1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/**CFile****************************************************************
FileName [kitGraph.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Computation kit.]
Synopsis [Decomposition graph representation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - Dec 6, 2006.]
Revision [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
***********************************************************************/
#include "kit.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Creates a graph with the given number of leaves.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Graph_t * Kit_GraphCreate( int nLeaves )
{
Kit_Graph_t * pGraph;
pGraph = ALLOC( Kit_Graph_t, 1 );
memset( pGraph, 0, sizeof(Kit_Graph_t) );
pGraph->nLeaves = nLeaves;
pGraph->nSize = nLeaves;
pGraph->nCap = 2 * nLeaves + 50;
pGraph->pNodes = ALLOC( Kit_Node_t, pGraph->nCap );
memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize );
return pGraph;
}
/**Function*************************************************************
Synopsis [Creates constant 0 graph.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Graph_t * Kit_GraphCreateConst0()
{
Kit_Graph_t * pGraph;
pGraph = ALLOC( Kit_Graph_t, 1 );
memset( pGraph, 0, sizeof(Kit_Graph_t) );
pGraph->fConst = 1;
pGraph->eRoot.fCompl = 1;
return pGraph;
}
/**Function*************************************************************
Synopsis [Creates constant 1 graph.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Graph_t * Kit_GraphCreateConst1()
{
Kit_Graph_t * pGraph;
pGraph = ALLOC( Kit_Graph_t, 1 );
memset( pGraph, 0, sizeof(Kit_Graph_t) );
pGraph->fConst = 1;
return pGraph;
}
/**Function*************************************************************
Synopsis [Creates the literal graph.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl )
{
Kit_Graph_t * pGraph;
assert( 0 <= iLeaf && iLeaf < nLeaves );
pGraph = Kit_GraphCreate( nLeaves );
pGraph->eRoot.Node = iLeaf;
pGraph->eRoot.fCompl = fCompl;
return pGraph;
}
/**Function*************************************************************
Synopsis [Creates a graph with the given number of leaves.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_GraphFree( Kit_Graph_t * pGraph )
{
FREE( pGraph->pNodes );
free( pGraph );
}
/**Function*************************************************************
Synopsis [Appends a new node to the graph.]
Description [This procedure is meant for internal use.]
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph )
{
Kit_Node_t * pNode;
if ( pGraph->nSize == pGraph->nCap )
{
pGraph->pNodes = REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap );
pGraph->nCap = 2 * pGraph->nCap;
}
pNode = pGraph->pNodes + pGraph->nSize++;
memset( pNode, 0, sizeof(Kit_Node_t) );
return pNode;
}
/**Function*************************************************************
Synopsis [Creates an AND node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 )
{
Kit_Node_t * pNode;
// get the new node
pNode = Kit_GraphAppendNode( pGraph );
// set the inputs and other info
pNode->eEdge0 = eEdge0;
pNode->eEdge1 = eEdge1;
pNode->fCompl0 = eEdge0.fCompl;
pNode->fCompl1 = eEdge1.fCompl;
return Kit_EdgeCreate( pGraph->nSize - 1, 0 );
}
/**Function*************************************************************
Synopsis [Creates an OR node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 )
{
Kit_Node_t * pNode;
// get the new node
pNode = Kit_GraphAppendNode( pGraph );
// set the inputs and other info
pNode->eEdge0 = eEdge0;
pNode->eEdge1 = eEdge1;
pNode->fCompl0 = eEdge0.fCompl;
pNode->fCompl1 = eEdge1.fCompl;
// make adjustments for the OR gate
pNode->fNodeOr = 1;
pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl;
pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl;
return Kit_EdgeCreate( pGraph->nSize - 1, 1 );
}
/**Function*************************************************************
Synopsis [Creates an XOR node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type )
{
Kit_Edge_t eNode0, eNode1, eNode;
if ( Type == 0 )
{
// derive the first AND
eEdge0.fCompl ^= 1;
eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
eEdge0.fCompl ^= 1;
// derive the second AND
eEdge1.fCompl ^= 1;
eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
// derive the final OR
eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
}
else
{
// derive the first AND
eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
// derive the second AND
eEdge0.fCompl ^= 1;
eEdge1.fCompl ^= 1;
eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
// derive the final OR
eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
eNode.fCompl ^= 1;
}
return eNode;
}
/**Function*************************************************************
Synopsis [Creates an XOR node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type )
{
Kit_Edge_t eNode0, eNode1, eNode;
if ( Type == 0 )
{
// derive the first AND
eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT );
// derive the second AND
eEdgeC.fCompl ^= 1;
eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE );
// derive the final OR
eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
}
else
{
// complement the arguments
eEdgeT.fCompl ^= 1;
eEdgeE.fCompl ^= 1;
// derive the first AND
eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT );
// derive the second AND
eEdgeC.fCompl ^= 1;
eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE );
// derive the final OR
eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
eNode.fCompl ^= 1;
}
return eNode;
}
/**Function*************************************************************
Synopsis [Derives the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph )
{
unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
unsigned uTruth, uTruth0, uTruth1;
Kit_Node_t * pNode;
int i;
// sanity checks
assert( Kit_GraphLeaveNum(pGraph) >= 0 );
assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize );
assert( Kit_GraphLeaveNum(pGraph) <= 5 );
// check for constant function
if ( Kit_GraphIsConst(pGraph) )
return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0);
// check for a literal
if ( Kit_GraphIsVar(pGraph) )
return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)];
// assign the elementary variables
Kit_GraphForEachLeaf( pGraph, pNode, i )
pNode->pFunc = (void *)uTruths[i];
// compute the function for each internal node
Kit_GraphForEachNode( pGraph, pNode, i )
{
uTruth0 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc;
uTruth1 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc;
uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0;
uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1;
uTruth = uTruth0 & uTruth1;
pNode->pFunc = (void *)uTruth;
}
// complement the result if necessary
return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth;
}
/**Function*************************************************************
Synopsis [Derives the factored form from the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory )
{
Kit_Graph_t * pGraph;
int RetValue;
// derive SOP
RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 1 ); // tried 1 and found not useful in "renode"
if ( RetValue == -1 )
return NULL;
// printf( "Isop size = %d.\n", Vec_IntSize(vMemory) );
assert( RetValue == 0 || RetValue == 1 );
// derive factored form
pGraph = Kit_SopFactor( vMemory, RetValue, nVars, vMemory );
return pGraph;
}
/**Function*************************************************************
Synopsis [Derives the maximum depth from the leaf to the root.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf )
{
int Depth0, Depth1, Depth;
if ( pNode == pLeaf )
return 0;
if ( Kit_GraphNodeIsVar(pGraph, pNode) )
return -100;
Depth0 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin0(pGraph, pNode), pLeaf );
Depth1 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin1(pGraph, pNode), pLeaf );
Depth = KIT_MAX( Depth0, Depth1 );
Depth = (Depth == -100) ? -100 : Depth + 1;
return Depth;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|