1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
/**CFile****************************************************************
FileName [simSymSim.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Simulation to determine two-variable symmetries.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: simSymSim.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "sim.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static void Sim_SymmsCreateSquare( Sym_Man_t * p, unsigned * pPat );
static void Sim_SymmsDeriveInfo( Sym_Man_t * p, unsigned * pPat, Abc_Obj_t * pNode, Vec_Ptr_t * vMatrsNonSym, int Output );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Detects non-symmetric pairs using one pattern.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsSimulate( Sym_Man_t * p, unsigned * pPat, Vec_Ptr_t * vMatrsNonSym )
{
Abc_Obj_t * pNode;
int i, nPairsTotal, nPairsSym, nPairsNonSym;
int clk;
// create the simulation matrix
Sim_SymmsCreateSquare( p, pPat );
// simulate each node in the DFS order
clk = clock();
Vec_PtrForEachEntry( Abc_Obj_t *, p->vNodes, pNode, i )
{
// if ( Abc_NodeIsConst(pNode) )
// continue;
Sim_UtilSimulateNodeOne( pNode, p->vSim, p->nSimWords, 0 );
}
p->timeSim += clock() - clk;
// collect info into the CO matrices
clk = clock();
Abc_NtkForEachCo( p->pNtk, pNode, i )
{
pNode = Abc_ObjFanin0(pNode);
// if ( Abc_ObjIsCi(pNode) || Abc_AigNodeIsConst(pNode) )
// continue;
nPairsTotal = Vec_IntEntry(p->vPairsTotal, i);
nPairsSym = Vec_IntEntry(p->vPairsSym, i);
nPairsNonSym = Vec_IntEntry(p->vPairsNonSym,i);
assert( nPairsTotal >= nPairsSym + nPairsNonSym );
if ( nPairsTotal == nPairsSym + nPairsNonSym )
continue;
Sim_SymmsDeriveInfo( p, pPat, pNode, vMatrsNonSym, i );
}
p->timeMatr += clock() - clk;
}
/**Function*************************************************************
Synopsis [Creates the square matrix of simulation info.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsCreateSquare( Sym_Man_t * p, unsigned * pPat )
{
unsigned * pSimInfo;
Abc_Obj_t * pNode;
int i, w;
// for each PI var copy the pattern
Abc_NtkForEachCi( p->pNtk, pNode, i )
{
pSimInfo = (unsigned *)Vec_PtrEntry( p->vSim, pNode->Id );
if ( Sim_HasBit(pPat, i) )
{
for ( w = 0; w < p->nSimWords; w++ )
pSimInfo[w] = SIM_MASK_FULL;
}
else
{
for ( w = 0; w < p->nSimWords; w++ )
pSimInfo[w] = 0;
}
// flip one bit
Sim_XorBit( pSimInfo, i );
}
}
/**Function*************************************************************
Synopsis [Transfers the info to the POs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SymmsDeriveInfo( Sym_Man_t * p, unsigned * pPat, Abc_Obj_t * pNode, Vec_Ptr_t * vMatrsNonSym, int Output )
{
Extra_BitMat_t * pMat;
Vec_Int_t * vSupport;
unsigned * pSupport;
unsigned * pSimInfo;
int i, w, Index;
// get the matrix, the support, and the simulation info
pMat = (Extra_BitMat_t *)Vec_PtrEntry( vMatrsNonSym, Output );
vSupport = (Vec_Int_t *)Vec_VecEntry( p->vSupports, Output );
pSupport = (unsigned *)Vec_PtrEntry( p->vSuppFun, Output );
pSimInfo = (unsigned *)Vec_PtrEntry( p->vSim, pNode->Id );
// generate vectors A1 and A2
for ( w = 0; w < p->nSimWords; w++ )
{
p->uPatCol[w] = pSupport[w] & pPat[w] & pSimInfo[w];
p->uPatRow[w] = pSupport[w] & pPat[w] & ~pSimInfo[w];
}
// add two dimensions
Vec_IntForEachEntry( vSupport, i, Index )
if ( Sim_HasBit( p->uPatCol, i ) )
Extra_BitMatrixOr( pMat, i, p->uPatRow );
// add two dimensions
Vec_IntForEachEntry( vSupport, i, Index )
if ( Sim_HasBit( p->uPatRow, i ) )
Extra_BitMatrixOr( pMat, i, p->uPatCol );
// generate vectors B1 and B2
for ( w = 0; w < p->nSimWords; w++ )
{
p->uPatCol[w] = pSupport[w] & ~pPat[w] & pSimInfo[w];
p->uPatRow[w] = pSupport[w] & ~pPat[w] & ~pSimInfo[w];
}
// add two dimensions
Vec_IntForEachEntry( vSupport, i, Index )
if ( Sim_HasBit( p->uPatCol, i ) )
Extra_BitMatrixOr( pMat, i, p->uPatRow );
// add two dimensions
Vec_IntForEachEntry( vSupport, i, Index )
if ( Sim_HasBit( p->uPatRow, i ) )
Extra_BitMatrixOr( pMat, i, p->uPatCol );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|