summaryrefslogtreecommitdiffstats
path: root/src/proof/fraig/fraigNode.c
blob: 9bf64bd22286e04a75a741fc93ecac0c79796db0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/**CFile****************************************************************

  FileName    [fraigNode.c]

  PackageName [FRAIG: Functionally reduced AND-INV graphs.]

  Synopsis    [Implementation of the FRAIG node.]

  Author      [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 2.0. Started - October 1, 2004]

  Revision    [$Id: fraigNode.c,v 1.3 2005/07/08 01:01:32 alanmi Exp $]

***********************************************************************/

#include "fraigInt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

// returns the complemented attribute of the node
#define Fraig_NodeIsSimComplement(p) (Fraig_IsComplement(p)? !(Fraig_Regular(p)->fInv) : (p)->fInv)

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Creates the constant 1 node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fraig_Node_t * Fraig_NodeCreateConst( Fraig_Man_t * p )
{
    Fraig_Node_t * pNode;

    // create the node
    pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
    memset( pNode, 0, sizeof(Fraig_Node_t) );

    // assign the number and add to the array of nodes
    pNode->Num   = p->vNodes->nSize;
    Fraig_NodeVecPush( p->vNodes,  pNode );
    pNode->NumPi = -1;  // this is not a PI, so its number is -1
    pNode->Level =  0;  // just like a PI, it has 0 level
    pNode->nRefs =  1;  // it is a persistent node, which comes referenced
    pNode->fInv  =  1;  // the simulation info is complemented

    // create the simulation info
    pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
    pNode->puSimD = pNode->puSimR + p->nWordsRand;
    memset( pNode->puSimR, 0, sizeof(unsigned) * p->nWordsRand );
    memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );

    // count the number of ones in the simulation vector
    pNode->nOnes = p->nWordsRand * sizeof(unsigned) * 8;

    // insert it into the hash table
    Fraig_HashTableLookupF0( p, pNode );
    return pNode;
}

/**Function*************************************************************

  Synopsis    [Creates a primary input node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fraig_Node_t * Fraig_NodeCreatePi( Fraig_Man_t * p )
{
    Fraig_Node_t * pNode, * pNodeRes;
    int i;
    abctime clk;

    // create the node
    pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
    memset( pNode, 0, sizeof(Fraig_Node_t) );
    pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
    pNode->puSimD = pNode->puSimR + p->nWordsRand;
    memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );

    // assign the number and add to the array of nodes
    pNode->Num   = p->vNodes->nSize;
    Fraig_NodeVecPush( p->vNodes,  pNode );

    // assign the PI number and add to the array of primary inputs
    pNode->NumPi = p->vInputs->nSize;   
    Fraig_NodeVecPush( p->vInputs, pNode );

    pNode->Level =  0;  // PI has 0 level
    pNode->nRefs =  1;  // it is a persistent node, which comes referenced
    pNode->fInv  =  0;  // the simulation info of the PI is not complemented

    // derive the simulation info for the new node
clk = Abc_Clock();
    // set the random simulation info for the primary input
    pNode->uHashR = 0;
    for ( i = 0; i < p->nWordsRand; i++ )
    {
        // generate the simulation info
        pNode->puSimR[i] = FRAIG_RANDOM_UNSIGNED;
        // for reasons that take very long to explain, it makes sense to have (0000000...) 
        // pattern in the set (this helps if we need to return the counter-examples)
        if ( i == 0 )
            pNode->puSimR[i] <<= 1;
        // compute the hash key
        pNode->uHashR ^= pNode->puSimR[i] * s_FraigPrimes[i];
    }
    // count the number of ones in the simulation vector
    pNode->nOnes = Fraig_BitStringCountOnes( pNode->puSimR, p->nWordsRand );

    // set the systematic simulation info for the primary input
    pNode->uHashD = 0;
    for ( i = 0; i < p->iWordStart; i++ )
    {
        // generate the simulation info
        pNode->puSimD[i] = FRAIG_RANDOM_UNSIGNED;
        // compute the hash key
        pNode->uHashD ^= pNode->puSimD[i] * s_FraigPrimes[i];
    }
p->timeSims += Abc_Clock() - clk;

    // insert it into the hash table
    pNodeRes = Fraig_HashTableLookupF( p, pNode );
    assert( pNodeRes == NULL );
    // add to the runtime of simulation
    return pNode;
}

/**Function*************************************************************

  Synopsis    [Creates a new node.]

  Description [This procedure should be called to create the constant
  node and the PI nodes first.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fraig_Node_t * Fraig_NodeCreate( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 )
{
    Fraig_Node_t * pNode;
    abctime clk;

    // create the node
    pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
    memset( pNode, 0, sizeof(Fraig_Node_t) );

    // assign the children
    pNode->p1  = p1;  Fraig_Ref(p1);  Fraig_Regular(p1)->nRefs++;
    pNode->p2  = p2;  Fraig_Ref(p2);  Fraig_Regular(p2)->nRefs++;

    // assign the number and add to the array of nodes
    pNode->Num = p->vNodes->nSize;
    Fraig_NodeVecPush( p->vNodes,  pNode );

    // assign the PI number
    pNode->NumPi = -1;

    // compute the level of this node
    pNode->Level = 1 + Abc_MaxInt(Fraig_Regular(p1)->Level, Fraig_Regular(p2)->Level);
    pNode->fInv  = Fraig_NodeIsSimComplement(p1) & Fraig_NodeIsSimComplement(p2);
    pNode->fFailTfo = Fraig_Regular(p1)->fFailTfo | Fraig_Regular(p2)->fFailTfo;

    // derive the simulation info 
clk = Abc_Clock();
    // allocate memory for the simulation info
    pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
    pNode->puSimD = pNode->puSimR + p->nWordsRand;
    // derive random simulation info
    pNode->uHashR = 0;
    Fraig_NodeSimulate( pNode, 0, p->nWordsRand, 1 );
    // derive dynamic simulation info
    pNode->uHashD = 0;
    Fraig_NodeSimulate( pNode, 0, p->iWordStart, 0 );
    // count the number of ones in the random simulation info
    pNode->nOnes = Fraig_BitStringCountOnes( pNode->puSimR, p->nWordsRand );
    if ( pNode->fInv )
        pNode->nOnes = p->nWordsRand * 32 - pNode->nOnes;
    // add to the runtime of simulation
p->timeSims += Abc_Clock() - clk;

#ifdef FRAIG_ENABLE_FANOUTS
    // create the fanout info
    Fraig_NodeAddFaninFanout( Fraig_Regular(p1), pNode );
    Fraig_NodeAddFaninFanout( Fraig_Regular(p2), pNode );
#endif
    return pNode;
}


/**Function*************************************************************

  Synopsis    [Simulates the node.]

  Description [Simulates the random or dynamic simulation info through 
  the node. Uses phases of the children to determine their real simulation
  info. Uses phase of the node to determine the way its simulation info 
  is stored. The resulting info is guaranteed to be 0 for the first pattern.]
  
  SideEffects [This procedure modified the hash value of the simulation info.]

  SeeAlso     []

***********************************************************************/
void Fraig_NodeSimulate( Fraig_Node_t * pNode, int iWordStart, int iWordStop, int fUseRand )
{
    unsigned * pSims, * pSims1, * pSims2;
    unsigned uHash;
    int fCompl, fCompl1, fCompl2, i;

    assert( !Fraig_IsComplement(pNode) );

    // get hold of the simulation information
    pSims  = fUseRand? pNode->puSimR                    : pNode->puSimD;
    pSims1 = fUseRand? Fraig_Regular(pNode->p1)->puSimR : Fraig_Regular(pNode->p1)->puSimD;
    pSims2 = fUseRand? Fraig_Regular(pNode->p2)->puSimR : Fraig_Regular(pNode->p2)->puSimD;

    // get complemented attributes of the children using their random info
    fCompl  = pNode->fInv;
    fCompl1 = Fraig_NodeIsSimComplement(pNode->p1);
    fCompl2 = Fraig_NodeIsSimComplement(pNode->p2);

    // simulate
    uHash = 0;
    if ( fCompl1 && fCompl2 )
    {
        if ( fCompl )
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = (pSims1[i] | pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
        else
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = ~(pSims1[i] | pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
    }
    else if ( fCompl1 && !fCompl2 )
    {
        if ( fCompl )
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = (pSims1[i] | ~pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
        else
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = (~pSims1[i] & pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
    }
    else if ( !fCompl1 && fCompl2 )
    {
        if ( fCompl )
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = (~pSims1[i] | pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
        else
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = (pSims1[i] & ~pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
    }
    else // if ( !fCompl1 && !fCompl2 )
    {
        if ( fCompl )
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = ~(pSims1[i] & pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
        else
            for ( i = iWordStart; i < iWordStop; i++ )
            {
                pSims[i] = (pSims1[i] & pSims2[i]);
                uHash ^= pSims[i] * s_FraigPrimes[i];
            }
    }

    if ( fUseRand )
        pNode->uHashR ^= uHash;
    else
        pNode->uHashD ^= uHash;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////

ABC_NAMESPACE_IMPL_END