1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
/**CFile****************************************************************
FileName [simSymStr.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Structural detection of symmetries.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: simSymStr.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "sim.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define SIM_READ_SYMMS(pNode) ((Vec_Int_t *)pNode->pCopy)
#define SIM_SET_SYMMS(pNode,vVect) (pNode->pCopy = (Abc_Obj_t *)(vVect))
static void Sim_SymmsStructComputeOne( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, int * pMap );
static void Sim_SymmsBalanceCollect_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes );
static void Sim_SymmsPartitionNodes( Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesPis0, Vec_Ptr_t * vNodesPis1, Vec_Ptr_t * vNodesOther );
static void Sim_SymmsAppendFromGroup( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodesPi, Vec_Ptr_t * vNodesOther, Vec_Int_t * vSymms, int * pMap );
static void Sim_SymmsAppendFromNode( Abc_Ntk_t * pNtk, Vec_Int_t * vSymms0, Vec_Ptr_t * vNodesOther, Vec_Ptr_t * vNodesPi0, Vec_Ptr_t * vNodesPi1, Vec_Int_t * vSymms, int * pMap );
static int Sim_SymmsIsCompatibleWithNodes( Abc_Ntk_t * pNtk, unsigned uSymm, Vec_Ptr_t * vNodesOther, int * pMap );
static int Sim_SymmsIsCompatibleWithGroup( unsigned uSymm, Vec_Ptr_t * vNodesPi, int * pMap );
static void Sim_SymmsPrint( Vec_Int_t * vSymms );
static void Sim_SymmsTrans( Vec_Int_t * vSymms );
static void Sim_SymmsTransferToMatrix( Extra_BitMat_t * pMatSymm, Vec_Int_t * vSymms, unsigned * pSupport );
static int * Sim_SymmsCreateMap( Abc_Ntk_t * pNtk );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes symmetries for a single output function.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsStructCompute( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMatrs, Vec_Ptr_t * vSuppFun )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pTemp;
int * pMap, i;
assert( Abc_NtkCiNum(pNtk) + 10 < (1<<16) );
// get the structural support
pNtk->vSupps = Sim_ComputeStrSupp( pNtk );
// set elementary info for the CIs
Abc_NtkForEachCi( pNtk, pTemp, i )
SIM_SET_SYMMS( pTemp, Vec_IntAlloc(0) );
// create the map of CI ids into their numbers
pMap = Sim_SymmsCreateMap( pNtk );
// collect the nodes in the TFI cone of this output
vNodes = Abc_NtkDfs( pNtk, 0 );
Vec_PtrForEachEntry( vNodes, pTemp, i )
{
// if ( Abc_NodeIsConst(pTemp) )
// continue;
Sim_SymmsStructComputeOne( pNtk, pTemp, pMap );
}
// collect the results for the COs;
Abc_NtkForEachCo( pNtk, pTemp, i )
{
//printf( "Output %d:\n", i );
pTemp = Abc_ObjFanin0(pTemp);
if ( Abc_ObjIsCi(pTemp) || Abc_AigNodeIsConst(pTemp) )
continue;
Sim_SymmsTransferToMatrix( Vec_PtrEntry(vMatrs, i), SIM_READ_SYMMS(pTemp), Vec_PtrEntry(vSuppFun, i) );
}
// clean the intermediate results
Sim_UtilInfoFree( pNtk->vSupps );
pNtk->vSupps = NULL;
Abc_NtkForEachCi( pNtk, pTemp, i )
Vec_IntFree( SIM_READ_SYMMS(pTemp) );
Vec_PtrForEachEntry( vNodes, pTemp, i )
// if ( !Abc_NodeIsConst(pTemp) )
Vec_IntFree( SIM_READ_SYMMS(pTemp) );
Vec_PtrFree( vNodes );
ABC_FREE( pMap );
}
/**Function*************************************************************
Synopsis [Recursively computes symmetries. ]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsStructComputeOne( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, int * pMap )
{
Vec_Ptr_t * vNodes, * vNodesPi0, * vNodesPi1, * vNodesOther;
Vec_Int_t * vSymms;
Abc_Obj_t * pTemp;
int i;
// allocate the temporary arrays
vNodes = Vec_PtrAlloc( 10 );
vNodesPi0 = Vec_PtrAlloc( 10 );
vNodesPi1 = Vec_PtrAlloc( 10 );
vNodesOther = Vec_PtrAlloc( 10 );
// collect the fanins of the implication supergate
Sim_SymmsBalanceCollect_rec( pNode, vNodes );
// sort the nodes in the implication supergate
Sim_SymmsPartitionNodes( vNodes, vNodesPi0, vNodesPi1, vNodesOther );
// start the resulting set
vSymms = Vec_IntAlloc( 10 );
// generate symmetries from the groups
Sim_SymmsAppendFromGroup( pNtk, vNodesPi0, vNodesOther, vSymms, pMap );
Sim_SymmsAppendFromGroup( pNtk, vNodesPi1, vNodesOther, vSymms, pMap );
// add symmetries from other inputs
for ( i = 0; i < vNodesOther->nSize; i++ )
{
pTemp = Abc_ObjRegular(vNodesOther->pArray[i]);
Sim_SymmsAppendFromNode( pNtk, SIM_READ_SYMMS(pTemp), vNodesOther, vNodesPi0, vNodesPi1, vSymms, pMap );
}
Vec_PtrFree( vNodes );
Vec_PtrFree( vNodesPi0 );
Vec_PtrFree( vNodesPi1 );
Vec_PtrFree( vNodesOther );
// set the symmetry at the node
SIM_SET_SYMMS( pNode, vSymms );
}
/**Function*************************************************************
Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsBalanceCollect_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes )
{
// if the new node is complemented, another gate begins
if ( Abc_ObjIsComplement(pNode) )
{
Vec_PtrPushUnique( vNodes, pNode );
return;
}
// if pNew is the PI node, return
if ( Abc_ObjIsCi(pNode) )
{
Vec_PtrPushUnique( vNodes, pNode );
return;
}
// go through the branches
Sim_SymmsBalanceCollect_rec( Abc_ObjChild0(pNode), vNodes );
Sim_SymmsBalanceCollect_rec( Abc_ObjChild1(pNode), vNodes );
}
/**Function*************************************************************
Synopsis [Divides PI variables into groups.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsPartitionNodes( Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesPis0,
Vec_Ptr_t * vNodesPis1, Vec_Ptr_t * vNodesOther )
{
Abc_Obj_t * pNode;
int i;
Vec_PtrForEachEntry( vNodes, pNode, i )
{
if ( !Abc_ObjIsCi(Abc_ObjRegular(pNode)) )
Vec_PtrPush( vNodesOther, pNode );
else if ( Abc_ObjIsComplement(pNode) )
Vec_PtrPush( vNodesPis0, pNode );
else
Vec_PtrPush( vNodesPis1, pNode );
}
}
/**Function*************************************************************
Synopsis [Makes the product of two partitions.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsAppendFromGroup( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodesPi, Vec_Ptr_t * vNodesOther, Vec_Int_t * vSymms, int * pMap )
{
Abc_Obj_t * pNode1, * pNode2;
unsigned uSymm;
int i, k;
if ( vNodesPi->nSize == 0 )
return;
// go through the pairs
for ( i = 0; i < vNodesPi->nSize; i++ )
for ( k = i+1; k < vNodesPi->nSize; k++ )
{
// get the two PI nodes
pNode1 = Abc_ObjRegular(vNodesPi->pArray[i]);
pNode2 = Abc_ObjRegular(vNodesPi->pArray[k]);
assert( pMap[pNode1->Id] != pMap[pNode2->Id] );
assert( pMap[pNode1->Id] >= 0 );
assert( pMap[pNode2->Id] >= 0 );
// generate symmetry
if ( pMap[pNode1->Id] < pMap[pNode2->Id] )
uSymm = ((pMap[pNode1->Id] << 16) | pMap[pNode2->Id]);
else
uSymm = ((pMap[pNode2->Id] << 16) | pMap[pNode1->Id]);
// check if symmetry belongs
if ( Sim_SymmsIsCompatibleWithNodes( pNtk, uSymm, vNodesOther, pMap ) )
Vec_IntPushUnique( vSymms, (int)uSymm );
}
}
/**Function*************************************************************
Synopsis [Add the filters symmetries from the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsAppendFromNode( Abc_Ntk_t * pNtk, Vec_Int_t * vSymms0, Vec_Ptr_t * vNodesOther,
Vec_Ptr_t * vNodesPi0, Vec_Ptr_t * vNodesPi1, Vec_Int_t * vSymms, int * pMap )
{
unsigned uSymm;
int i;
if ( vSymms0->nSize == 0 )
return;
// go through the pairs
for ( i = 0; i < vSymms0->nSize; i++ )
{
uSymm = (unsigned)vSymms0->pArray[i];
// check if symmetry belongs
if ( Sim_SymmsIsCompatibleWithNodes( pNtk, uSymm, vNodesOther, pMap ) &&
Sim_SymmsIsCompatibleWithGroup( uSymm, vNodesPi0, pMap ) &&
Sim_SymmsIsCompatibleWithGroup( uSymm, vNodesPi1, pMap ) )
Vec_IntPushUnique( vSymms, (int)uSymm );
}
}
/**Function*************************************************************
Synopsis [Returns 1 if symmetry is compatible with the group of nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sim_SymmsIsCompatibleWithNodes( Abc_Ntk_t * pNtk, unsigned uSymm, Vec_Ptr_t * vNodesOther, int * pMap )
{
Vec_Int_t * vSymmsNode;
Abc_Obj_t * pNode;
int i, s, Ind1, Ind2, fIsVar1, fIsVar2;
if ( vNodesOther->nSize == 0 )
return 1;
// get the indices of the PI variables
Ind1 = (uSymm & 0xffff);
Ind2 = (uSymm >> 16);
// go through the nodes
// if they do not belong to a support, it is okay
// if one belongs, the other does not belong, quit
// if they belong, but are not part of symmetry, quit
for ( i = 0; i < vNodesOther->nSize; i++ )
{
pNode = Abc_ObjRegular(vNodesOther->pArray[i]);
fIsVar1 = Sim_SuppStrHasVar( pNtk->vSupps, pNode, Ind1 );
fIsVar2 = Sim_SuppStrHasVar( pNtk->vSupps, pNode, Ind2 );
if ( !fIsVar1 && !fIsVar2 )
continue;
if ( fIsVar1 ^ fIsVar2 )
return 0;
// both belong
// check if there is a symmetry
vSymmsNode = SIM_READ_SYMMS( pNode );
for ( s = 0; s < vSymmsNode->nSize; s++ )
if ( uSymm == (unsigned)vSymmsNode->pArray[s] )
break;
if ( s == vSymmsNode->nSize )
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Returns 1 if symmetry is compatible with the group of PIs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sim_SymmsIsCompatibleWithGroup( unsigned uSymm, Vec_Ptr_t * vNodesPi, int * pMap )
{
Abc_Obj_t * pNode;
int i, Ind1, Ind2, fHasVar1, fHasVar2;
if ( vNodesPi->nSize == 0 )
return 1;
// get the indices of the PI variables
Ind1 = (uSymm & 0xffff);
Ind2 = (uSymm >> 16);
// go through the PI nodes
fHasVar1 = fHasVar2 = 0;
for ( i = 0; i < vNodesPi->nSize; i++ )
{
pNode = Abc_ObjRegular(vNodesPi->pArray[i]);
if ( pMap[pNode->Id] == Ind1 )
fHasVar1 = 1;
else if ( pMap[pNode->Id] == Ind2 )
fHasVar2 = 1;
}
return fHasVar1 == fHasVar2;
}
/**Function*************************************************************
Synopsis [Improvements due to transitivity.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsTrans( Vec_Int_t * vSymms )
{
unsigned uSymm, uSymma, uSymmr;
int i, Ind1, Ind2;
int k, Ind1a, Ind2a;
int j;
int nTrans = 0;
for ( i = 0; i < vSymms->nSize; i++ )
{
uSymm = (unsigned)vSymms->pArray[i];
Ind1 = (uSymm & 0xffff);
Ind2 = (uSymm >> 16);
// find other symmetries that have Ind1
for ( k = i+1; k < vSymms->nSize; k++ )
{
uSymma = (unsigned)vSymms->pArray[k];
if ( uSymma == uSymm )
continue;
Ind1a = (uSymma & 0xffff);
Ind2a = (uSymma >> 16);
if ( Ind1a == Ind1 )
{
// find the symmetry (Ind2,Ind2a)
if ( Ind2 < Ind2a )
uSymmr = ((Ind2 << 16) | Ind2a);
else
uSymmr = ((Ind2a << 16) | Ind2);
for ( j = 0; j < vSymms->nSize; j++ )
if ( uSymmr == (unsigned)vSymms->pArray[j] )
break;
if ( j == vSymms->nSize )
nTrans++;
}
}
}
printf( "Trans = %d.\n", nTrans );
}
/**Function*************************************************************
Synopsis [Transfers from the vector to the matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsTransferToMatrix( Extra_BitMat_t * pMatSymm, Vec_Int_t * vSymms, unsigned * pSupport )
{
int i, Ind1, Ind2, nInputs;
unsigned uSymm;
// add diagonal elements
nInputs = Extra_BitMatrixReadSize( pMatSymm );
for ( i = 0; i < nInputs; i++ )
Extra_BitMatrixInsert1( pMatSymm, i, i );
// add non-diagonal elements
for ( i = 0; i < vSymms->nSize; i++ )
{
uSymm = (unsigned)vSymms->pArray[i];
Ind1 = (uSymm & 0xffff);
Ind2 = (uSymm >> 16);
//printf( "%d,%d ", Ind1, Ind2 );
// skip variables that are not in the true support
assert( Sim_HasBit(pSupport, Ind1) == Sim_HasBit(pSupport, Ind2) );
if ( !Sim_HasBit(pSupport, Ind1) || !Sim_HasBit(pSupport, Ind2) )
continue;
Extra_BitMatrixInsert1( pMatSymm, Ind1, Ind2 );
Extra_BitMatrixInsert2( pMatSymm, Ind1, Ind2 );
}
}
/**Function*************************************************************
Synopsis [Mapping of indices into numbers.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int * Sim_SymmsCreateMap( Abc_Ntk_t * pNtk )
{
int * pMap;
Abc_Obj_t * pNode;
int i;
pMap = ABC_ALLOC( int, Abc_NtkObjNumMax(pNtk) );
for ( i = 0; i < Abc_NtkObjNumMax(pNtk); i++ )
pMap[i] = -1;
Abc_NtkForEachCi( pNtk, pNode, i )
pMap[pNode->Id] = i;
return pMap;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|