "Warning: %6d variables listed as global appear only in B-clauses (this is a BUG)\n", Counts[2] );
    if ( Counts[3] )
        printf( "Warning: %6d (out of %d) variables listed as global appear in both A- and B-clauses (this is normal)\n", Counts[3], Vec_IntSize(vGloVars) );
    if ( Counts[4] )
        printf( "Warning: %6d variables not listed as global appear in both A- and B-clauses (this is a BUG)\n", Counts[4] );
}

/**Function*************************************************************

  Synopsis    [Computes interpolant of the proof.]

  Description [Aassuming that vars/clause of partA are marked.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void * Sat_ProofInterpolant( sat_solver2 * s, void * pGloVars )
{
    Vec_Int_t * vClauses  = (Vec_Int_t *)&s->clauses;
    Vec_Int_t * vProof    = (Vec_Int_t *)&s->proofs;
    Vec_Int_t * vGlobVars = (Vec_Int_t *)pGloVars;
    Vec_Int_t * vUsed, * vCore, * vCoreNums, * vVarMap;
    satset * pNode, * pFanin;
    Aig_Man_t * pAig;
    Aig_Obj_t * pObj;
    int i, k, iVar, Lit, Entry, hRoot;
//    if ( s->hLearntLast < 0 )
//        return NULL;
//    hRoot = veci_begin(&s->claProofs)[satset_read(&s->learnts, s->hLearntLast>>1)->Id];
    hRoot = s->hProofLast;
    if ( hRoot == -1 )
        return NULL;

    Sat_ProofInterpolantCheckVars( s, vGlobVars );

    // collect visited nodes
    vUsed = Proof_CollectUsedIter( vProof, NULL, hRoot );
    // collect core clauses (cleans vUsed and vCore)
    vCore = Sat_ProofCollectCore( vClauses, vProof, vUsed, 0 );

    // map variables into their global numbers
    vVarMap = Vec_IntStartFull( s->size );
    Vec_IntForEachEntry( vGlobVars, Entry, i )
        Vec_IntWriteEntry( vVarMap, Entry, i );

    // start the AIG
    pAig = Aig_ManStart( 10000 );
    pAig->pName = Abc_UtilStrsav( "interpol" );
    for ( i = 0; i < Vec_IntSize(vGlobVars); i++ )
        Aig_ObjCreatePi( pAig );

    // copy the numbers out and derive interpol for clause
    vCoreNums = Vec_IntAlloc( Vec_IntSize(vCore) );
    Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
    {
        if ( pNode->partA )
        {
            pObj = Aig_ManConst0( pAig );
            satset_foreach_lit( pNode, Lit, k, 0 )
                if ( (iVar = Vec_IntEntry(vVarMap, lit_var(Lit))) >= 0 )
                    pObj = Aig_Or( pAig, pObj, Aig_NotCond(Aig_IthVar(pAig, iVar), lit_sign(Lit)) );
        }
        else
            pObj = Aig_ManConst1( pAig );
        // remember the interpolant
        Vec_IntPush( vCoreNums, pNode->Id );
        pNode->Id = Aig_ObjToLit(pObj);
    }
    Vec_IntFree( vVarMap );

    // copy the numbers out and derive interpol for resolvents
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
    {
//        satset_print( pNode );
        assert( pNode->nEnts > 1 );
        Proof_NodeForeachFaninLeaf( vProof, vClauses, pNode, pFanin, k )
        {
            assert( pFanin->Id < 2*Aig_ManObjNumMax(pAig) );
            if ( k == 0 )
                pObj = Aig_ObjFromLit( pAig, pFanin->Id );
            else if ( pNode->pEnts[k] & 2 ) // variable of A
                pObj = Aig_Or( pAig, pObj, Aig_ObjFromLit(pAig, pFanin->Id) );
            else
                pObj = Aig_And( pAig, pObj, Aig_ObjFromLit(pAig, pFanin->Id) );
        }
        // remember the interpolant
        pNode->Id = Aig_ObjToLit(pObj);
    }
    // save the result
//    assert( Proof_NodeHandle(vProof, pNode) == hRoot );
    Aig_ObjCreatePo( pAig, pObj );
    Aig_ManCleanup( pAig );

    // move the results back
    Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
        pNode->Id = Vec_IntEntry( vCoreNums, i );
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
        pNode->Id = 0;
    // cleanup
    Vec_IntFree( vCore );
    Vec_IntFree( vUsed );
    Vec_IntFree( vCoreNums );
    return pAig;
}


/**Function*************************************************************

  Synopsis    [Computes interpolant of the proof.]

  Description [Aassuming that vars/clause of partA are marked.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
word * Sat_ProofInterpolantTruth( sat_solver2 * s, void * pGloVars )
{
    Vec_Int_t * vClauses  = (Vec_Int_t *)&s->clauses;
    Vec_Int_t * vProof    = (Vec_Int_t *)&s->proofs;
    Vec_Int_t * vGlobVars = (Vec_Int_t *)pGloVars;
    Vec_Int_t * vUsed, * vCore, * vCoreNums, * vVarMap;
    satset * pNode, * pFanin;
    Tru_Man_t * pTru;
    int nVars = Vec_IntSize(vGlobVars);
    int nWords = (nVars < 6) ? 1 : (1 << (nVars-6));
    word * pRes = ABC_ALLOC( word, nWords );
    int i, k, iVar, Lit, Entry, hRoot;
    assert( nVars > 0 && nVars <= 16 );
//    if ( s->hLearntLast < 0 )
//        return NULL;
//    hRoot = veci_begin(&s->claProofs)[satset_read(&s->learnts, s->hLearntLast>>1)->Id];
    hRoot = s->hProofLast;
    if ( hRoot == -1 )
        return NULL;

    Sat_ProofInterpolantCheckVars( s, vGlobVars );

    // collect visited nodes
    vUsed = Proof_CollectUsedIter( vProof, NULL, hRoot );
    // collect core clauses (cleans vUsed and vCore)
    vCore = Sat_ProofCollectCore( vClauses, vProof, vUsed, 0 );

    // map variables into their global numbers
    vVarMap = Vec_IntStartFull( s->size );
    Vec_IntForEachEntry( vGlobVars, Entry, i )
        Vec_IntWriteEntry( vVarMap, Entry, i );

    // start the AIG
    pTru = Tru_ManAlloc( nVars );

    // copy the numbers out and derive interpol for clause
    vCoreNums = Vec_IntAlloc( Vec_IntSize(vCore) );
    Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
    {
        if ( pNode->partA )
        {
//            pObj = Aig_ManConst0( pAig );
            Tru_ManClear( pRes, nWords );
            satset_foreach_lit( pNode, Lit, k, 0 )
                if ( (iVar = Vec_IntEntry(vVarMap, lit_var(Lit))) >= 0 )
//                    pObj = Aig_Or( pAig, pObj, Aig_NotCond(Aig_IthVar(pAig, iVar), lit_sign(Lit)) );
                    pRes = Tru_ManOrNotCond( pRes, Tru_ManVar(pTru, iVar), nWords, lit_sign(Lit) );
        }
        else
//            pObj = Aig_ManConst1( pAig );
            Tru_ManFill( pRes, nWords );
        // remember the interpolant
        Vec_IntPush( vCoreNums, pNode->Id );
//        pNode->Id = Aig_ObjToLit(pObj);
        pNode->Id = Tru_ManInsert( pTru, pRes );
    }
    Vec_IntFree( vVarMap );

    // copy the numbers out and derive interpol for resolvents
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
    {
//        satset_print( pNode );
        assert( pNode->nEnts > 1 );
        Proof_NodeForeachFaninLeaf( vProof, vClauses, pNode, pFanin, k )
        {
//            assert( pFanin->Id < 2*Aig_ManObjNumMax(pAig) );
            assert( pFanin->Id <= Tru_ManHandleMax(pTru) );
            if ( k == 0 )
//                pObj = Aig_ObjFromLit( pAig, pFanin->Id );
                pRes = Tru_ManCopyNotCond( pRes, Tru_ManFunc(pTru, pFanin->Id & ~1), nWords, pFanin->Id & 1 );
            else if ( pNode->pEnts[k] & 2 ) // variable of A
//                pObj = Aig_Or( pAig, pObj, Aig_ObjFromLit(pAig, pFanin->Id) );
                pRes = Tru_ManOrNotCond( pRes, Tru_ManFunc(pTru, pFanin->Id & ~1), nWords, pFanin->Id & 1 );
            else
//                pObj = Aig_And( pAig, pObj, Aig_ObjFromLit(pAig, pFanin->Id) );
                pRes = Tru_ManAndNotCond( pRes, Tru_ManFunc(pTru, pFanin->Id & ~1), nWords, pFanin->Id & 1 );
        }
        // remember the interpolant
//        pNode->Id = Aig_ObjToLit(pObj);
        pNode->Id = Tru_ManInsert( pTru, pRes );
    }
    // save the result
//    assert( Proof_NodeHandle(vProof, pNode) == hRoot );
//    Aig_ObjCreatePo( pAig, pObj );
//    Aig_ManCleanup( pAig );

    // move the results back
    Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
        pNode->Id = Vec_IntEntry( vCoreNums, i );
    Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
        pNode->Id = 0;
    // cleanup
    Vec_IntFree( vCore );
    Vec_IntFree( vUsed );
    Vec_IntFree( vCoreNums );
    Tru_ManFree( pTru );
//    ABC_FREE( pRes );
    return pRes;
}

/**Function*************************************************************

  Synopsis    [Computes UNSAT core.]

  Description [The result is the array of root clause indexes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void * Sat_ProofCore( sat_solver2 * s )
{
    Vec_Int_t * vClauses  = (Vec_Int_t *)&s->clauses;
    Vec_Int_t * vProof    = (Vec_Int_t *)&s->proofs;
    Vec_Int_t * vCore, * vUsed;
    int hRoot;
//    if ( s->hLearntLast < 0 )
//        return NULL;
//    hRoot = veci_begin(&s->claProofs)[satset_read(&s->learnts, s->hLearntLast>>1)->Id];
    hRoot = s->hProofLast;
    if ( hRoot == -1 )
        return NULL;

    // collect visited clauses
    vUsed = Proof_CollectUsedIter( vProof, NULL, hRoot );
    // collect core clauses 
    vCore = Sat_ProofCollectCore( vClauses, vProof, vUsed, 1 );
    Vec_IntFree( vUsed );
    return vCore;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////

ABC_NAMESPACE_IMPL_END