1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/**CFile****************************************************************
FileName [rwrCut.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [DAG-aware AIG rewriting package.]
Synopsis [Cut computation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: rwrCut.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "rwr.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static Rwr_Cut_t * Rwr_CutAlloc( Abc_ManRwr_t * p );
static Rwr_Cut_t * Rwr_CutCreateTriv( Abc_ManRwr_t * p, Abc_Obj_t * pNode );
static Rwr_Cut_t * Rwr_CutsMerge( Abc_ManRwr_t * p, Rwr_Cut_t * pCut0, Rwr_Cut_t * pCut1, int fCompl0, int fCompl1 );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Assigns elementary cuts to the PIs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkManRwrStartCuts( Abc_ManRwr_t * p, Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pNode;
int i;
// set the trivial cuts
Abc_NtkCleanCopy( pNtk );
Abc_NtkForEachCi( pNtk, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Rwr_CutCreateTriv( p, pNode );
// precompute the required times for all internal nodes
p->vFanNums = Rwt_NtkFanoutCounters( pNtk );
// save the fanout counters for all internal nodes
p->vReqTimes = Rwt_NtkRequiredLevels( pNtk );
}
/**Function*************************************************************
Synopsis [Computes cuts for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeRwrComputeCuts( Abc_ManRwr_t * p, Abc_Obj_t * pNode )
{
Rwr_Cut_t * pCuts0, * pCuts1, * pTemp0, * pTemp1, * pCut;
Rwr_Cut_t * pList = NULL, ** ppPlace = &pList; // linked list of cuts
assert( Abc_ObjIsNode(pNode) );
if ( Abc_NodeIsConst(pNode) )
return;
// create the elementary cut
pCut = Rwr_CutCreateTriv( p, pNode );
// add it to the linked list
*ppPlace = pCut; ppPlace = &pCut->pNext;
// create cuts by merging pairwise
pCuts0 = (Rwr_Cut_t *)Abc_ObjFanin0(pNode)->pCopy;
pCuts1 = (Rwr_Cut_t *)Abc_ObjFanin1(pNode)->pCopy;
assert( pCuts0 && pCuts1 );
for ( pTemp0 = pCuts0; pTemp0; pTemp0 = pTemp0->pNext )
for ( pTemp1 = pCuts1; pTemp1; pTemp1 = pTemp1->pNext )
{
pCut = Rwr_CutsMerge( p, pTemp0, pTemp1, Abc_ObjFaninC0(pNode), Abc_ObjFaninC1(pNode) );
if ( pCut == NULL )
continue;
// add it to the linked list
*ppPlace = pCut; ppPlace = &pCut->pNext;
}
// set the linked list
pNode->pCopy = (Abc_Obj_t *)pList;
}
/**Function*************************************************************
Synopsis [Start the cut computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Rwr_Cut_t * Rwr_CutsMerge( Abc_ManRwr_t * p, Rwr_Cut_t * pCut0, Rwr_Cut_t * pCut1, int fCompl0, int fCompl1 )
{
Abc_Obj_t * ppNodes[4], * pNodeTemp;
Rwr_Cut_t * pCut;
unsigned uPhase, uTruth0, uTruth1;
int i, k, min, nTotal;
// solve the most typical case: both cuts are four input
if ( pCut0->nLeaves == 4 && pCut1->nLeaves == 4 )
{
for ( i = 0; i < 4; i++ )
if ( pCut0->ppLeaves[i] != pCut1->ppLeaves[i] )
return NULL;
// create the cut
pCut = Rwr_CutAlloc( p );
pCut->nLeaves = 4;
for ( i = 0; i < 4; i++ )
pCut->ppLeaves[i] = pCut0->ppLeaves[i];
pCut->uTruth = (fCompl0? ~pCut0->uTruth : pCut0->uTruth) & (fCompl1? ~pCut1->uTruth : pCut1->uTruth) & 0xFFFF;
return pCut;
}
// create the set of new nodes
// count the number of unique entries in pCut1
nTotal = pCut0->nLeaves;
for ( i = 0; i < (int)pCut1->nLeaves; i++ )
{
// try to find this entry among the leaves of pCut0
for ( k = 0; k < (int)pCut0->nLeaves; k++ )
if ( pCut1->ppLeaves[i] == pCut0->ppLeaves[k] )
break;
if ( k < (int)pCut0->nLeaves ) // found
continue;
// we found a new entry to add
if ( nTotal == 4 )
return NULL;
ppNodes[nTotal++] = pCut1->ppLeaves[i];
}
// we know that the feasible cut exists
// add the starting entries
for ( k = 0; k < (int)pCut0->nLeaves; k++ )
ppNodes[k] = pCut0->ppLeaves[k];
// selection-sort the entries
for ( i = 0; i < nTotal - 1; i++ )
{
min = i;
for ( k = i+1; k < nTotal; k++ )
if ( ppNodes[k]->Id < ppNodes[min]->Id )
min = k;
pNodeTemp = ppNodes[i];
ppNodes[i] = ppNodes[min];
ppNodes[min] = pNodeTemp;
}
// find the mapping from the old nodes to the new
if ( pCut0->nLeaves == 4 )
uTruth0 = pCut0->uTruth;
else
{
uPhase = 0;
for ( i = 0; i < (int)pCut0->nLeaves; i++ )
{
for ( k = 0; k < nTotal; k++ )
if ( pCut0->ppLeaves[i] == ppNodes[k] )
break;
uPhase |= (1 << k);
}
assert( uPhase < 16 );
assert( pCut0->uTruth < 256 );
uTruth0 = p->puPerms[pCut0->uTruth][uPhase];
}
// find the mapping from the old nodes to the new
if ( pCut1->nLeaves == 4 )
uTruth1 = pCut1->uTruth;
else
{
uPhase = 0;
for ( i = 0; i < (int)pCut1->nLeaves; i++ )
{
for ( k = 0; k < nTotal; k++ )
if ( pCut1->ppLeaves[i] == ppNodes[k] )
break;
uPhase |= (1 << k);
}
assert( uPhase < 16 );
assert( pCut1->uTruth < 256 );
uTruth1 = p->puPerms[pCut1->uTruth][uPhase];
}
// create the cut
pCut = Rwr_CutAlloc( p );
pCut->nLeaves = nTotal;
for ( i = 0; i < nTotal; i++ )
pCut->ppLeaves[i] = ppNodes[i];
pCut->uTruth = (fCompl0? ~uTruth0 : uTruth0) & (fCompl1? ~uTruth1 : uTruth1) & 0xFFFF;
return pCut;
}
/**Function*************************************************************
Synopsis [Start the cut computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Rwr_Cut_t * Rwr_CutAlloc( Abc_ManRwr_t * p )
{
Rwr_Cut_t * pCut;
pCut = (Rwr_Cut_t *)Extra_MmFixedEntryFetch( p->pMmNode );
memset( pCut, 0, sizeof(Rwr_Cut_t) );
return pCut;
}
/**Function*************************************************************
Synopsis [Start the cut computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Rwr_Cut_t * Rwr_CutCreateTriv( Abc_ManRwr_t * p, Abc_Obj_t * pNode )
{
Rwr_Cut_t * pCut;
pCut = Rwr_CutAlloc( p );
pCut->nLeaves = 1;
pCut->ppLeaves[0] = pNode;
pCut->uTruth = 0xAAAA;
return pCut;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|