summaryrefslogtreecommitdiffstats
path: root/src/misc/espresso/opo.c
blob: 8daa07715444959ba387bc457fe7185b16c72334 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
#include "espresso.h"

/*
 *   Phase assignment technique (T. Sasao):
 *
 *      1. create a function with 2*m outputs which implements the
 *      original function and its complement for each output
 *
 *      2. minimize this function
 *
 *      3. choose the minimum number of prime implicants from the
 *      result of step 2 which are needed to realize either a function
 *      or its complement for each output
 *
 *  Step 3 is performed in a rather crude way -- by simply multiplying
 *  out a large expression of the form:
 *
 *      I = (ab + cdef)(acd + bgh) ...
 *
 *  which is a product of m expressions where each expression has two
 *  product terms -- one representing which primes are needed for the
 *  function, and one representing which primes are needed for the
 *  complement.  The largest product term resulting shows which primes
 *  to keep to implement one function or the other for each output.
 *  For problems with many outputs, this may grind to a
 *  halt.
 *
 *  Untried: form complement of I and use unate_complement ...
 *
 *  I have unsuccessfully tried several modifications to the basic
 *  algorithm.  The first is quite simple: use Sasao's technique, but
 *  only commit to a single output at a time (rather than all
 *  outputs).  The goal would be that the later minimizations can "take
 *  into account" the partial assignment at each step.  This is
 *  expensive (m+1 minimizations rather than 2), and the results are
 *  discouraging.
 *
 *  The second modification is rather complicated.  The result from the
 *  minimization in step 2 is guaranteed to be minimal.  Hence, for
 *  each output, the set of primes with a 1 in that output are both
 *  necessary and sufficient to implement the function.  Espresso
 *  achieves the minimality using the routine MAKE_SPARSE.  The
 *  modification is to prevent MAKE_SPARSE from running.  Hence, there
 *  are potentially many subsets of the set of primes with a 1 in a
 *  column which can be used to implement that output.  We use
 *  IRREDUNDANT to enumerate all possible subsets and then proceed as
 *  before.
 */

static int opo_no_make_sparse;
static int opo_repeated;
static int opo_exact;
static void minimize();

void phase_assignment(PLA, opo_strategy)
pPLA PLA;
int opo_strategy;
{
    opo_no_make_sparse = opo_strategy % 2;
    skip_make_sparse = opo_no_make_sparse;
    opo_repeated = (opo_strategy / 2) % 2;
    opo_exact = (opo_strategy / 4) % 2;

    /* Determine a phase assignment */
    if (PLA->phase != NULL) {
    FREE(PLA->phase);
    }

    if (opo_repeated) {
    PLA->phase = set_save(cube.fullset);
    repeated_phase_assignment(PLA);
    } else {
    PLA->phase = find_phase(PLA, 0, (pcube) NULL);
    }

    /* Now minimize with this assignment */
    skip_make_sparse = FALSE;
    (void) set_phase(PLA);
    minimize(PLA);
}

/*
 *  repeated_phase_assignment -- an alternate strategy which commits
 *  to a single phase assignment a step at a time.  Performs m + 1
 *  minimizations !
 */
void repeated_phase_assignment(PLA)
pPLA PLA;
{
    int i;
    pcube phase;

    for(i = 0; i < cube.part_size[cube.output]; i++) {

    /* Find best assignment for all undecided outputs */
    phase = find_phase(PLA, i, PLA->phase);

    /* Commit for only a single output ... */
    if (! is_in_set(phase, cube.first_part[cube.output] + i)) {
        set_remove(PLA->phase, cube.first_part[cube.output] + i);
    }

    if (trace || summary) {
        printf("\nOPO loop for output #%d\n", i);
        printf("PLA->phase is %s\n", pc1(PLA->phase));
        printf("phase      is %s\n", pc1(phase));
    }
    set_free(phase);
    }
}


/*
 *  find_phase -- find a phase assignment for the PLA for all outputs starting
 *  with output number first_output.
 */
pcube find_phase(PLA, first_output, phase1)
pPLA PLA;
int first_output;
pcube phase1;
{
    pcube phase;
    pPLA PLA1;

    phase = set_save(cube.fullset);

    /* setup the double-phase characteristic function, resize the cube */
    PLA1 = new_PLA();
    PLA1->F = sf_save(PLA->F);
    PLA1->R = sf_save(PLA->R);
    PLA1->D = sf_save(PLA->D);
    if (phase1 != NULL) {
    PLA1->phase = set_save(phase1);
    (void) set_phase(PLA1);
    }
    EXEC_S(output_phase_setup(PLA1, first_output), "OPO-SETUP ", PLA1->F);

    /* minimize the double-phase function */
    minimize(PLA1);

    /* set the proper phases according to what gives a minimum solution */
    EXEC_S(PLA1->F = opo(phase, PLA1->F, PLA1->D, PLA1->R, first_output),
        "OPO       ", PLA1->F);
    free_PLA(PLA1);

    /* set the cube structure to reflect the old size */
    setdown_cube();
    cube.part_size[cube.output] -=
    (cube.part_size[cube.output] - first_output) / 2;
    cube_setup();

    return phase;
}

/*
 *  opo -- multiply the expression out to determine a minimum subset of
 *  primes.
 */

/*ARGSUSED*/
pcover opo(phase, T, D, R, first_output)
pcube phase;
pcover T, D, R;
int first_output;
{
    int offset, output, i, last_output, ind;
    pset pdest, select, p, p1, last, last1, not_covered, tmp;
    pset_family temp, T1, T2;

    /* must select all primes for outputs [0 .. first_output-1] */
    select = set_full(T->count);
    for(output = 0; output < first_output; output++) {
    ind = cube.first_part[cube.output] + output;
    foreachi_set(T, i, p) {
        if (is_in_set(p, ind)) {
        set_remove(select, i);
        }
    }
    }

    /* Recursively perform the intersections */
    offset = (cube.part_size[cube.output] - first_output) / 2;
    last_output = first_output + offset - 1;
    temp = opo_recur(T, D, select, offset, first_output, last_output);

    /* largest set is on top -- select primes which are inferred from it */
    pdest = temp->data;
    T1 = new_cover(T->count);
    foreachi_set(T, i, p) {
    if (! is_in_set(pdest, i)) {
        T1 = sf_addset(T1, p);
    }
    }

    set_free(select);
    sf_free(temp);

    /* finding phases is difficult -- see which functions are not covered */
    T2 = complement(cube1list(T1));
    not_covered = new_cube();
    tmp = new_cube();
    foreach_set(T, last, p) {
    foreach_set(T2, last1, p1) {
        if (cdist0(p, p1)) {
        (void) set_or(not_covered, not_covered, set_and(tmp, p, p1));
        }
    }
    }
    free_cover(T);
    free_cover(T2);
    set_free(tmp);

    /* Now reflect the phase choice in a single cube */
    for(output = first_output; output <= last_output; output++) {
    ind = cube.first_part[cube.output] + output;
    if (is_in_set(not_covered, ind)) {
        if (is_in_set(not_covered, ind + offset)) {
        fatal("error in output phase assignment");
        } else {
        set_remove(phase, ind);
        }
    }
    }
    set_free(not_covered);
    return T1;
}

pset_family opo_recur(T, D, select, offset, first, last)
pcover T, D;
pcube select;
int offset, first, last;
{
    static int level = 0;
    int middle;
    pset_family sl, sr, temp;

    level++;
    if (first == last) {
#if 0
    if (opo_no_make_sparse) {
        temp = form_cover_table(T, D, select, first, first + offset);
    } else {
        temp = opo_leaf(T, select, first, first + offset);
    }
#else
    temp = opo_leaf(T, select, first, first + offset);
#endif
    } else {
    middle = (first + last) / 2;
    sl = opo_recur(T, D, select, offset, first, middle);
    sr = opo_recur(T, D, select, offset, middle+1, last);
    temp = unate_intersect(sl, sr, level == 1);
    if (trace) {
        printf("# OPO[%d]: %4d = %4d x %4d, time = %s\n", level - 1,
        temp->count, sl->count, sr->count, print_time(ptime()));
        (void) fflush(stdout);
    }
    free_cover(sl);
    free_cover(sr);
    }
    level--;
    return temp;
}


pset_family opo_leaf(T, select, out1, out2)
register pcover T;
pset select;
int out1, out2;
{
    register pset_family temp;
    register pset p, pdest;
    register int i;

    out1 += cube.first_part[cube.output];
    out2 += cube.first_part[cube.output];

    /* Allocate space for the result */
    temp = sf_new(2, T->count);

    /* Find which primes are needed for the ON-set of this fct */
    pdest = GETSET(temp, temp->count++);
    (void) set_copy(pdest, select);
    foreachi_set(T, i, p) {
    if (is_in_set(p, out1)) {
        set_remove(pdest, i);
    }
    }

    /* Find which primes are needed for the OFF-set of this fct */
    pdest = GETSET(temp, temp->count++);
    (void) set_copy(pdest, select);
    foreachi_set(T, i, p) {
    if (is_in_set(p, out2)) {
        set_remove(pdest, i);
    }
    }

    return temp;
}

#if 0
pset_family form_cover_table(F, D, select, f, fbar)
pcover F, D;
pset select;
int f, fbar;        /* indices of f and fbar in the output part */
{
    register int i;
    register pcube p;
    pset_family f_table, fbar_table;

    /* setup required for fcube_is_covered */
    Rp_size = F->count;
    Rp_start = set_new(Rp_size);
    foreachi_set(F, i, p) {
    PUTSIZE(p, i);
    }
    foreachi_set(D, i, p) {
    RESET(p, REDUND);
    }

    f_table = find_covers(F, D, select, f);
    fbar_table = find_covers(F, D, select, fbar);
    f_table = sf_append(f_table, fbar_table);

    set_free(Rp_start);
    return f_table;
}


pset_family find_covers(F, D, select, n)
pcover F, D;
register pset select;
int n;
{
    register pset p, last, new;
    pcover F1;
    pcube *Flist;
    pset_family f_table, table;
    int i;

    n += cube.first_part[cube.output];

    /* save cubes in this output, and remove the output variable */
    F1 = new_cover(F->count);
    foreach_set(F, last, p)
    if (is_in_set(p, n)) {
        new = GETSET(F1, F1->count++);
        set_or(new, p, cube.var_mask[cube.output]);
        PUTSIZE(new, SIZE(p));
        SET(new, REDUND);
    }

    /* Find ways (sop form) to fail to cover output indexed by n */
    Flist = cube2list(F1, D);
    table = sf_new(10, Rp_size);
    foreach_set(F1, last, p) {
    set_fill(Rp_start, Rp_size);
    set_remove(Rp_start, SIZE(p));
    table = sf_append(table, fcube_is_covered(Flist, p));
    RESET(p, REDUND);
    }
    set_fill(Rp_start, Rp_size);
    foreach_set(table, last, p) {
    set_diff(p, Rp_start, p);
    }

    /* complement this to get possible ways to cover the function */
    for(i = 0; i < Rp_size; i++) {
    if (! is_in_set(select, i)) {
        p = set_new(Rp_size);
        set_insert(p, i);
        table = sf_addset(table, p);
        set_free(p);
    }
    }
    f_table = unate_compl(table);

    /* what a pain, but we need bitwise complement of this */
    set_fill(Rp_start, Rp_size);
    foreach_set(f_table, last, p) {
    set_diff(p, Rp_start, p);
    }

    free_cubelist(Flist);
    sf_free(F1);
    return f_table;
}
#endif

/*
 *  Take a PLA (ON-set, OFF-set and DC-set) and create the
 *  "double-phase characteristic function" which is merely a new
 *  function which has twice as many outputs and realizes both the
 *  function and the complement.
 *
 *  The cube structure is assumed to represent the PLA upon entering.
 *  It will be modified to represent the double-phase function upon
 *  exit.
 *
 *  Only the outputs numbered starting with "first_output" are
 *  duplicated in the output part
 */

output_phase_setup(PLA, first_output)
INOUT pPLA PLA;
int first_output;
{
    pcover F, R, D;
    pcube mask, mask1, last;
    int first_part, offset;
    bool save;
    register pcube p, pr, pf;
    register int i, last_part;

    if (cube.output == -1)
    fatal("output_phase_setup: must have an output");

    F = PLA->F;
    D = PLA->D;
    R = PLA->R;
    first_part = cube.first_part[cube.output] + first_output;
    last_part = cube.last_part[cube.output];
    offset = cube.part_size[cube.output] - first_output;

    /* Change the output size, setup the cube structure */
    setdown_cube();
    cube.part_size[cube.output] += offset;
    cube_setup();

    /* Create a mask to select that part of the cube which isn't changing */
    mask = set_save(cube.fullset);
    for(i = first_part; i < cube.size; i++)
    set_remove(mask, i);
    mask1 = set_save(mask);
    for(i = cube.first_part[cube.output]; i < first_part; i++) {
    set_remove(mask1, i);
    }

    PLA->F = new_cover(F->count + R->count);
    PLA->R = new_cover(F->count + R->count);
    PLA->D = new_cover(D->count);

    foreach_set(F, last, p) {
    pf = GETSET(PLA->F, (PLA->F)->count++);
    pr = GETSET(PLA->R, (PLA->R)->count++);
    INLINEset_and(pf, mask, p);
    INLINEset_and(pr, mask1, p);
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        set_insert(pf, i);
    save = FALSE;
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        save = TRUE, set_insert(pr, i+offset);
    if (! save) PLA->R->count--;
    }

    foreach_set(R, last, p) {
    pf = GETSET(PLA->F, (PLA->F)->count++);
    pr = GETSET(PLA->R, (PLA->R)->count++);
    INLINEset_and(pf, mask1, p);
    INLINEset_and(pr, mask, p);
    save = FALSE;
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        save = TRUE, set_insert(pf, i+offset);
    if (! save) PLA->F->count--;
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        set_insert(pr, i);
    }

    foreach_set(D, last, p) {
    pf = GETSET(PLA->D, (PLA->D)->count++);
    INLINEset_and(pf, mask, p);
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i)) {
        set_insert(pf, i);
        set_insert(pf, i+offset);
        }
    }

    free_cover(F);
    free_cover(D);
    free_cover(R);
    set_free(mask);
    set_free(mask1);
}

/*
 *  set_phase -- given a "cube" which describes which phases of the output
 *  are to be implemented, compute the appropriate on-set and off-set
 */
pPLA set_phase(PLA)
INOUT pPLA PLA;
{
    pcover F1, R1;
    register pcube last, p, outmask;
    register pcube temp=cube.temp[0], phase=PLA->phase, phase1=cube.temp[1];

    outmask = cube.var_mask[cube.num_vars - 1];
    set_diff(phase1, outmask, phase);
    set_or(phase1, set_diff(temp, cube.fullset, outmask), phase1);
    F1 = new_cover((PLA->F)->count + (PLA->R)->count);
    R1 = new_cover((PLA->F)->count + (PLA->R)->count);

    foreach_set(PLA->F, last, p) {
    if (! setp_disjoint(set_and(temp, p, phase), outmask))
        set_copy(GETSET(F1, F1->count++), temp);
    if (! setp_disjoint(set_and(temp, p, phase1), outmask))
        set_copy(GETSET(R1, R1->count++), temp);
    }
    foreach_set(PLA->R, last, p) {
    if (! setp_disjoint(set_and(temp, p, phase), outmask))
        set_copy(GETSET(R1, R1->count++), temp);
    if (! setp_disjoint(set_and(temp, p, phase1), outmask))
        set_copy(GETSET(F1, F1->count++), temp);
    }
    free_cover(PLA->F);
    free_cover(PLA->R);
    PLA->F = F1;
    PLA->R = R1;
    return PLA;
}

#define POW2(x)        (1 << (x))

void opoall(PLA, first_output, last_output, opo_strategy)
pPLA PLA;
int first_output, last_output;
int opo_strategy;
{
    pcover F, D, R, best_F, best_D, best_R;
    int i, j, ind, num;
    pcube bestphase;

    opo_exact = opo_strategy;

    if (PLA->phase != NULL) {
    set_free(PLA->phase);
    }

    bestphase = set_save(cube.fullset);
    best_F = sf_save(PLA->F);
    best_D = sf_save(PLA->D);
    best_R = sf_save(PLA->R);

    for(i = 0; i < POW2(last_output - first_output + 1); i++) {

    /* save the initial PLA covers */
    F = sf_save(PLA->F);
    D = sf_save(PLA->D);
    R = sf_save(PLA->R);

    /* compute the phase cube for this iteration */
    PLA->phase = set_save(cube.fullset);
    num = i;
    for(j = last_output; j >= first_output; j--) {
        if (num % 2 == 0) {
        ind = cube.first_part[cube.output] + j;
        set_remove(PLA->phase, ind);
        }
        num /= 2;
    }

    /* set the phase and minimize */
    (void) set_phase(PLA);
    printf("# phase is %s\n", pc1(PLA->phase));
    summary = TRUE;
    minimize(PLA);

    /* see if this is the best so far */
    if (PLA->F->count < best_F->count) {
        /* save new best solution */
        set_copy(bestphase, PLA->phase);
        sf_free(best_F);
        sf_free(best_D);
        sf_free(best_R);
        best_F = PLA->F;
        best_D = PLA->D;
        best_R = PLA->R;
    } else {
        /* throw away the solution */
        free_cover(PLA->F);
        free_cover(PLA->D);
        free_cover(PLA->R);
    }
    set_free(PLA->phase);

    /* restore the initial PLA covers */
    PLA->F = F;
    PLA->D = D;
    PLA->R = R;
    }

    /* one more minimization to restore the best answer */
    PLA->phase = bestphase;
    sf_free(PLA->F);
    sf_free(PLA->D);
    sf_free(PLA->R);
    PLA->F = best_F;
    PLA->D = best_D;
    PLA->R = best_R;
}

static void minimize(PLA)
pPLA PLA;
{
    if (opo_exact) {
    EXEC_S(PLA->F = minimize_exact(PLA->F,PLA->D,PLA->R,1), "EXACT", PLA->F);
    } else {
    EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), "ESPRESSO  ",PLA->F);
    }
}