summaryrefslogtreecommitdiffstats
path: root/src/misc/util/utilTruth.h
blob: 0072a8083556300c3e7d6b3498b51d30111e8165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
4
#!/bin/bash
#
# This transforms a CSV file into a gnuplot file.
# use option '-h' to display a help screen for all options.
#
# FracPete

# the usage of this script
function usage()
{
   echo 
   echo "usage: ${0##*/} [-i <file>] [-o <file>] [-g <file>] [-G <file>]"
   echo "       [-O <file>] [-d <delim>] [-t] [-x] [-a] [-l] [-T]"
   echo "       [-W <width> -H <height>]] [-F <x11|png|ps>]"
   echo "       [-b <files>] [-e]"
   echo "       [-h]"
   echo
   echo "Transforms a given CSV file into a gnuplot input file. It can also"
   echo "produce a gnuplot script for plotting the data, as well as batch"
   echo "processing of several files with automatic output generation."
   echo 
   echo " -h   this help"
   echo " -i   <file>"
   echo "      the CSV file to use as input"
   echo " -o   <file>"
   echo "      the gnuplot output file, output to stdout if not provided"
   echo " -g   <file>"
   echo "      generates a gnuplot script with this name to display the data"
   echo "      it assumes that the first column is the index for the x-axis."
   echo "      In combination with '-b' this parameter is only used to indicate"
   echo "      that a script is wanted, the filename itself is ignored."
   echo " -G   <file>"
   echo "      a file containing gnuplot options, comments etc. to be added "
   echo "      before the plots"
   echo " -O   <file>"
   echo "      generates a script that outputs the plot in the format specified"
   echo "      with '-F' in a file with the given name, instead of displaying "
   echo "      it in a window"
   echo " -d   <delim>"
   echo "      the delimiter that separates the columns, default: $DELIMITER"
   echo " -t   transposes the matrix first"
   echo " -x   adds a column for the x-axis (numbers starting from 1)"
   echo " -a   generates the average of the columns"
   echo " -l   adds 'with lines' to the gnuplot script"
   echo " -T   adds a number as title to the gnuplot script"
   echo " -F   <x11|png|ps>"
   echo "      the format of the output, default: $FORMAT"
   echo " -W   <width>"
   echo "      the width of the output (if '-F png'), default: $WIDTH"
   echo " -H   <height>"
   echo "      the height of the output (if '-F png'), default: $HEIGHT"
   echo " -b   <files>"
   echo "      processes the given files in batch mode, i.e. '-i' and '-o' are"
   echo "      not necessary. the files get new extensions automatically."
   echo "      Note: use \" if you're using wildcards like '*'"
   echo " -e   generates the desired output files directly, i.e. in creates a"
   echo "      temp. gnuplot file and runs this (in combination with '-b',"
   echo "      otherwise '-g' must be given). "
   echo "      Works only if format is ps or png ('-F')."
   echo 
}

# variables
INPUT=""
OUTPUT=""
OUTPUT_PLOT=""
GNUPLOT=""
GNUPLOT_OPTIONS=""
HAS_OUTPUT="no"
HAS_GNUPLOT="no"
DELIMITER=","
TRANSPOSE="no"
XAXIS="no"
AVERAGE="no"
LINES="no"
TITLE="no"
FORMAT="x11"
WIDTH="800"
HEIGHT="600"
BATCH_FILES=""
BATCH_OPTIONS=""
EXECUTE="no"

# interprete parameters
while getopts ":hi:o:g:d:txalTF:W:H:O:b:eG:" flag
do
   case $flag in
      i) INPUT=$OPTARG
         ;;
      o) OUTPUT=$OPTARG
         HAS_OUTPUT="yes"
         ;;
      g) GNUPLOT=$OPTARG
         HAS_GNUPLOT="yes"
         ;;
      G) GNUPLOT_OPTIONS=$OPTARG
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag $OPTARG"
         ;;
      d) DELIMITER=$OPTARG
         ;;
      t) TRANSPOSE="yes"
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag"
         ;;
      x) XAXIS="yes"
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag"
         ;;
      a) AVERAGE="yes"
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag"
         ;;
      l) LINES="yes"
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag"
         ;;
      T) TITLE="yes"
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag"
         ;;
      O) OUTPUT_PLOT=$OPTARG
         ;;
      W) WIDTH=$OPTARG
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag $OPTARG"
         ;;
      H) HEIGHT=$OPTARG
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag $OPTARG"
         ;;
      F) FORMAT=$OPTARG
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag $OPTARG"
         ;;
      b) BATCH_FILES=$OPTARG
         ;;
      e) EXECUTE="yes"
         BATCH_OPTIONS="$BATCH_OPTIONS -$flag"
         ;;
      h) usage
         exit 0
         ;;
      *) echo
         echo "Unknown option: '-$OPTARG'"
         echo 
         usage
         exit 1
         ;;
   esac
done

# valid combinations of parameters?
if [ ! "$BATCH_FILES" = "" ] && [ "$EXECUTE" = "yes" ] && [ "$FORMAT" = "x11" ]
then
   echo
   echo "ERROR: a format other than '$FORMAT' must be specified if '-b' and"
   echo "       '-e' are specified, e.g. 'ps'."
   echo
   usage
   exit 2
fi

# batch-mode?
if [ ! "$BATCH_FILES" = "" ]
then
   for i in $BATCH_FILES
   do
      echo "$i..."

      # build options
      OPTIONS=$BATCH_OPTIONS
      OPTIONS="$OPTIONS -i $i"
      OPTIONS="$OPTIONS -o $i.dat"
      if [ "$HAS_GNUPLOT" = "yes" ]
      then
         OPTIONS="$OPTIONS -g $i.scr"
      fi
      if [ "$FORMAT" = "png" ]
      then
         OPTIONS="$OPTIONS -O $i.png"
      fi
      if [ "$FORMAT" = "ps" ]
      then
         OPTIONS="$OPTIONS -O $i.ps"
      fi
      
      # run script
      $0 $OPTIONS
   done
   
   exit 0
fi

# test files
if [ ! "$INPUT" = "" ] && [ ! -f "$INPUT" ]
then
   INPUT=""
fi
if [ ! "$GNUPLOT_OPTIONS" = "" ] && [ ! -f "$GNUPLOT_OPTIONS" ]
then
   echo "Warning: '$GNUPLOT_OPTIONS' not found - ignored!"
   GNUPLOT_OPTIONS=""
fi

if [ "$HAS_OUTPUT" = "no" ]
then
   OUTPUT=$INPUT".tmp"
fi

# everything provided?
if [ "$INPUT" = "" ] || [ "$DELIMITER" = "" ]
then
   echo 
   echo "ERROR: not all parameters provided or incorrect!"
   echo
   usage
   exit 1
fi

if [ "$EXECUTE" = "yes" ] && [ "$HAS_GNUPLOT" = "no" ]
then
   echo
   echo "ERROR: '-g' must be specified with option '-e'!"
   echo
   usage
   exit 3
fi

if [ "$OUTPUT_PLOT" = "" ] && [ ! "$FORMAT" = "x11" ]
then
   echo "Warning: output file for format '$FORMAT' not specified, falling back to 'x11'"
   FORMAT="x11"
fi

# some variables
TMPFILE=$OUTPUT".tmp"

# init
cp $INPUT $OUTPUT

# change modifier into " "
if [ ! "$DELIMITER" = " " ]
then
   cat $OUTPUT | sed s/$DELIMITER/" "/g > $TMPFILE
   cp $TMPFILE $OUTPUT
fi

# transpose matrix?
if [ "$TRANSPOSE" = "yes" ]
then
   cat $OUTPUT | exec awk '
   NR == 1 {
           n = NF
           for (i = 1; i <= NF; i++)
                   row[i] = $i
           next
   }
   {
           if (NF > n)
                   n = NF
           for (i = 1; i <= NF; i++)
                   row[i] = row[i] " " $i
   }
   END {
           for (i = 1; i <= n; i++)
                   print row[i]
   }' > $TMPFILE
   cp $TMPFILE $OUTPUT
fi

# average columns?
if [ "$AVERAGE" = "yes" ]
then
   COLCOUNT=`head -n1 $OUTPUT | wc -w | sed s/" "*//g`
   ROWCOUNT=`cat $OUTPUT | wc -l | sed s/" "*//g`
   rm -f $TMPFILE
   
   for ((i = 1; i <=
/**CFile****************************************************************

  FileName    [utilTruth.h]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Truth table manipulation.]

  Synopsis    [Truth table manipulation.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - October 28, 2012.]

  Revision    [$Id: utilTruth.h,v 1.00 2012/10/28 00:00:00 alanmi Exp $]

***********************************************************************/
 
#ifndef ABC__misc__util__utilTruth_h
#define ABC__misc__util__utilTruth_h

////////////////////////////////////////////////////////////////////////
///                          INCLUDES                                ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                         PARAMETERS                               ///
////////////////////////////////////////////////////////////////////////

ABC_NAMESPACE_HEADER_START

////////////////////////////////////////////////////////////////////////
///                         BASIC TYPES                              ///
////////////////////////////////////////////////////////////////////////

static word s_Truths6[6] = {
    ABC_CONST(0xAAAAAAAAAAAAAAAA),
    ABC_CONST(0xCCCCCCCCCCCCCCCC),
    ABC_CONST(0xF0F0F0F0F0F0F0F0),
    ABC_CONST(0xFF00FF00FF00FF00),
    ABC_CONST(0xFFFF0000FFFF0000),
    ABC_CONST(0xFFFFFFFF00000000)
};

static word s_Truths6Neg[6] = {
    ABC_CONST(0x5555555555555555),
    ABC_CONST(0x3333333333333333),
    ABC_CONST(0x0F0F0F0F0F0F0F0F),
    ABC_CONST(0x00FF00FF00FF00FF),
    ABC_CONST(0x0000FFFF0000FFFF),
    ABC_CONST(0x00000000FFFFFFFF)
};

static word s_PMasks[5][3] = {
    { ABC_CONST(0x9999999999999999), ABC_CONST(0x2222222222222222), ABC_CONST(0x4444444444444444) },
    { ABC_CONST(0xC3C3C3C3C3C3C3C3), ABC_CONST(0x0C0C0C0C0C0C0C0C), ABC_CONST(0x3030303030303030) },
    { ABC_CONST(0xF00FF00FF00FF00F), ABC_CONST(0x00F000F000F000F0), ABC_CONST(0x0F000F000F000F00) },
    { ABC_CONST(0xFF0000FFFF0000FF), ABC_CONST(0x0000FF000000FF00), ABC_CONST(0x00FF000000FF0000) },
    { ABC_CONST(0xFFFF00000000FFFF), ABC_CONST(0x00000000FFFF0000), ABC_CONST(0x0000FFFF00000000) }
};

////////////////////////////////////////////////////////////////////////
///                      MACRO DEFINITIONS                           ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                    FUNCTION DECLARATIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
// read/write/flip i-th bit of a bit string table:
static inline int     Abc_TtGetBit( word * p, int i )         { return (int)(p[i>>6] >> (i & 63)) & 1;        }
static inline void    Abc_TtSetBit( word * p, int i )         { p[i>>6] |= (((word)1)<<(i & 63));             }
static inline void    Abc_TtXorBit( word * p, int i )         { p[i>>6] ^= (((word)1)<<(i & 63));             }

// read/write k-th digit d of a hexadecimal number:
static inline int     Abc_TtGetHex( word * p, int k )         { return (int)(p[k>>4] >> ((k<<2) & 63)) & 15;  }
static inline void    Abc_TtSetHex( word * p, int k, int d )  { p[k>>4] |= (((word)d)<<((k<<2) & 63));        }
static inline void    Abc_TtXorHex( word * p, int k, int d )  { p[k>>4] ^= (((word)d)<<((k<<2) & 63));        }

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int  Abc_TtWordNum( int nVars )     { return nVars <= 6 ? 1 : 1 << (nVars-6); }
static inline int  Abc_TtByteNum( int nVars )     { return nVars <= 3 ? 1 : 1 << (nVars-3); }
static inline int  Abc_TtHexDigitNum( int nVars ) { return nVars <= 2 ? 1 : 1 << (nVars-2); }

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtClear( word * pOut, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pOut[w] = 0;
}
static inline void Abc_TtFill( word * pOut, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pOut[w] = ~(word)0;
}
static inline void Abc_TtNot( word * pOut, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pOut[w] = ~pOut[w];
}
static inline void Abc_TtCopy( word * pOut, word * pIn, int nWords, int fCompl )
{
    int w;
    if ( fCompl )
        for ( w = 0; w < nWords; w++ )
            pOut[w] = ~pIn[w];
    else
        for ( w = 0; w < nWords; w++ )
            pOut[w] = pIn[w];
}
static inline void Abc_TtAnd( word * pOut, word * pIn1, word * pIn2, int nWords, int fCompl )
{
    int w;
    if ( fCompl )
        for ( w = 0; w < nWords; w++ )
            pOut[w] = ~(pIn1[w] & pIn2[w]);
    else
        for ( w = 0; w < nWords; w++ )
            pOut[w] = pIn1[w] & pIn2[w];
}
static inline void Abc_TtSharp( word * pOut, word * pIn1, word * pIn2, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pOut[w] = pIn1[w] & ~pIn2[w];
}
static inline void Abc_TtOr( word * pOut, word * pIn1, word * pIn2, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pOut[w] = pIn1[w] | pIn2[w];
}
static inline void Abc_TtXor( word * pOut, word * pIn1, word * pIn2, int nWords, int fCompl )
{
    int w;
    if ( fCompl )
        for ( w = 0; w < nWords; w++ )
            pOut[w] = pIn1[w] ^ ~pIn2[w];
    else
        for ( w = 0; w < nWords; w++ )
            pOut[w] = pIn1[w] ^ pIn2[w];
}
static inline void Abc_TtMux( word * pOut, word * pCtrl, word * pIn1, word * pIn0, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pOut[w] = (pCtrl[w] & pIn1[w]) | (~pCtrl[w] & pIn0[w]);
}
static inline int Abc_TtEqual( word * pIn1, word * pIn2, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        if ( pIn1[w] != pIn2[w] )
            return 0;
    return 1;
}
static inline int Abc_TtCompare( word * pIn1, word * pIn2, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        if ( pIn1[w] != pIn2[w] )
            return (pIn1[w] < pIn2[w]) ? -1 : 1;
    return 0;
}
static inline int Abc_TtCompareRev( word * pIn1, word * pIn2, int nWords )
{
    int w;
    for ( w = nWords - 1; w >= 0; w-- )
        if ( pIn1[w] != pIn2[w] )
            return (pIn1[w] < pIn2[w]) ? -1 : 1;
    return 0;
}
static inline int Abc_TtIsConst0( word * pIn1, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        if ( pIn1[w] )
            return 0;
    return 1;
}
static inline int Abc_TtIsConst1( word * pIn1, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        if ( ~pIn1[w] )
            return 0;
    return 1;
}
static inline void Abc_TtConst0( word * pIn1, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pIn1[w] = 0;
}
static inline void Abc_TtConst1( word * pIn1, int nWords )
{
    int w;
    for ( w = 0; w < nWords; w++ )
        pIn1[w] = ~(word)0;
}

/**Function*************************************************************

  Synopsis    [Compute elementary truth tables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtElemInit( word ** pTtElems, int nVars )
{
    int i, k, nWords = Abc_TtWordNum( nVars );
    for ( i = 0; i < nVars; i++ )
        if ( i < 6 )
            for ( k = 0; k < nWords; k++ )
                pTtElems[i][k] = s_Truths6[i];
        else
            for ( k = 0; k < nWords; k++ )
                pTtElems[i][k] = (k & (1 << (i-6))) ? ~(word)0 : 0;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline word Abc_Tt6Cofactor0( word t, int iVar )
{
    assert( iVar >= 0 && iVar < 6 );
    return (t &s_Truths6Neg[iVar]) | ((t &s_Truths6Neg[iVar]) << (1<<iVar));
}
static inline word Abc_Tt6Cofactor1( word t, int iVar )
{
    assert( iVar >= 0 && iVar < 6 );
    return (t & s_Truths6[iVar]) | ((t & s_Truths6[iVar]) >> (1<<iVar));
}

static inline void Abc_TtCofactor0p( word * pOut, word * pIn, int nWords, int iVar )
{
    if ( nWords == 1 )
        pOut[0] = ((pIn[0] & s_Truths6Neg[iVar]) << (1 << iVar)) | (pIn[0] & s_Truths6Neg[iVar]);
    else if ( iVar <= 5 )
    {
        int w, shift = (1 << iVar);
        for ( w = 0; w < nWords; w++ )
            pOut[w] = ((pIn[w] & s_Truths6Neg[iVar]) << shift) | (pIn[w] & s_Truths6Neg[iVar]);
    }
    else // if ( iVar > 5 )
    {
        word * pLimit = pIn + nWords;
        int i, iStep = Abc_TtWordNum(iVar);
        for ( ; pIn < pLimit; pIn += 2*iStep, pOut += 2*iStep )
            for ( i = 0; i < iStep; i++ )
            {
                pOut[i]         = pIn[i];
                pOut[i + iStep] = pIn[i];
            }
    }    
}
static inline void Abc_TtCofactor1p( word * pOut, word * pIn, int nWords, int iVar )
{
    if ( nWords == 1 )
        pOut[0] = (pIn[0] & s_Truths6[iVar]) | ((pIn[0] & s_Truths6[iVar]) >> (1 << iVar));
    else if ( iVar <= 5 )
    {
        int w, shift = (1 << iVar);
        for ( w = 0; w < nWords; w++ )
            pOut[w] = (pIn[w] & s_Truths6[iVar]) | ((pIn[w] & s_Truths6[iVar]) >> shift);
    }
    else // if ( iVar > 5 )
    {
        word * pLimit = pIn + nWords;
        int i, iStep = Abc_TtWordNum(iVar);
        for ( ; pIn < pLimit; pIn += 2*iStep, pOut += 2*iStep )
            for ( i = 0; i < iStep; i++ )
            {
                pOut[i]         = pIn[i + iStep];
                pOut[i + iStep] = pIn[i + iStep];
            }
    }    
}
static inline void Abc_TtCofactor0( word * pTruth, int nWords, int iVar )
{
    if ( nWords == 1 )
        pTruth[0] = ((pTruth[0] & s_Truths6Neg[iVar]) << (1 << iVar)) | (pTruth[0] & s_Truths6Neg[iVar]);
    else if ( iVar <= 5 )
    {
        int w, shift = (1 << iVar);
        for ( w = 0; w < nWords; w++ )
            pTruth[w] = ((pTruth[w] & s_Truths6Neg[iVar]) << shift) | (pTruth[w] & s_Truths6Neg[iVar]);
    }
    else // if ( iVar > 5 )
    {
        word * pLimit = pTruth + nWords;
        int i, iStep = Abc_TtWordNum(iVar);
        for ( ; pTruth < pLimit; pTruth += 2*iStep )
            for ( i = 0; i < iStep; i++ )
                pTruth[i + iStep] = pTruth[i];
    }
}
static inline void Abc_TtCofactor1( word * pTruth, int nWords, int iVar )
{
    if ( nWords == 1 )
        pTruth[0] = (pTruth[0] & s_Truths6[iVar]) | ((pTruth[0] & s_Truths6[iVar]) >> (1 << iVar));
    else if ( iVar <= 5 )
    {
        int w, shift = (1 << iVar);
        for ( w = 0; w < nWords; w++ )
            pTruth[w] = (pTruth[w] & s_Truths6[iVar]) | ((pTruth[w] & s_Truths6[iVar]) >> shift);
    }
    else // if ( iVar > 5 )
    {
        word * pLimit = pTruth + nWords;
        int i, iStep = Abc_TtWordNum(iVar);
        for ( ; pTruth < pLimit; pTruth += 2*iStep )
            for ( i = 0; i < iStep; i++ )
                pTruth[i] = pTruth[i + iStep];
    }
}

/**Function*************************************************************

  Synopsis    [Checks pairs of cofactors w.r.t. two variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_TtCheckEqualCofs( word * pTruth, int nWords, int iVar, int jVar, int Num1, int Num2 )
{
    assert( Num1 < Num2 && Num2 < 4 );
    assert( iVar < jVar );
    if ( nWords == 1 )
    {
        word Mask = s_Truths6Neg[jVar] & s_Truths6Neg[iVar];
        int shift1 = (Num1 >> 1) * (1 << jVar) + (Num1 & 1) * (1 << iVar);
        int shift2 = (Num2 >> 1) * (1 << jVar) + (Num2 & 1) * (1 << iVar);
        return ((pTruth[0] >> shift1) & Mask) == ((pTruth[0] >> shift2) & Mask);
    }
    if ( jVar <= 5 )
    {
        word Mask = s_Truths6Neg[jVar] & s_Truths6Neg[iVar];
        int shift1 = (Num1 >> 1) * (1 << jVar) + (Num1 & 1) * (1 << iVar);
        int shift2 = (Num2 >> 1) * (1 << jVar) + (Num2 & 1) * (1 << iVar);
        int w;
        for ( w = 0; w < nWords; w++ )
            if ( ((pTruth[w] >> shift1) & Mask) != ((pTruth[w] >> shift2) & Mask) )
                return 0;
        return 1;
    }
    if ( iVar <= 5 && jVar > 5 )
    {
        word * pLimit = pTruth + nWords;
        int j, jStep = Abc_TtWordNum(jVar);
        int shift1 = (Num1 & 1) * (1 << iVar);
        int shift2 = (Num2 & 1) * (1 << iVar);
        int Offset1 = (Num1 >> 1) * jStep;
        int Offset2 = (Num2 >> 1) * jStep;
        for ( ; pTruth < pLimit; pTruth += 2*jStep )
            for ( j = 0; j < jStep; j++ )
                if ( ((pTruth[j + Offset1] >> shift1) & s_Truths6Neg[iVar]) != ((pTruth[j + Offset2] >> shift2) & s_Truths6Neg[iVar]) )
                    return 0;
        return 1;
    }
    {
        word * pLimit = pTruth + nWords;
        int j, jStep = Abc_TtWordNum(jVar);
        int i, iStep = Abc_TtWordNum(iVar);
        int Offset1 = (Num1 >> 1) * jStep + (Num1 & 1) * iStep;
        int Offset2 = (Num2 >> 1) * jStep + (Num2 & 1) * iStep;
        for ( ; pTruth < pLimit; pTruth += 2*jStep )
            for ( i = 0; i < jStep; i += 2*iStep )
                for ( j = 0; j < iStep; j++ )
                    if ( pTruth[Offset1 + i + j] != pTruth[Offset2 + i + j] )
                        return 0;
        return 1;
    }    
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_Tt6Cof0IsConst0( word t, int iVar ) { return (t & s_Truths6Neg[iVar]) == 0;                                          }
static inline int Abc_Tt6Cof0IsConst1( word t, int iVar ) { return (t & s_Truths6Neg[iVar]) == s_Truths6Neg[iVar];                         }
static inline int Abc_Tt6Cof1IsConst0( word t, int iVar ) { return (t & s_Truths6[iVar]) == 0;                                             }
static inline int Abc_Tt6Cof1IsConst1( word t, int iVar ) { return (t & s_Truths6[iVar]) == s_Truths6[iVar];                               }
static inline int Abc_Tt6CofsOpposite( word t, int iVar ) { return (~t & s_Truths6Neg[iVar]) == ((t >> (1 << iVar)) & s_Truths6Neg[iVar]); } 
static inline int Abc_Tt6Cof0EqualCof1( word t1, word t2, int iVar ) { return (t1 & s_Truths6Neg[iVar]) == ((t2 >> (1 << iVar)) & s_Truths6Neg[iVar]); } 
static inline int Abc_Tt6Cof0EqualCof0( word t1, word t2, int iVar ) { return (t1 & s_Truths6Neg[iVar]) == (t2 & s_Truths6Neg[iVar]); } 
static inline int Abc_Tt6Cof1EqualCof1( word t1, word t2, int iVar ) { return (t1 & s_Truths6[iVar])    == (t2 & s_Truths6[iVar]); } 

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_TtTruthIsConst0( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != 0        ) return 0; return 1; }
static inline int Abc_TtTruthIsConst1( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != ~(word)0 ) return 0; return 1; }

static inline int Abc_TtCof0IsConst0( word * t, int nWords, int iVar ) 
{ 
    if ( iVar < 6 )
    {
        int i;
        for ( i = 0; i < nWords; i++ )
            if ( t[i] & s_Truths6Neg[iVar] )
                return 0;
        return 1;
    }
    else
    {
        int i, Step = (1 << (iVar - 6));
        word * tLimit = t + nWords;
        for ( ; t < tLimit; t += 2*Step )
            for ( i = 0; i < Step; i++ )
                if ( t[i] )
                    return 0;
        return 1;
    }
}
static inline int Abc_TtCof0IsConst1( word * t, int nWords, int iVar ) 
{ 
    if ( iVar < 6 )
    {
        int i;
        for ( i = 0; i < nWords; i++ )
            if ( (t[i] & s_Truths6Neg[iVar]) != s_Truths6Neg[iVar] )
                return 0;
        return 1;
    }
    else
    {
        int i, Step = (1 << (iVar - 6));
        word * tLimit = t + nWords;
        for ( ; t < tLimit; t += 2*Step )
            for ( i = 0; i < Step; i++ )
                if ( ~t[i] )
                    return 0;
        return 1;
    }
}
static inline int Abc_TtCof1IsConst0( word * t, int nWords, int iVar ) 
{ 
    if ( iVar < 6 )
    {
        int i;
        for ( i = 0; i < nWords; i++ )
            if ( t[i] & s_Truths6[iVar] )
                return 0;
        return 1;
    }
    else
    {
        int i, Step = (1 << (iVar - 6));
        word * tLimit = t + nWords;
        for ( ; t < tLimit; t += 2*Step )
            for ( i = 0; i < Step; i++ )
                if ( t[i+Step] )
                    return 0;
        return 1;
    }
}
static inline int Abc_TtCof1IsConst1( word * t, int nWords, int iVar ) 
{ 
    if ( iVar < 6 )
    {
        int i;
        for ( i = 0; i < nWords; i++ )
            if ( (t[i] & s_Truths6[iVar]) != s_Truths6[iVar] )
                return 0;
        return 1;
    }
    else
    {
        int i, Step = (1 << (iVar - 6));
        word * tLimit = t + nWords;
        for ( ; t < tLimit; t += 2*Step )
            for ( i = 0; i < Step; i++ )
                if ( ~t[i+Step] )
                    return 0;
        return 1;
    }
}
static inline int Abc_TtCofsOpposite( word * t, int nWords, int iVar ) 
{ 
    if ( iVar < 6 )
    {
        int i, Shift = (1 << iVar);
        for ( i = 0; i < nWords; i++ )
            if ( ((t[i] << Shift) & s_Truths6[iVar]) != (~t[i] & s_Truths6[iVar]) )
                return 0;
        return 1;
    }
    else
    {
        int i, Step = (1 << (iVar - 6));
        word * tLimit = t + nWords;
        for ( ; t < tLimit; t += 2*Step )
            for ( i = 0; i < Step; i++ )
                if ( t[i] != ~t[i+Step] )
                    return 0;
        return 1;
    }
}

/**Function*************************************************************

  Synopsis    [Stretch truthtable to have more input variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtStretch5( unsigned * pInOut, int nVarS, int nVarB )
{
    int w, i, step, nWords;
    if ( nVarS == nVarB )
        return;
    assert( nVarS < nVarB );
    step = Abc_TruthWordNum(nVarS);
    nWords = Abc_TruthWordNum(nVarB);
    if ( step == nWords )
        return;
    assert( step < nWords );
    for ( w = 0; w < nWords; w += step )
        for ( i = 0; i < step; i++ )
            pInOut[w + i] = pInOut[i];              
}
static inline void Abc_TtStretch6( word * pInOut, int nVarS, int nVarB )
{
    int w, i, step, nWords;
    if ( nVarS == nVarB )
        return;
    assert( nVarS < nVarB );
    step = Abc_Truth6WordNum(nVarS);
    nWords = Abc_Truth6WordNum(nVarB);
    if ( step == nWords )
        return;
    assert( step < nWords );
    for ( w = 0; w < nWords; w += step )
        for ( i = 0; i < step; i++ )
            pInOut[w + i] = pInOut[i];              
}
static inline word Abc_Tt6Stretch( word t, int nVars )
{
    assert( nVars >= 0 );
    if ( nVars == 0 )
        nVars++, t = (t & 0x1) | ((t & 0x1) << 1);
    if ( nVars == 1 )
        nVars++, t = (t & 0x3) | ((t & 0x3) << 2);
    if ( nVars == 2 )
        nVars++, t = (t & 0xF) | ((t & 0xF) << 4);
    if ( nVars == 3 )
        nVars++, t = (t & 0xFF) | ((t & 0xFF) << 8);
    if ( nVars == 4 )
        nVars++, t = (t & 0xFFFF) | ((t & 0xFFFF) << 16);
    if ( nVars == 5 )
        nVars++, t = (t & 0xFFFFFFFF) | ((t & 0xFFFFFFFF) << 32);
    assert( nVars == 6 );
    return t;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_TtIsHexDigit( char HexChar )
{
    return (HexChar >= '0' && HexChar <= '9') || (HexChar >= 'A' && HexChar <= 'F') || (HexChar >= 'a' && HexChar <= 'f');
}
static inline char Abc_TtPrintDigit( int Digit )
{
    assert( Digit >= 0 && Digit < 16 );
    if ( Digit < 10 )
        return '0' + Digit;
    return 'A' + Digit-10;
}
static inline int Abc_TtReadHexDigit( char HexChar )
{
    if ( HexChar >= '0' && HexChar <= '9' )
        return HexChar - '0';
    if ( HexChar >= 'A' && HexChar <= 'F' )
        return HexChar - 'A' + 10;
    if ( HexChar >= 'a' && HexChar <= 'f' )
        return HexChar - 'a' + 10;
    assert( 0 ); // not a hexadecimal symbol
    return -1; // return value which makes no sense
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtPrintHex( word * pTruth, int nVars )
{
    word * pThis, * pLimit = pTruth + Abc_TtWordNum(nVars);
    int k;
    assert( nVars >= 2 );
    for ( pThis = pTruth; pThis < pLimit; pThis++ )
        for ( k = 0; k < 16; k++ )
            printf( "%c", Abc_TtPrintDigit((int)(pThis[0] >> (k << 2)) & 15) );
    printf( "\n" );
}
static inline void Abc_TtPrintHexRev( FILE * pFile, word * pTruth, int nVars )
{
    word * pThis;
    int k, StartK = nVars >= 6 ? 16 : (1 << (nVars - 2));
    assert( nVars >= 2 );
    for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- )
        for ( k = StartK - 1; k >= 0; k-- )
            fprintf( pFile, "%c", Abc_TtPrintDigit((int)(pThis[0] >> (k << 2)) & 15) );
//    printf( "\n" );
}
static inline void Abc_TtPrintHexSpecial( word * pTruth, int nVars )
{
    word * pThis;
    int k;
    assert( nVars >= 2 );
    for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- )
        for ( k = 0; k < 16; k++ )
            printf( "%c", Abc_TtPrintDigit((int)(pThis[0] >> (k << 2)) & 15) );
    printf( "\n" );
}
static inline int Abc_TtWriteHexRev( char * pStr, word * pTruth, int nVars )
{
    word * pThis;
    char * pStrInit = pStr;
    int k, StartK = nVars >= 6 ? 16 : (1 << (nVars - 2));
    assert( nVars >= 2 );
    for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- )
        for ( k = StartK - 1; k >= 0; k-- )
            *pStr++ = Abc_TtPrintDigit( (int)(pThis[0] >> (k << 2)) & 15 );
    return pStr - pStrInit;
}

/**Function*************************************************************

  Synopsis    [Reads hex truth table from a string.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_TtReadHex( word * pTruth, char * pString )
{
    int k, nVars, Digit, nDigits;
    // skip the first 2 symbols if they are "0x"
    if ( pString[0] == '0' && pString[1] == 'x' )
        pString += 2;
    // count the number of hex digits
    nDigits = 0;
    for ( k = 0; Abc_TtIsHexDigit(pString[k]); k++ )
        nDigits++;
    if ( nDigits == 1 )
    {
        if ( pString[0] == '0' || pString[0] == 'F' )
        {
            pTruth[0] = (pString[0] == '0') ? 0 : ~(word)0;
            return 0;
        }
        if ( pString[0] == '5' || pString[0] == 'A' )
        {
            pTruth[0] = (pString[0] == '5') ? s_Truths6Neg[0] : s_Truths6[0];
            return 1;
        }
    }
    // determine the number of variables
    nVars = 2 + Abc_Base2Log( nDigits );
    // clean storage
    for ( k = Abc_TtWordNum(nVars) - 1; k >= 0; k-- )
        pTruth[k] = 0;
    // read hexadecimal digits in the reverse order
    // (the last symbol in the string is the least significant digit)
    for ( k = 0; k < nDigits; k++ )
    {
        Digit = Abc_TtReadHexDigit( pString[nDigits - 1 - k] );
        assert( Digit >= 0 && Digit < 16 );
        Abc_TtSetHex( pTruth, k, Digit );
    }
    if ( nVars < 6 )
        pTruth[0] = Abc_Tt6Stretch( pTruth[0], nVars );
    return nVars;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtPrintBinary( word * pTruth, int nVars )
{
    word * pThis, * pLimit = pTruth + Abc_TtWordNum(nVars);
    int k, Limit = Abc_MinInt( 64, (1 << nVars) );
    assert( nVars >= 2 );
    for ( pThis = pTruth; pThis < pLimit; pThis++ )
        for ( k = 0; k < Limit; k++ )
            printf( "%d", Abc_InfoHasBit( (unsigned *)pThis, k ) );
    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_TtSuppFindFirst( int Supp )
{
    int i;
    assert( Supp > 0 );
    for ( i = 0; i < 32; i++ )
        if ( Supp & (1 << i) )
            return i;
    return -1;
}
static inline int Abc_TtSuppOnlyOne( int Supp )
{
    if ( Supp == 0 )
        return 0;
    return (Supp & (Supp-1)) == 0;
}
static inline int Abc_TtSuppIsMinBase( int Supp )
{
    assert( Supp > 0 );
    return (Supp & (Supp+1)) == 0;
}
static inline int Abc_Tt6HasVar( word t, int iVar )
{
    return ((t >> (1<<iVar)) & s_Truths6Neg[iVar]) != (t & s_Truths6Neg[iVar]);
}
static inline int Abc_TtHasVar( word * t, int nVars, int iVar )
{
    assert( iVar < nVars );
    if ( nVars <= 6 )
        return Abc_Tt6HasVar( t[0], iVar );
    if ( iVar < 6 )
    {
        int i, Shift = (1 << iVar);
        int nWords = Abc_TtWordNum( nVars );
        for ( i = 0; i < nWords; i++ )
            if ( ((t[i] >> Shift) & s_Truths6Neg[iVar]) != (t[i] & s_Truths6Neg[iVar]) )
                return 1;
        return 0;
    }
    else
    {
        int i, Step = (1 << (iVar - 6));
        word * tLimit = t + Abc_TtWordNum( nVars );
        for ( ; t < tLimit; t += 2*Step )
            for ( i = 0; i < Step; i++ )
                if ( t[i] != t[Step+i] )
                    return 1;
        return 0;
    }
}
static inline int Abc_TtSupport( word * t, int nVars )
{
    int v, Supp = 0;
    for ( v = 0; v < nVars; v++ )
        if ( Abc_TtHasVar( t, nVars, v ) )
            Supp |= (1 << v);
    return Supp;
}
static inline int Abc_TtSupportSize( word * t, int nVars )
{
    int v, SuppSize = 0;
    for ( v = 0; v < nVars; v++ )
        if ( Abc_TtHasVar( t, nVars, v ) )
            SuppSize++;
    return SuppSize;
}
static inline int Abc_TtSupportAndSize( word * t, int nVars, int * pSuppSize )
{
    int v, Supp = 0;
    *pSuppSize = 0;
    for ( v = 0; v < nVars; v++ )
        if ( Abc_TtHasVar( t, nVars, v ) )
            Supp |= (1 << v), (*pSuppSize)++;
    return Supp;
}
static inline int Abc_Tt6SupportAndSize( word t, int nVars, int * pSuppSize )
{
    int v, Supp = 0;
    *pSuppSize = 0;
    assert( nVars <= 6 );
    for ( v = 0; v < nVars; v++ )
        if ( Abc_Tt6HasVar( t, v ) )
            Supp |= (1 << v), (*pSuppSize)++;
    return Supp;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline word Abc_Tt6Flip( word Truth, int iVar )
{
    return Truth = ((Truth << (1 << iVar)) & s_Truths6[iVar]) | ((Truth & s_Truths6[iVar]) >> (1 << iVar));
}
static inline void Abc_TtFlip( word * pTruth, int nWords, int iVar )
{
    if ( nWords == 1 )
        pTruth[0] = ((pTruth[0] << (1 << iVar)) & s_Truths6[iVar]) | ((pTruth[0] & s_Truths6[iVar]) >> (1 << iVar));
    else if ( iVar <= 5 )
    {
        int w, shift = (1 << iVar);
        for ( w = 0; w < nWords; w++ )
            pTruth[w] = ((pTruth[w] << shift) & s_Truths6[iVar]) | ((pTruth[w] & s_Truths6[iVar]) >> shift);
    }
    else // if ( iVar > 5 )
    {
        word * pLimit = pTruth + nWords;
        int i, iStep = Abc_TtWordNum(iVar);
        for ( ; pTruth < pLimit; pTruth += 2*iStep )
            for ( i = 0; i < iStep; i++ )
                ABC_SWAP( word, pTruth[i], pTruth[i + iStep] );
    }    
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline word Abc_Tt6SwapAdjacent( word Truth, int iVar )
{
    return (Truth & s_PMasks[iVar][0]) | ((Truth & s_PMasks[iVar][1]) << (1 << iVar)) | ((Truth & s_PMasks[iVar][2]) >> (1 << iVar));
}
static inline void Abc_TtSwapAdjacent( word * pTruth, int nWords, int iVar )
{
    static word s_PMasks[5][3] = {
        { ABC_CONST(0x9999999999999999), ABC_CONST(0x2222222222222222), ABC_CONST(0x4444444444444444) },
        { ABC_CONST(0xC3C3C3C3C3C3C3C3), ABC_CONST(0x0C0C0C0C0C0C0C0C), ABC_CONST(0x3030303030303030) },
        { ABC_CONST(0xF00FF00FF00FF00F), ABC_CONST(0x00F000F000F000F0), ABC_CONST(0x0F000F000F000F00) },
        { ABC_CONST(0xFF0000FFFF0000FF), ABC_CONST(0x0000FF000000FF00), ABC_CONST(0x00FF000000FF0000) },
        { ABC_CONST(0xFFFF00000000FFFF), ABC_CONST(0x00000000FFFF0000), ABC_CONST(0x0000FFFF00000000) }
    };
    if ( iVar < 5 )
    {
        int i, Shift = (1 << iVar);
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & s_PMasks[iVar][0]) | ((pTruth[i] & s_PMasks[iVar][1]) << Shift) | ((pTruth[i] & s_PMasks[iVar][2]) >> Shift);
    }
    else if ( iVar == 5 )
    {
        unsigned * pTruthU = (unsigned *)pTruth;
        unsigned * pLimitU = (unsigned *)(pTruth + nWords);
        for ( ; pTruthU < pLimitU; pTruthU += 4 )
            ABC_SWAP( unsigned, pTruthU[1], pTruthU[2] );
    }
    else // if ( iVar > 5 )
    {
        word * pLimit = pTruth + nWords;
        int i, iStep = Abc_TtWordNum(iVar);
        for ( ; pTruth < pLimit; pTruth += 4*iStep )
            for ( i = 0; i < iStep; i++ )
                ABC_SWAP( word, pTruth[i + iStep], pTruth[i + 2*iStep] );
    }
}
static inline void Abc_TtSwapVars( word * pTruth, int nVars, int iVar, int jVar )
{
    static word Ps_PMasks[5][6][3] = {
        { 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 0 0  
            { ABC_CONST(0x9999999999999999), ABC_CONST(0x2222222222222222), ABC_CONST(0x4444444444444444) }, // 0 1  
            { ABC_CONST(0xA5A5A5A5A5A5A5A5), ABC_CONST(0x0A0A0A0A0A0A0A0A), ABC_CONST(0x5050505050505050) }, // 0 2 
            { ABC_CONST(0xAA55AA55AA55AA55), ABC_CONST(0x00AA00AA00AA00AA), ABC_CONST(0x5500550055005500) }, // 0 3 
            { ABC_CONST(0xAAAA5555AAAA5555), ABC_CONST(0x0000AAAA0000AAAA), ABC_CONST(0x5555000055550000) }, // 0 4 
            { ABC_CONST(0xAAAAAAAA55555555), ABC_CONST(0x00000000AAAAAAAA), ABC_CONST(0x5555555500000000) }  // 0 5 
        },
        { 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 1 0  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 1 1  
            { ABC_CONST(0xC3C3C3C3C3C3C3C3), ABC_CONST(0x0C0C0C0C0C0C0C0C), ABC_CONST(0x3030303030303030) }, // 1 2 
            { ABC_CONST(0xCC33CC33CC33CC33), ABC_CONST(0x00CC00CC00CC00CC), ABC_CONST(0x3300330033003300) }, // 1 3 
            { ABC_CONST(0xCCCC3333CCCC3333), ABC_CONST(0x0000CCCC0000CCCC), ABC_CONST(0x3333000033330000) }, // 1 4 
            { ABC_CONST(0xCCCCCCCC33333333), ABC_CONST(0x00000000CCCCCCCC), ABC_CONST(0x3333333300000000) }  // 1 5 
        },
        { 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 2 0  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 2 1  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 2 2 
            { ABC_CONST(0xF00FF00FF00FF00F), ABC_CONST(0x00F000F000F000F0), ABC_CONST(0x0F000F000F000F00) }, // 2 3 
            { ABC_CONST(0xF0F00F0FF0F00F0F), ABC_CONST(0x0000F0F00000F0F0), ABC_CONST(0x0F0F00000F0F0000) }, // 2 4 
            { ABC_CONST(0xF0F0F0F00F0F0F0F), ABC_CONST(0x00000000F0F0F0F0), ABC_CONST(0x0F0F0F0F00000000) }  // 2 5 
        },
        { 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 0  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 1  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 2 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 3 
            { ABC_CONST(0xFF0000FFFF0000FF), ABC_CONST(0x0000FF000000FF00), ABC_CONST(0x00FF000000FF0000) }, // 3 4 
            { ABC_CONST(0xFF00FF0000FF00FF), ABC_CONST(0x00000000FF00FF00), ABC_CONST(0x00FF00FF00000000) }  // 3 5 
        },
        { 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 0  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 1  
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 2 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 3 
            { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 4 
            { ABC_CONST(0xFFFF00000000FFFF), ABC_CONST(0x00000000FFFF0000), ABC_CONST(0x0000FFFF00000000) }  // 4 5 
        }
    };
    if ( iVar == jVar )
        return;
    if ( jVar < iVar )
        ABC_SWAP( int, iVar, jVar );
    assert( iVar < jVar && jVar < nVars );
    if ( nVars <= 6 )
    {
        word * s_PMasks = Ps_PMasks[iVar][jVar];
        int shift = (1 << jVar) - (1 << iVar);
        pTruth[0] = (pTruth[0] & s_PMasks[0]) | ((pTruth[0] & s_PMasks[1]) << shift) | ((pTruth[0] & s_PMasks[2]) >> shift);
        return;
    }
    if ( jVar <= 5 )
    {
        word * s_PMasks = Ps_PMasks[iVar][jVar];
        int nWords = Abc_TtWordNum(nVars);
        int w, shift = (1 << jVar) - (1 << iVar);
        for ( w = 0; w < nWords; w++ )
            pTruth[w] = (pTruth[w] & s_PMasks[0]) | ((pTruth[w] & s_PMasks[1]) << shift) | ((pTruth[w] & s_PMasks[2]) >> shift);
        return;
    }
    if ( iVar <= 5 && jVar > 5 )
    {
        word low2High, high2Low;
        word * pLimit = pTruth + Abc_TtWordNum(nVars);
        int j, jStep = Abc_TtWordNum(jVar);
        int shift = 1 << iVar;
        for ( ; pTruth < pLimit; pTruth += 2*jStep )
            for ( j = 0; j < jStep; j++ )
            {
                low2High = (pTruth[j] & s_Truths6[iVar]) >> shift;
                high2Low = (pTruth[j+jStep] << shift) & s_Truths6[iVar];
                pTruth[j] = (pTruth[j] & ~s_Truths6[iVar]) | high2Low;
                pTruth[j+jStep] = (pTruth[j+jStep] & s_Truths6[iVar]) | low2High;
            }
        return;
    }
    {
        word * pLimit = pTruth + Abc_TtWordNum(nVars);
        int i, iStep = Abc_TtWordNum(iVar);
        int j, jStep = Abc_TtWordNum(jVar);
        for ( ; pTruth < pLimit; pTruth += 2*jStep )
            for ( i = 0; i < jStep; i += 2*iStep )
                for ( j = 0; j < iStep; j++ )
                    ABC_SWAP( word, pTruth[iStep + i + j], pTruth[jStep + i + j] );
        return;
    }    
}

/**Function*************************************************************

  Synopsis    [Implemeting given NPN config.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtImplementNpnConfig( word * pTruth, int nVars, char * pCanonPerm, unsigned uCanonPhase )
{
    int i, k, nWords = Abc_TtWordNum( nVars );
    if ( (uCanonPhase >> nVars) & 1 )
        Abc_TtNot( pTruth, nWords );
    for ( i = 0; i < nVars; i++ )
        if ( (uCanonPhase >> i) & 1 )
            Abc_TtFlip( pTruth, nWords, i );
    for ( i = 0; i < nVars; i++ )
    {
        for ( k = i; k < nVars; k++ )
            if ( pCanonPerm[k] == i )
                break;
        assert( k < nVars );
        if ( i == k )
            continue;
        Abc_TtSwapVars( pTruth, nVars, i, k );
        ABC_SWAP( int, pCanonPerm[i], pCanonPerm[k] );
    }
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_TtCountOnesSlow( word t )
{
    t =    (t & ABC_CONST(0x5555555555555555)) + ((t>> 1) & ABC_CONST(0x5555555555555555));
    t =    (t & ABC_CONST(0x3333333333333333)) + ((t>> 2) & ABC_CONST(0x3333333333333333));
    t =    (t & ABC_CONST(0x0F0F0F0F0F0F0F0F)) + ((t>> 4) & ABC_CONST(0x0F0F0F0F0F0F0F0F));
    t =    (t & ABC_CONST(0x00FF00FF00FF00FF)) + ((t>> 8) & ABC_CONST(0x00FF00FF00FF00FF));
    t =    (t & ABC_CONST(0x0000FFFF0000FFFF)) + ((t>>16) & ABC_CONST(0x0000FFFF0000FFFF));
    return (t & ABC_CONST(0x00000000FFFFFFFF)) +  (t>>32);
}
static inline int Abc_TtCountOnes( word x )
{
    x = x - ((x >> 1) & ABC_CONST(0x5555555555555555));   
    x = (x & ABC_CONST(0x3333333333333333)) + ((x >> 2) & ABC_CONST(0x3333333333333333));    
    x = (x + (x >> 4)) & ABC_CONST(0x0F0F0F0F0F0F0F0F);    
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x + (x >> 32); 
    return (int)(x & 0xFF);
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_Tt6FirstBit( word t )
{
    int n = 0;
    if ( t == 0 ) return -1;
    if ( (t & 0x00000000FFFFFFFF) == 0 ) { n += 32; t >>= 32; }
    if ( (t & 0x000000000000FFFF) == 0 ) { n += 16; t >>= 16; }
    if ( (t & 0x00000000000000FF) == 0 ) { n +=  8; t >>=  8; }
    if ( (t & 0x000000000000000F) == 0 ) { n +=  4; t >>=  4; }
    if ( (t & 0x0000000000000003) == 0 ) { n +=  2; t >>=  2; }
    if ( (t & 0x0000000000000001) == 0 ) { n++; }
    return n;
}
static inline int Abc_Tt6LastBit( word t )
{
    int n = 0;
    if ( t == 0 ) return -1;
    if ( (t & 0xFFFFFFFF00000000) == 0 ) { n += 32; t <<= 32; }
    if ( (t & 0xFFFF000000000000) == 0 ) { n += 16; t <<= 16; }
    if ( (t & 0xFF00000000000000) == 0 ) { n +=  8; t <<=  8; }
    if ( (t & 0xF000000000000000) == 0 ) { n +=  4; t <<=  4; }
    if ( (t & 0xC000000000000000) == 0 ) { n +=  2; t <<=  2; }
    if ( (t & 0x8000000000000000) == 0 ) { n++; }
    return 63-n;
}
static inline int Abc_TtFindFirstBit( word * pIn, int nVars )
{
    int w, nWords = Abc_TtWordNum(nVars);
    for ( w = 0; w < nWords; w++ )
        if ( pIn[w] )
            return 64*w + Abc_Tt6FirstBit(pIn[w]);
    return -1;
}
static inline int Abc_TtFindFirstZero( word * pIn, int nVars )
{
    int w, nWords = Abc_TtWordNum(nVars);
    for ( w = 0; w < nWords; w++ )
        if ( ~pIn[w] )
            return 64*w + Abc_Tt6FirstBit(~pIn[w]);
    return -1;
}
static inline int Abc_TtFindLastBit( word * pIn, int nVars )
{
    int w, nWords = Abc_TtWordNum(nVars);
    for ( w = nWords - 1; w >= 0; w-- )
        if ( pIn[w] )
            return 64*w + Abc_Tt6LastBit(pIn[w]);
    return -1;
}
static inline int Abc_TtFindLastZero( word * pIn, int nVars )
{
    int w, nWords = Abc_TtWordNum(nVars);
    for ( w = nWords - 1; w >= 0; w-- )
        if ( ~pIn[w] )
            return 64*w + Abc_Tt6LastBit(~pIn[w]);
    return -1;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_TtReverseVars( word * pTruth, int nVars )
{
    int k;
    for ( k = 0; k < nVars/2 ; k++ )
        Abc_TtSwapVars( pTruth, nVars, k, nVars - 1 - k );
}
static inline void Abc_TtReverseBits( word * pTruth, int nVars )
{
    static unsigned char pMirror[256] = {
          0, 128,  64, 192,  32, 160,  96, 224,  16, 144,  80, 208,  48, 176, 112, 240,
          8, 136,  72, 200,  40, 168, 104, 232,  24, 152,  88, 216,  56, 184, 120, 248,
          4, 132,  68, 196,  36, 164, 100, 228,  20, 148,  84, 212,  52, 180, 116, 244,
         12, 140,  76, 204,  44, 172, 108, 236,  28, 156,  92, 220,  60, 188, 124, 252,
          2, 130,  66, 194,  34, 162,  98, 226,  18, 146,  82, 210,  50, 178, 114, 242,
         10, 138,  74, 202,  42, 170, 106, 234,  26, 154,  90, 218,  58, 186, 122, 250,
          6, 134,  70, 198,  38, 166, 102, 230,  22, 150,  86, 214,  54, 182, 118, 246,
         14, 142,  78, 206,  46, 174, 110, 238,  30, 158,  94, 222,  62, 190, 126, 254,
          1, 129,  65, 193,  33, 161,  97, 225,  17, 145,  81, 209,  49, 177, 113, 241,
          9, 137,  73, 201,  41, 169, 105, 233,  25, 153,  89, 217,  57, 185, 121, 249,
          5, 133,  69, 197,  37, 165, 101, 229,  21, 149,  85, 213,  53, 181, 117, 245,
         13, 141,  77, 205,  45, 173, 109, 237,  29, 157,  93, 221,  61, 189, 125, 253,
          3, 131,  67, 195,  35, 163,  99, 227,  19, 147,  83, 211,  51, 179, 115, 243,
         11, 139,  75, 203,  43, 171, 107, 235,  27, 155,  91, 219,  59, 187, 123, 251,
          7, 135,  71, 199,  39, 167, 103, 231,  23, 151,  87, 215,  55, 183, 119, 247,
         15, 143,  79, 207,  47, 175, 111, 239,  31, 159,  95, 223,  63, 191, 127, 255
    };
    unsigned char Temp, * pTruthC = (unsigned char *)pTruth;
    int i, nBytes = (nVars > 6) ? (1 << (nVars - 3)) : 8;
    for ( i = 0; i < nBytes/2; i++ )
    {
        Temp = pMirror[pTruthC[i]];
        pTruthC[i] = pMirror[pTruthC[nBytes-1-i]];
        pTruthC[nBytes-1-i] = Temp;
    }
}


/**Function*************************************************************

  Synopsis    [Computes ISOP for 6 variables or less.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline word Abc_Tt6Isop( word uOn, word uOnDc, int nVars )
{
    word uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2;
    int Var;
    assert( nVars <= 5 );
    assert( (uOn & ~uOnDc) == 0 );
    if ( uOn == 0 )
        return 0;
    if ( uOnDc == ~(word)0 )
        return ~(word)0;
    assert( nVars > 0 );
    // find the topmost var
    for ( Var = nVars-1; Var >= 0; Var-- )
        if ( Abc_Tt6HasVar( uOn, Var ) || Abc_Tt6HasVar( uOnDc, Var ) )
             break;
    assert( Var >= 0 );
    // cofactor
    uOn0   = Abc_Tt6Cofactor0( uOn,   Var );
    uOn1   = Abc_Tt6Cofactor1( uOn  , Var );
    uOnDc0 = Abc_Tt6Cofactor0( uOnDc, Var );
    uOnDc1 = Abc_Tt6Cofactor1( uOnDc, Var );
    // solve for cofactors
    uRes0 = Abc_Tt6Isop( uOn0 & ~uOnDc1, uOnDc0, Var );
    uRes1 = Abc_Tt6Isop( uOn1 & ~uOnDc0, uOnDc1, Var );
    uRes2 = Abc_Tt6Isop( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var );
    // derive the final truth table
    uRes2 |= (uRes0 & s_Truths6Neg[Var]) | (uRes1 & s_Truths6[Var]);
    assert( (uOn & ~uRes2) == 0 );
    assert( (uRes2 & ~uOnDc) == 0 );
    return uRes2;
}

/*=== utilTruth.c ===========================================================*/


ABC_NAMESPACE_HEADER_END

#endif

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////