1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
/**CFile****************************************************************
FileName [bmcFx.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT-based bounded model checking.]
Synopsis [INT-FX: Interpolation-based logic sharing extraction.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: bmcFx.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "bmc.h"
#include "misc/vec/vecWec.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satStore.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
extern Cnf_Dat_t * Mf_ManGenerateCnf( Gia_Man_t * pGia, int nLutSize, int fCnfObjIds, int fAddOrCla, int fVerbose );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Create hash table to hash divisors.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
#define TAB_UNUSED 0x7FFF
typedef struct Tab_Obj_t_ Tab_Obj_t; // 16 bytes
struct Tab_Obj_t_
{
int Table;
int Next;
unsigned Cost : 17;
unsigned LitA : 15;
unsigned LitB : 15;
unsigned LitC : 15;
unsigned Func : 2;
};
typedef struct Tab_Tab_t_ Tab_Tab_t; // 16 bytes
struct Tab_Tab_t_
{
int SizeMask;
int nBins;
Tab_Obj_t * pBins;
};
static inline Tab_Tab_t * Tab_TabAlloc( int LogSize )
{
Tab_Tab_t * p = ABC_CALLOC( Tab_Tab_t, 1 );
assert( LogSize >= 4 && LogSize <= 31 );
p->SizeMask = (1 << LogSize) - 1;
p->pBins = ABC_CALLOC( Tab_Obj_t, p->SizeMask + 1 );
p->nBins = 1;
return p;
}
static inline void Tab_TabFree( Tab_Tab_t * p )
{
ABC_FREE( p->pBins );
ABC_FREE( p );
}
static inline Vec_Int_t * Tab_TabFindBest( Tab_Tab_t * p, int nDivs )
{
char * pNames[5] = {"const1", "and", "xor", "mux", "none"};
int * pOrder, i;
Vec_Int_t * vDivs = Vec_IntAlloc( 100 );
Vec_Int_t * vCosts = Vec_IntAlloc( p->nBins );
Tab_Obj_t * pEnt, * pLimit = p->pBins + p->nBins;
for ( pEnt = p->pBins; pEnt < pLimit; pEnt++ )
Vec_IntPush( vCosts, -(int)pEnt->Cost );
pOrder = Abc_MergeSortCost( Vec_IntArray(vCosts), Vec_IntSize(vCosts) );
for ( i = 0; i < Vec_IntSize(vCosts); i++ )
{
pEnt = p->pBins + pOrder[i];
if ( i == nDivs || pEnt->Cost == 1 )
break;
printf( "Lit0 = %5d. Lit1 = %5d. Lit2 = %5d. Func = %s. Cost = %3d.\n",
pEnt->LitA, pEnt->LitB, pEnt->LitC, pNames[pEnt->Func], pEnt->Cost );
Vec_IntPushTwo( vDivs, pEnt->Func, pEnt->LitA );
Vec_IntPushTwo( vDivs, pEnt->LitB, pEnt->LitC );
}
Vec_IntFree( vCosts );
ABC_FREE( pOrder );
return vDivs;
}
static inline int Tab_Hash( int LitA, int LitB, int LitC, int Func, int Mask )
{
return (LitA * 50331653 + LitB * 100663319 + LitC + 201326611 + Func * 402653189) & Mask;
}
static inline void Tab_TabRehash( Tab_Tab_t * p )
{
Tab_Obj_t * pEnt, * pLimit, * pBin;
assert( p->nBins == p->SizeMask + 1 );
// realloc memory
p->pBins = ABC_REALLOC( Tab_Obj_t, p->pBins, 2 * (p->SizeMask + 1) );
memset( p->pBins + p->SizeMask + 1, 0, sizeof(Tab_Obj_t) * (p->SizeMask + 1) );
// clean entries
pLimit = p->pBins + p->SizeMask + 1;
for ( pEnt = p->pBins; pEnt < pLimit; pEnt++ )
pEnt->Table = pEnt->Next = 0;
// rehash entries
p->SizeMask = 2 * p->SizeMask + 1;
for ( pEnt = p->pBins + 1; pEnt < pLimit; pEnt++ )
{
pBin = p->pBins + Tab_Hash( pEnt->LitA, pEnt->LitB, pEnt->LitC, pEnt->Func, p->SizeMask );
pEnt->Next = pBin->Table;
pBin->Table = pEnt - p->pBins;
assert( !pEnt->Next || pEnt->Next != pBin->Table );
}
}
static inline Tab_Obj_t * Tab_TabEntry( Tab_Tab_t * p, int i ) { return i ? p->pBins + i : NULL; }
static inline int Tab_TabHashAdd( Tab_Tab_t * p, int * pLits, int Func, int Cost )
{
if ( p->nBins == p->SizeMask + 1 )
Tab_TabRehash( p );
assert( p->nBins < p->SizeMask + 1 );
{
Tab_Obj_t * pEnt, * pBin = p->pBins + Tab_Hash(pLits[0], pLits[1], pLits[2], Func, p->SizeMask);
for ( pEnt = Tab_TabEntry(p, pBin->Table); pEnt; pEnt = Tab_TabEntry(p, pEnt->Next) )
if ( (int)pEnt->LitA == pLits[0] && (int)pEnt->LitB == pLits[1] && (int)pEnt->LitC == pLits[2] && (int)pEnt->Func == Func )
{ pEnt->Cost += Cost; return 1; }
pEnt = p->pBins + p->nBins;
pEnt->LitA = pLits[0];
pEnt->LitB = pLits[1];
pEnt->LitC = pLits[2];
pEnt->Func = Func;
pEnt->Cost = Cost;
pEnt->Next = pBin->Table;
pBin->Table = p->nBins++;
assert( !pEnt->Next || pEnt->Next != pBin->Table );
return 0;
}
}
/**Function*************************************************************
Synopsis [Input is four literals. Output is type, polarity and fanins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
// name types
typedef enum {
DIV_CST = 0, // 0: constant 1
DIV_AND, // 1: and (ordered fanins)
DIV_XOR, // 2: xor (ordered fanins)
DIV_MUX, // 3: mux (c, d1, d0)
DIV_NONE // 4: not used
} Div_Type_t;
static inline Div_Type_t Bmc_FxDivOr( int LitA, int LitB, int * pLits, int * pPhase )
{
assert( LitA != LitB );
if ( Abc_Lit2Var(LitA) == Abc_Lit2Var(LitB) )
return DIV_CST;
if ( LitA > LitB )
ABC_SWAP( int, LitA, LitB );
pLits[0] = Abc_LitNot(LitA);
pLits[1] = Abc_LitNot(LitB);
*pPhase = 1;
return DIV_AND;
}
static inline Div_Type_t Bmc_FxDivXor( int LitA, int LitB, int * pLits, int * pPhase )
{
assert( LitA != LitB );
*pPhase ^= Abc_LitIsCompl(LitA);
*pPhase ^= Abc_LitIsCompl(LitB);
pLits[0] = Abc_LitRegular(LitA);
pLits[1] = Abc_LitRegular(LitB);
return DIV_XOR;
}
static inline Div_Type_t Bmc_FxDivMux( int LitC, int LitCn, int LitT, int LitE, int * pLits, int * pPhase )
{
assert( LitC != LitCn );
assert( Abc_Lit2Var(LitC) == Abc_Lit2Var(LitCn) );
assert( Abc_Lit2Var(LitC) != Abc_Lit2Var(LitT) );
assert( Abc_Lit2Var(LitC) != Abc_Lit2Var(LitE) );
assert( Abc_Lit2Var(LitC) != Abc_Lit2Var(LitE) );
if ( Abc_LitIsCompl(LitC) )
{
LitC = Abc_LitRegular(LitC);
ABC_SWAP( int, LitT, LitE );
}
if ( Abc_LitIsCompl(LitT) )
{
*pPhase ^= 1;
LitT = Abc_LitNot(LitT);
LitE = Abc_LitNot(LitE);
}
pLits[0] = LitC;
pLits[1] = LitT;
pLits[2] = LitE;
return DIV_MUX;
}
static inline Div_Type_t Div_FindType( int LitA[2], int LitB[2], int * pLits, int * pPhase )
{
*pPhase = 0;
pLits[0] = pLits[1] = pLits[2] = TAB_UNUSED;
if ( LitA[0] == -1 && LitA[1] == -1 ) return DIV_CST;
if ( LitB[0] == -1 && LitB[1] == -1 ) return DIV_CST;
assert( LitA[0] >= 0 && LitB[0] >= 0 );
assert( LitA[0] != LitB[0] );
if ( LitA[1] == -1 && LitB[1] == -1 )
return Bmc_FxDivOr( LitA[0], LitB[0], pLits, pPhase );
assert( LitA[1] != LitB[1] );
if ( LitA[1] == -1 || LitB[1] == -1 )
{
if ( LitA[1] == -1 )
{
ABC_SWAP( int, LitA[0], LitB[0] );
ABC_SWAP( int, LitA[1], LitB[1] );
}
assert( LitA[0] >= 0 && LitA[1] >= 0 );
assert( LitB[0] >= 0 && LitB[1] == -1 );
if ( Abc_Lit2Var(LitB[0]) == Abc_Lit2Var(LitA[0]) )
return Bmc_FxDivOr( LitB[0], LitA[1], pLits, pPhase );
if ( Abc_Lit2Var(LitB[0]) == Abc_Lit2Var(LitA[1]) )
return Bmc_FxDivOr( LitB[0], LitA[0], pLits, pPhase );
return DIV_NONE;
}
if ( Abc_Lit2Var(LitA[0]) == Abc_Lit2Var(LitB[0]) && Abc_Lit2Var(LitA[1]) == Abc_Lit2Var(LitB[1]) )
return Bmc_FxDivXor( LitA[0], LitB[1], pLits, pPhase );
if ( Abc_Lit2Var(LitA[0]) == Abc_Lit2Var(LitB[0]) )
return Bmc_FxDivMux( LitA[0], LitB[0], LitA[1], LitB[1], pLits, pPhase );
if ( Abc_Lit2Var(LitA[0]) == Abc_Lit2Var(LitB[1]) )
return Bmc_FxDivMux( LitA[0], LitB[1], LitA[1], LitB[0], pLits, pPhase );
if ( Abc_Lit2Var(LitA[1]) == Abc_Lit2Var(LitB[0]) )
return Bmc_FxDivMux( LitA[1], LitB[0], LitA[0], LitB[1], pLits, pPhase );
if ( Abc_Lit2Var(LitA[1]) == Abc_Lit2Var(LitB[1]) )
return Bmc_FxDivMux( LitA[1], LitB[1], LitA[0], LitB[0], pLits, pPhase );
return DIV_NONE;
}
/**Function*************************************************************
Synopsis [Returns the number of shared variables, or -1 if failed.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Div_AddLit( int Lit, int pLits[2] )
{
if ( pLits[0] == -1 )
pLits[0] = Lit;
else if ( pLits[1] == -1 )
pLits[1] = Lit;
else return 1;
return 0;
}
int Div_FindDiv( Vec_Int_t * vA, Vec_Int_t * vB, int pLitsA[2], int pLitsB[2] )
{
int Counter = 0;
int * pBegA = vA->pArray, * pEndA = vA->pArray + vA->nSize;
int * pBegB = vB->pArray, * pEndB = vB->pArray + vB->nSize;
pLitsA[0] = pLitsA[1] = pLitsB[0] = pLitsB[1] = -1;
while ( pBegA < pEndA && pBegB < pEndB )
{
if ( *pBegA == *pBegB )
pBegA++, pBegB++, Counter++;
else if ( *pBegA < *pBegB )
{
if ( Div_AddLit( *pBegA++, pLitsA ) )
return -1;
}
else
{
if ( Div_AddLit( *pBegB++, pLitsB ) )
return -1;
}
}
while ( pBegA < pEndA )
if ( Div_AddLit( *pBegA++, pLitsA ) )
return -1;
while ( pBegB < pEndB )
if ( Div_AddLit( *pBegB++, pLitsB ) )
return -1;
return Counter;
}
void Div_CubePrintOne( Vec_Int_t * vCube, Vec_Str_t * vStr, int nVars )
{
int i, Lit;
Vec_StrFill( vStr, nVars, '-' );
Vec_IntForEachEntry( vCube, Lit, i )
Vec_StrWriteEntry( vStr, Abc_Lit2Var(Lit), (char)(Abc_LitIsCompl(Lit) ? '0' : '1') );
printf( "%s\n", Vec_StrArray(vStr) );
}
void Div_CubePrint( Vec_Wec_t * p, int nVars )
{
Vec_Int_t * vCube; int i;
Vec_Str_t * vStr = Vec_StrStart( nVars + 1 );
Vec_WecForEachLevel( p, vCube, i )
Div_CubePrintOne( vCube, vStr, nVars );
Vec_StrFree( vStr );
}
Vec_Int_t * Div_CubePairs( Vec_Wec_t * p, int nVars, int nDivs )
{
int fVerbose = 0;
char * pNames[5] = {"const1", "and", "xor", "mux", "none"};
Vec_Int_t * vCube1, * vCube2, * vDivs;
int i1, i2, i, k, pLitsA[2], pLitsB[2], pLits[4], Type, Phase, nBase, Count = 0;
Vec_Str_t * vStr = Vec_StrStart( nVars + 1 );
Tab_Tab_t * pTab = Tab_TabAlloc( 5 );
Vec_WecForEachLevel( p, vCube1, i )
{
// add lit pairs
pLits[2] = TAB_UNUSED;
Vec_IntForEachEntry( vCube1, pLits[0], i1 )
Vec_IntForEachEntryStart( vCube1, pLits[1], i2, i1+1 )
{
Tab_TabHashAdd( pTab, pLits, DIV_AND, 1 );
}
Vec_WecForEachLevelStart( p, vCube2, k, i+1 )
{
nBase = Div_FindDiv( vCube1, vCube2, pLitsA, pLitsB );
if ( nBase == -1 )
continue;
Type = Div_FindType(pLitsA, pLitsB, pLits, &Phase);
if ( Type >= DIV_AND && Type <= DIV_MUX )
Tab_TabHashAdd( pTab, pLits, Type, nBase );
if ( fVerbose )
{
printf( "Pair %d:\n", Count++ );
Div_CubePrintOne( vCube1, vStr, nVars );
Div_CubePrintOne( vCube2, vStr, nVars );
printf( "Result = %d ", nBase );
assert( nBase > 0 );
printf( "Type = %s ", pNames[Type] );
printf( "LitA = %d ", pLits[0] );
printf( "LitB = %d ", pLits[1] );
printf( "LitC = %d ", pLits[2] );
printf( "Phase = %d ", Phase );
printf( "\n" );
}
}
}
// print the table
printf( "Divisors = %d.\n", pTab->nBins );
vDivs = Tab_TabFindBest( pTab, nDivs );
// cleanup
Vec_StrFree( vStr );
Tab_TabFree( pTab );
return vDivs;
}
/**Function*************************************************************
Synopsis [Solve the enumeration problem.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Bmc_FxSolve( sat_solver * pSat, int iOut, int iAuxVar, Vec_Int_t * vVars, int fDumpPla, int fVerbose, int * pCounter, Vec_Wec_t * vCubes )
{
int nBTLimit = 1000000;
Vec_Int_t * vLevel = NULL;
Vec_Int_t * vLits = Vec_IntAlloc( Vec_IntSize(vVars) );
Vec_Int_t * vLits2 = Vec_IntAlloc( Vec_IntSize(vVars) );
Vec_Str_t * vCube = Vec_StrStart( Vec_IntSize(vVars)+1 );
int status, i, k, n, Lit, Lit2, iVar, nFinal, * pFinal, pLits[2], nIter = 0, RetValue = 0;
int Before, After, Total = 0, nLits = 0;
pLits[0] = Abc_Var2Lit( iOut + 1, 0 ); // F = 1
pLits[1] = Abc_Var2Lit( iAuxVar, 0 ); // iNewLit
if ( vCubes )
Vec_WecClear( vCubes );
if ( fDumpPla )
printf( ".i %d\n", Vec_IntSize(vVars) );
if ( fDumpPla )
printf( ".o %d\n", 1 );
while ( 1 )
{
// find onset minterm
status = sat_solver_solve( pSat, pLits, pLits + 2, nBTLimit, 0, 0, 0 );
if ( status == l_Undef )
{ RetValue = -1; break; }
if ( status == l_False )
{ RetValue = 1; break; }
assert( status == l_True );
// collect divisor literals
Vec_IntClear( vLits );
Vec_IntPush( vLits, Abc_LitNot(pLits[0]) ); // F = 0
Vec_IntForEachEntryReverse( vVars, iVar, i )
// Vec_IntForEachEntry( vVars, iVar, i )
Vec_IntPush( vLits, sat_solver_var_literal(pSat, iVar) );
// check against offset
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), nBTLimit, 0, 0, 0 );
if ( status == l_Undef )
{ RetValue = -1; break; }
if ( status == l_True )
break;
assert( status == l_False );
// get subset of literals
nFinal = sat_solver_final( pSat, &pFinal );
Before = nFinal;
//printf( "Before %d. ", nFinal );
/*
// save these literals
Vec_IntClear( vLits );
for ( i = 0; i < nFinal; i++ )
Vec_IntPush( vLits, Abc_LitNot(pFinal[i]) );
Vec_IntReverseOrder( vLits );
// make one final run
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), nBTLimit, 0, 0, 0 );
assert( status == l_False );
nFinal = sat_solver_final( pSat, &pFinal );
*/
// save these literals
Vec_IntClear( vLits2 );
for ( i = 0; i < nFinal; i++ )
Vec_IntPush( vLits2, Abc_LitNot(pFinal[i]) );
Vec_IntSort( vLits2, 1 );
// try removing literals from the cube
Vec_IntForEachEntry( vLits2, Lit2, k )
{
if ( Lit2 == Abc_LitNot(pLits[0]) )
continue;
Vec_IntClear( vLits );
Vec_IntForEachEntry( vLits2, Lit, n )
if ( Lit != -1 && Lit != Lit2 )
Vec_IntPush( vLits, Lit );
// call sat
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), nBTLimit, 0, 0, 0 );
if ( status == l_Undef )
assert( 0 );
if ( status == l_True ) // SAT
continue;
// Lit2 can be removed
Vec_IntWriteEntry( vLits2, k, -1 );
}
// make one final run
Vec_IntClear( vLits );
Vec_IntForEachEntry( vLits2, Lit2, k )
if ( Lit2 != -1 )
Vec_IntPush( vLits, Lit2 );
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), nBTLimit, 0, 0, 0 );
assert( status == l_False );
// put them back
nFinal = 0;
Vec_IntForEachEntry( vLits2, Lit2, k )
if ( Lit2 != -1 )
pFinal[nFinal++] = Abc_LitNot(Lit2);
//printf( "After %d. \n", nFinal );
After = nFinal;
Total += Before - After;
// get subset of literals
//nFinal = sat_solver_final( pSat, &pFinal );
// compute cube and add clause
Vec_IntClear( vLits );
Vec_IntPush( vLits, Abc_LitNot(pLits[1]) ); // NOT(iNewLit)
if ( fDumpPla )
Vec_StrFill( vCube, Vec_IntSize(vVars), '-' );
if ( vCubes )
vLevel = Vec_WecPushLevel( vCubes );
for ( i = 0; i < nFinal; i++ )
{
if ( pFinal[i] == pLits[0] )
continue;
Vec_IntPush( vLits, pFinal[i] );
iVar = Vec_IntFind( vVars, Abc_Lit2Var(pFinal[i]) );
assert( iVar >= 0 && iVar < Vec_IntSize(vVars) );
//printf( "%s%d ", Abc_LitIsCompl(pFinal[i]) ? "+":"-", iVar );
if ( fDumpPla )
Vec_StrWriteEntry( vCube, iVar, (char)(Abc_LitIsCompl(pFinal[i]) ? '0' : '1') );
if ( vLevel )
Vec_IntPush( vLevel, Abc_Var2Lit(iVar, Abc_LitIsCompl(pFinal[i])) );
}
if ( vCubes )
Vec_IntSort( vLevel, 0 );
if ( fDumpPla )
printf( "%s 1\n", Vec_StrArray(vCube) );
status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits) );
assert( status );
nLits += Vec_IntSize(vLevel);
nIter++;
}
if ( fDumpPla )
printf( ".e\n" );
if ( fDumpPla )
printf( ".p %d\n\n", nIter );
if ( fVerbose )
printf( "Cubes = %d. Reduced = %d. Lits = %d\n", nIter, Total, nLits );
if ( pCounter )
*pCounter = nIter;
// assert( status == l_True );
Vec_IntFree( vLits );
Vec_IntFree( vLits2 );
Vec_StrFree( vCube );
return RetValue;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Bmc_FxCompute( Gia_Man_t * p )
{
// create dual-output circuit with on-set/off-set
extern Gia_Man_t * Gia_ManDupOnsetOffset( Gia_Man_t * p );
Gia_Man_t * p2 = Gia_ManDupOnsetOffset( p );
// create SAT solver
Cnf_Dat_t * pCnf = Mf_ManGenerateCnf( p2, 8, 0, 0, 0 );
sat_solver * pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
// compute parameters
int nOuts = Gia_ManCoNum(p);
int nCiVars = Gia_ManCiNum(p), iCiVarBeg = pCnf->nVars - nCiVars;// - 1;
int o, i, n, RetValue, nCounter, iAuxVarStart = sat_solver_nvars( pSat );
int nCubes[2][2] = {{0}};
// create variables
Vec_Int_t * vVars = Vec_IntAlloc( nCiVars );
for ( n = 0; n < nCiVars; n++ )
Vec_IntPush( vVars, iCiVarBeg + n );
sat_solver_setnvars( pSat, iAuxVarStart + 4*nOuts );
// iterate through outputs
for ( o = 0; o < nOuts; o++ )
for ( i = 0; i < 2; i++ )
for ( n = 0; n < 2; n++ ) // 0=onset, 1=offset
// for ( n = 1; n >= 0; n-- ) // 0=onset, 1=offset
{
printf( "Out %3d %sset ", o, n ? "off" : " on" );
RetValue = Bmc_FxSolve( pSat, Abc_Var2Lit(o, n), iAuxVarStart + 2*i*nOuts + Abc_Var2Lit(o, n), vVars, 0, 0, &nCounter, NULL );
if ( RetValue == 0 )
printf( "Mismatch\n" );
if ( RetValue == -1 )
printf( "Timeout\n" );
nCubes[i][n] += nCounter;
}
// cleanup
Vec_IntFree( vVars );
sat_solver_delete( pSat );
Cnf_DataFree( pCnf );
Gia_ManStop( p2 );
printf( "Onset = %5d. Offset = %5d. Onset = %5d. Offset = %5d.\n", nCubes[0][0], nCubes[0][1], nCubes[1][0], nCubes[1][1] );
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Bmc_FxAddClauses( sat_solver * pSat, Vec_Int_t * vDivs, int iCiVarBeg, int iVarStart )
{
int i, Func, pLits[3], nDivs = Vec_IntSize(vDivs)/4;
assert( Vec_IntSize(vDivs) % 4 == 0 );
// create new var for each divisor
for ( i = 0; i < nDivs; i++ )
{
Func = Vec_IntEntry(vDivs, 4*i+0);
pLits[0] = Vec_IntEntry(vDivs, 4*i+1);
pLits[1] = Vec_IntEntry(vDivs, 4*i+2);
pLits[2] = Vec_IntEntry(vDivs, 4*i+3);
//printf( "Adding clause with vars %d %d -> %d\n", iCiVarBeg + Abc_Lit2Var(pLits[0]), iCiVarBeg + Abc_Lit2Var(pLits[1]), iVarStart + nDivs - 1 - i );
if ( Func == DIV_AND )
sat_solver_add_and( pSat,
iVarStart + nDivs - 1 - i, iCiVarBeg + Abc_Lit2Var(pLits[0]), iCiVarBeg + Abc_Lit2Var(pLits[1]),
Abc_LitIsCompl(pLits[0]), Abc_LitIsCompl(pLits[1]), 0 );
else if ( Func == DIV_XOR )
sat_solver_add_xor( pSat,
iVarStart + nDivs - 1 - i, iCiVarBeg + Abc_Lit2Var(pLits[0]), iCiVarBeg + Abc_Lit2Var(pLits[1]), 0 );
else if ( Func == DIV_MUX )
sat_solver_add_mux( pSat,
iVarStart + nDivs - 1 - i, iCiVarBeg + Abc_Lit2Var(pLits[0]), iCiVarBeg + Abc_Lit2Var(pLits[1]), iCiVarBeg + Abc_Lit2Var(pLits[2]),
Abc_LitIsCompl(pLits[0]), Abc_LitIsCompl(pLits[1]), Abc_LitIsCompl(pLits[2]), 0 );
else assert( 0 );
}
}
int Bmc_FxComputeOne( Gia_Man_t * p )
{
int Extra = 1000;
int nIterMax = 5;
int nDiv2Add = 16;
// create SAT solver
Cnf_Dat_t * pCnf = Mf_ManGenerateCnf( p, 8, 0, 0, 0 );
sat_solver * pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
// compute parameters
int nCiVars = Gia_ManCiNum(p); // PI count
int iCiVarBeg = pCnf->nVars - nCiVars;//- 1; // first PI var
int iCiVarCur = iCiVarBeg + nCiVars; // current unused PI var
int n, Iter, RetValue;
// create variables
int iAuxVarStart = sat_solver_nvars(pSat) + Extra; // the aux var
sat_solver_setnvars( pSat, iAuxVarStart + 1 + nIterMax );
for ( Iter = 0; Iter < nIterMax; Iter++ )
{
Vec_Wec_t * vCubes = Vec_WecAlloc( 1000 );
// collect variables
Vec_Int_t * vVar2Sat = Vec_IntAlloc( iCiVarCur-iCiVarBeg ), * vDivs;
// for ( n = iCiVarCur - 1; n >= iCiVarBeg; n-- )
for ( n = iCiVarBeg; n < iCiVarCur; n++ )
Vec_IntPush( vVar2Sat, n );
// iterate through outputs
printf( "\nIteration %d (Aux = %d)\n", Iter, iAuxVarStart + Iter );
RetValue = Bmc_FxSolve( pSat, 0, iAuxVarStart + Iter, vVar2Sat, 1, 1, NULL, vCubes );
if ( RetValue == 0 )
printf( "Mismatch\n" );
if ( RetValue == -1 )
printf( "Timeout\n" );
// print cubes
//Div_CubePrint( vCubes, nCiVars );
vDivs = Div_CubePairs( vCubes, nCiVars, nDiv2Add );
Vec_WecFree( vCubes );
// add clauses and update variables
Bmc_FxAddClauses( pSat, vDivs, iCiVarBeg, iCiVarCur );
iCiVarCur += Vec_IntSize(vDivs)/4;
Vec_IntFree( vDivs );
// cleanup
assert( Vec_IntSize(vVar2Sat) <= nCiVars + Extra );
Vec_IntFree( vVar2Sat );
}
// cleanup
sat_solver_delete( pSat );
Cnf_DataFree( pCnf );
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|