1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
/**CFile****************************************************************
FileName [fxuMatrix.c]
PackageName [MVSIS 2.0: Multi-valued logic synthesis system.]
Synopsis [Procedures to manipulate the sparse matrix.]
Author [MVSIS Group]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - February 1, 2003.]
Revision [$Id: fxuMatrix.c,v 1.0 2003/02/01 00:00:00 alanmi Exp $]
***********************************************************************/
#include "fxuInt.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
extern unsigned int Cudd_Prime( unsigned int p );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fxu_Matrix * Fxu_MatrixAllocate()
{
Fxu_Matrix * p;
p = ABC_ALLOC( Fxu_Matrix, 1 );
memset( p, 0, sizeof(Fxu_Matrix) );
p->nTableSize = Cudd_Prime(10000);
p->pTable = ABC_ALLOC( Fxu_ListDouble, p->nTableSize );
memset( p->pTable, 0, sizeof(Fxu_ListDouble) * p->nTableSize );
#ifndef USE_SYSTEM_MEMORY_MANAGEMENT
{
// get the largest size in bytes for the following structures:
// Fxu_Cube, Fxu_Var, Fxu_Lit, Fxu_Pair, Fxu_Double, Fxu_Single
// (currently, Fxu_Var, Fxu_Pair, Fxu_Double take 10 machine words)
int nSizeMax, nSizeCur;
nSizeMax = -1;
nSizeCur = sizeof(Fxu_Cube);
if ( nSizeMax < nSizeCur )
nSizeMax = nSizeCur;
nSizeCur = sizeof(Fxu_Var);
if ( nSizeMax < nSizeCur )
nSizeMax = nSizeCur;
nSizeCur = sizeof(Fxu_Lit);
if ( nSizeMax < nSizeCur )
nSizeMax = nSizeCur;
nSizeCur = sizeof(Fxu_Pair);
if ( nSizeMax < nSizeCur )
nSizeMax = nSizeCur;
nSizeCur = sizeof(Fxu_Double);
if ( nSizeMax < nSizeCur )
nSizeMax = nSizeCur;
nSizeCur = sizeof(Fxu_Single);
if ( nSizeMax < nSizeCur )
nSizeMax = nSizeCur;
p->pMemMan = Extra_MmFixedStart( nSizeMax );
}
#endif
p->pHeapDouble = Fxu_HeapDoubleStart();
p->pHeapSingle = Fxu_HeapSingleStart();
p->vPairs = Vec_PtrAlloc( 100 );
return p;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fxu_MatrixDelete( Fxu_Matrix * p )
{
Fxu_HeapDoubleCheck( p->pHeapDouble );
Fxu_HeapDoubleStop( p->pHeapDouble );
Fxu_HeapSingleStop( p->pHeapSingle );
// delete other things
#ifdef USE_SYSTEM_MEMORY_MANAGEMENT
// this code is not needed when the custom memory manager is used
{
Fxu_Cube * pCube, * pCube2;
Fxu_Var * pVar, * pVar2;
Fxu_Lit * pLit, * pLit2;
Fxu_Double * pDiv, * pDiv2;
Fxu_Single * pSingle, * pSingle2;
Fxu_Pair * pPair, * pPair2;
int i;
// delete the divisors
Fxu_MatrixForEachDoubleSafe( p, pDiv, pDiv2, i )
{
Fxu_DoubleForEachPairSafe( pDiv, pPair, pPair2 )
MEM_FREE_FXU( p, Fxu_Pair, 1, pPair );
MEM_FREE_FXU( p, Fxu_Double, 1, pDiv );
}
Fxu_MatrixForEachSingleSafe( p, pSingle, pSingle2 )
MEM_FREE_FXU( p, Fxu_Single, 1, pSingle );
// delete the entries
Fxu_MatrixForEachCube( p, pCube )
Fxu_CubeForEachLiteralSafe( pCube, pLit, pLit2 )
MEM_FREE_FXU( p, Fxu_Lit, 1, pLit );
// delete the cubes
Fxu_MatrixForEachCubeSafe( p, pCube, pCube2 )
MEM_FREE_FXU( p, Fxu_Cube, 1, pCube );
// delete the vars
Fxu_MatrixForEachVariableSafe( p, pVar, pVar2 )
MEM_FREE_FXU( p, Fxu_Var, 1, pVar );
}
#else
Extra_MmFixedStop( p->pMemMan );
#endif
Vec_PtrFree( p->vPairs );
ABC_FREE( p->pppPairs );
ABC_FREE( p->ppPairs );
// ABC_FREE( p->pPairsTemp );
ABC_FREE( p->pTable );
ABC_FREE( p->ppVars );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Adds a variable to the matrix.]
Description [This procedure always adds variables at the end of the matrix.
It assigns the var's node and number. It adds the var to the linked list of
all variables and to the table of all nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
Fxu_Var * Fxu_MatrixAddVar( Fxu_Matrix * p )
{
Fxu_Var * pVar;
pVar = MEM_ALLOC_FXU( p, Fxu_Var, 1 );
memset( pVar, 0, sizeof(Fxu_Var) );
pVar->iVar = p->lVars.nItems;
p->ppVars[pVar->iVar] = pVar;
Fxu_ListMatrixAddVariable( p, pVar );
return pVar;
}
/**Function*************************************************************
Synopsis [Adds a literal to the matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fxu_Cube * Fxu_MatrixAddCube( Fxu_Matrix * p, Fxu_Var * pVar, int iCube )
{
Fxu_Cube * pCube;
pCube = MEM_ALLOC_FXU( p, Fxu_Cube, 1 );
memset( pCube, 0, sizeof(Fxu_Cube) );
pCube->pVar = pVar;
pCube->iCube = iCube;
Fxu_ListMatrixAddCube( p, pCube );
return pCube;
}
/**Function*************************************************************
Synopsis [Adds a literal to the matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fxu_MatrixAddLiteral( Fxu_Matrix * p, Fxu_Cube * pCube, Fxu_Var * pVar )
{
Fxu_Lit * pLit;
pLit = MEM_ALLOC_FXU( p, Fxu_Lit, 1 );
memset( pLit, 0, sizeof(Fxu_Lit) );
// insert the literal into two linked lists
Fxu_ListCubeAddLiteral( pCube, pLit );
Fxu_ListVarAddLiteral( pVar, pLit );
// set the back pointers
pLit->pCube = pCube;
pLit->pVar = pVar;
pLit->iCube = pCube->iCube;
pLit->iVar = pVar->iVar;
// increment the literal counter
p->nEntries++;
}
/**Function*************************************************************
Synopsis [Deletes the divisor from the matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fxu_MatrixDelDivisor( Fxu_Matrix * p, Fxu_Double * pDiv )
{
// delete divisor from the table
Fxu_ListTableDelDivisor( p, pDiv );
// recycle the divisor
MEM_FREE_FXU( p, Fxu_Double, 1, pDiv );
}
/**Function*************************************************************
Synopsis [Deletes the literal fromthe matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fxu_MatrixDelLiteral( Fxu_Matrix * p, Fxu_Lit * pLit )
{
// delete the literal
Fxu_ListCubeDelLiteral( pLit->pCube, pLit );
Fxu_ListVarDelLiteral( pLit->pVar, pLit );
MEM_FREE_FXU( p, Fxu_Lit, 1, pLit );
// increment the literal counter
p->nEntries--;
}
/**Function*************************************************************
Synopsis [Creates and adds a single cube divisor.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fxu_MatrixAddSingle( Fxu_Matrix * p, Fxu_Var * pVar1, Fxu_Var * pVar2, int Weight )
{
Fxu_Single * pSingle;
assert( pVar1->iVar < pVar2->iVar );
pSingle = MEM_ALLOC_FXU( p, Fxu_Single, 1 );
memset( pSingle, 0, sizeof(Fxu_Single) );
pSingle->Num = p->lSingles.nItems;
pSingle->Weight = Weight;
pSingle->HNum = 0;
pSingle->pVar1 = pVar1;
pSingle->pVar2 = pVar2;
Fxu_ListMatrixAddSingle( p, pSingle );
// add to the heap
Fxu_HeapSingleInsert( p->pHeapSingle, pSingle );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fxu_MatrixAddDivisor( Fxu_Matrix * p, Fxu_Cube * pCube1, Fxu_Cube * pCube2 )
{
Fxu_Pair * pPair;
Fxu_Double * pDiv;
int nBase, nLits1, nLits2;
int fFound;
unsigned Key;
// canonicize the pair
Fxu_PairCanonicize( &pCube1, &pCube2 );
// compute the hash key
Key = Fxu_PairHashKey( p, pCube1, pCube2, &nBase, &nLits1, &nLits2 );
// create the cube pair
pPair = Fxu_PairAlloc( p, pCube1, pCube2 );
pPair->nBase = nBase;
pPair->nLits1 = nLits1;
pPair->nLits2 = nLits2;
// check if the divisor for this pair already exists
fFound = 0;
Key %= p->nTableSize;
Fxu_TableForEachDouble( p, Key, pDiv )
{
if ( Fxu_PairCompare( pPair, pDiv->lPairs.pTail ) ) // they are equal
{
fFound = 1;
break;
}
}
if ( !fFound )
{ // create the new divisor
pDiv = MEM_ALLOC_FXU( p, Fxu_Double, 1 );
memset( pDiv, 0, sizeof(Fxu_Double) );
pDiv->Key = Key;
// set the number of this divisor
pDiv->Num = p->nDivsTotal++; // p->nDivs;
// insert the divisor in the table
Fxu_ListTableAddDivisor( p, pDiv );
// set the initial cost of the divisor
pDiv->Weight -= pPair->nLits1 + pPair->nLits2;
}
// link the pair to the cubes
Fxu_PairAdd( pPair );
// connect the pair and the divisor
pPair->pDiv = pDiv;
Fxu_ListDoubleAddPairLast( pDiv, pPair );
// update the max number of pairs in a divisor
// if ( p->nPairsMax < pDiv->lPairs.nItems )
// p->nPairsMax = pDiv->lPairs.nItems;
// update the divisor's weight
pDiv->Weight += pPair->nLits1 + pPair->nLits2 - 1 + pPair->nBase;
if ( fFound ) // update the divisor in the heap
Fxu_HeapDoubleUpdate( p->pHeapDouble, pDiv );
else // add the new divisor to the heap
Fxu_HeapDoubleInsert( p->pHeapDouble, pDiv );
}
/*
{
int piVarsC1[100], piVarsC2[100], nVarsC1, nVarsC2;
Fxu_Double * pDivCur;
Fxu_MatrixGetDoubleVars( p, pDiv, piVarsC1, piVarsC2, &nVarsC1, &nVarsC2 );
pDivCur = Fxu_MatrixFindDouble( p, piVarsC1, piVarsC2, nVarsC1, nVarsC2 );
assert( pDivCur == pDiv );
}
*/
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|