1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
/*
* Revision Control Information
*
* $Source$
* $Author$
* $Revision$
* $Date$
*
*/
/*
* module: compl.c
* purpose: compute the complement of a multiple-valued function
*
* The "unate recursive paradigm" is used. After a set of special
* cases are examined, the function is split on the "most active
* variable". These two halves are complemented recursively, and then
* the results are merged.
*
* Changes (from Version 2.1 to Version 2.2)
* 1. Minor bug in compl_lifting -- cubes in the left half were
* not marked as active, so that when merging a leaf from the left
* hand side, the active flags were essentially random. This led
* to minor impredictability problem, but never affected the
* accuracy of the results.
*/
#include "espresso.h"
ABC_NAMESPACE_IMPL_START
#define USE_COMPL_LIFT 0
#define USE_COMPL_LIFT_ONSET 1
#define USE_COMPL_LIFT_ONSET_COMPLEX 2
#define NO_LIFTING 3
static bool compl_special_cases();
static pcover compl_merge();
static void compl_d1merge();
static pcover compl_cube();
static void compl_lift();
static void compl_lift_onset();
static void compl_lift_onset_complex();
static bool simp_comp_special_cases();
static bool simplify_special_cases();
/* complement -- compute the complement of T */
pcover complement(T)
pcube *T; /* T will be disposed of */
{
register pcube cl, cr;
register int best;
pcover Tbar, Tl, Tr;
int lifting;
static int compl_level = 0;
if (debug & COMPL)
debug_print(T, "COMPLEMENT", compl_level++);
if (compl_special_cases(T, &Tbar) == MAYBE) {
/* Allocate space for the partition cubes */
cl = new_cube();
cr = new_cube();
best = binate_split_select(T, cl, cr, COMPL);
/* Complement the left and right halves */
Tl = complement(scofactor(T, cl, best));
Tr = complement(scofactor(T, cr, best));
if (Tr->count*Tl->count > (Tr->count+Tl->count)*CUBELISTSIZE(T)) {
lifting = USE_COMPL_LIFT_ONSET;
} else {
lifting = USE_COMPL_LIFT;
}
Tbar = compl_merge(T, Tl, Tr, cl, cr, best, lifting);
free_cube(cl);
free_cube(cr);
free_cubelist(T);
}
if (debug & COMPL)
debug1_print(Tbar, "exit COMPLEMENT", --compl_level);
return Tbar;
}
static bool compl_special_cases(T, Tbar)
pcube *T; /* will be disposed if answer is determined */
pcover *Tbar; /* returned only if answer determined */
{
register pcube *T1, p, ceil, cof=T[0];
pcover A, ceil_compl;
/* Check for no cubes in the cover */
if (T[2] == NULL) {
*Tbar = sf_addset(new_cover(1), cube.fullset);
free_cubelist(T);
return TRUE;
}
/* Check for only a single cube in the cover */
if (T[3] == NULL) {
*Tbar = compl_cube(set_or(cof, cof, T[2]));
free_cubelist(T);
return TRUE;
}
/* Check for a row of all 1's (implies complement is null) */
for(T1 = T+2; (p = *T1++) != NULL; ) {
if (full_row(p, cof)) {
*Tbar = new_cover(0);
free_cubelist(T);
return TRUE;
}
}
/* Check for a column of all 0's which can be factored out */
ceil = set_save(cof);
for(T1 = T+2; (p = *T1++) != NULL; ) {
INLINEset_or(ceil, ceil, p);
}
if (! setp_equal(ceil, cube.fullset)) {
ceil_compl = compl_cube(ceil);
(void) set_or(cof, cof, set_diff(ceil, cube.fullset, ceil));
set_free(ceil);
*Tbar = sf_append(complement(T), ceil_compl);
return TRUE;
}
set_free(ceil);
/* Collect column counts, determine unate variables, etc. */
massive_count(T);
/* If single active variable not factored out above, then tautology ! */
if (cdata.vars_active == 1) {
*Tbar = new_cover(0);
free_cubelist(T);
return TRUE;
/* Check for unate cover */
} else if (cdata.vars_unate == cdata.vars_active) {
A = map_cover_to_unate(T);
free_cubelist(T);
A = unate_compl(A);
*Tbar = map_unate_to_cover(A);
sf_free(A);
return TRUE;
/* Not much we can do about it */
} else {
return MAYBE;
}
}
/*
* compl_merge -- merge the two cofactors around the splitting
* variable
*
* The merge operation involves intersecting each cube of the left
* cofactor with cl, and intersecting each cube of the right cofactor
* with cr. The union of these two covers is the merged result.
*
* In order to reduce the number of cubes, a distance-1 merge is
* performed (note that two cubes can only combine distance-1 in the
* splitting variable). Also, a simple expand is performed in the
* splitting variable (simple implies the covering check for the
* expansion is not full containment, but single-cube containment).
*/
static pcover compl_merge(T1, L, R, cl, cr, var, lifting)
pcube *T1; /* Original ON-set */
pcover L, R; /* Complement from each recursion branch */
register pcube cl, cr; /* cubes used for cofactoring */
int var; /* splitting variable */
int lifting; /* whether to perform lifting or not */
{
register pcube p, last, pt;
pcover T, Tbar;
pcube *L1, *R1;
if (debug & COMPL) {
(void) printf("compl_merge: left %d, right %d\n", L->count, R->count);
(void) printf("%s (cl)\n%s (cr)\nLeft is\n", pc1(cl), pc2(cr));
cprint(L);
(void) printf("Right is\n");
cprint(R);
}
/* Intersect each cube with the cofactored cube */
foreach_set(L, last, p) {
INLINEset_and(p, p, cl);
SET(p, ACTIVE);
}
foreach_set(R, last, p) {
INLINEset_and(p, p, cr);
SET(p, ACTIVE);
}
/* Sort the arrays for a distance-1 merge */
(void) set_copy(cube.temp[0], cube.var_mask[var]);
qsort((char *) (L1 = sf_list(L)), L->count, sizeof(pset), (int (*)()) d1_order);
qsort((char *) (R1 = sf_list(R)), R->count, sizeof(pset), (int (*)()) d1_order);
/* Perform distance-1 merge */
compl_d1merge(L1, R1);
/* Perform lifting */
switch(lifting) {
case USE_COMPL_LIFT_ONSET:
T = cubeunlist(T1);
compl_lift_onset(L1, T, cr, var);
compl_lift_onset(R1, T, cl, var);
free_cover(T);
break;
case USE_COMPL_LIFT_ONSET_COMPLEX:
T = cubeunlist(T1);
compl_lift_onset_complex(L1, T, var);
compl_lift_onset_complex(R1, T, var);
free_cover(T);
break;
case USE_COMPL_LIFT:
compl_lift(L1, R1, cr, var);
compl_lift(R1, L1, cl, var);
break;
case NO_LIFTING:
break;
default:
;
}
FREE(L1);
FREE(R1);
/* Re-create the merged cover */
Tbar = new_cover(L->count + R->count);
pt = Tbar->data;
foreach_set(L, last, p) {
INLINEset_copy(pt, p);
Tbar->count++;
pt += Tbar->wsize;
}
foreach_active_set(R, last, p) {
INLINEset_copy(pt, p);
Tbar->count++;
pt += Tbar->wsize;
}
if (debug & COMPL) {
(void) printf("Result %d\n", Tbar->count);
if (verbose_debug)
cprint(Tbar);
}
free_cover(L);
free_cover(R);
return Tbar;
}
/*
* compl_lift_simple -- expand in the splitting variable using single
* cube containment against the other recursion branch to check
* validity of the expansion, and expanding all (or none) of the
* splitting variable.
*/
static void compl_lift(A1, B1, bcube, var)
pcube *A1, *B1, bcube;
int var;
{
register pcube a, b, *B2, lift=cube.temp[4], liftor=cube.temp[5];
pcube mask = cube.var_mask[var];
(void) set_and(liftor, bcube, mask);
/* for each cube in the first array ... */
for(; (a = *A1++) != NULL; ) {
if (TESTP(a, ACTIVE)) {
/* create a lift of this cube in the merging coord */
(void) set_merge(lift, bcube, a, mask);
/* for each cube in the second array */
for(B2 = B1; (b = *B2++) != NULL; ) {
INLINEsetp_implies(lift, b, /* when_false => */ continue);
/* when_true => fall through to next statement */
/* cube of A1 was contained by some cube of B1, so raise */
INLINEset_or(a, a, liftor);
break;
}
}
}
}
/*
* compl_lift_onset -- expand in the splitting variable using a
* distance-1 check against the original on-set; expand all (or
* none) of the splitting variable. Each cube of A1 is expanded
* against the original on-set T.
*/
static void compl_lift_onset(A1, T, bcube, var)
pcube *A1;
pcover T;
pcube bcube;
int var;
{
register pcube a, last, p, lift=cube.temp[4], mask=cube.var_mask[var];
/* for each active cube from one branch of the complement */
for(; (a = *A1++) != NULL; ) {
if (TESTP(a, ACTIVE)) {
/* create a lift of this cube in the merging coord */
INLINEset_and(lift, bcube, mask); /* isolate parts to raise */
INLINEset_or(lift, a, lift); /* raise these parts in a */
/* for each cube in the ON-set, check for intersection */
foreach_set(T, last, p) {
if (cdist0(p, lift)) {
goto nolift;
}
}
INLINEset_copy(a, lift); /* save the raising */
SET(a, ACTIVE);
nolift : ;
}
}
}
/*
* compl_lift_complex -- expand in the splitting variable, but expand all
* parts which can possibly expand.
* T is the original ON-set
* A1 is either the left or right cofactor
*/
static void compl_lift_onset_complex(A1, T, var)
pcube *A1; /* array of pointers to new result */
pcover T; /* original ON-set */
int var; /* which variable we split on */
{
register int dist;
register pcube last, p, a, xlower;
/* for each cube in the complement */
xlower = new_cube();
for(; (a = *A1++) != NULL; ) {
if (TESTP(a, ACTIVE)) {
/* Find which parts of the splitting variable are forced low */
INLINEset_clear(xlower, cube.size);
foreach_set(T, last, p) {
if ((dist = cdist01(p, a)) < 2) {
if (dist == 0) {
fatal("compl: ON-set and OFF-set are not orthogonal");
} else {
(void) force_lower(xlower, p, a);
}
}
}
(void) set_diff(xlower, cube.var_mask[var], xlower);
(void) set_or(a, a, xlower);
free_cube(xlower);
}
}
}
/*
* compl_d1merge -- distance-1 merge in the splitting variable
*/
static void compl_d1merge(L1, R1)
register pcube *L1, *R1;
{
register pcube pl, pr;
/* Find equal cubes between the two cofactors */
for(pl = *L1, pr = *R1; (pl != NULL) && (pr != NULL); )
switch (d1_order(L1, R1)) {
case 1:
pr = *(++R1); break; /* advance right pointer */
case -1:
pl = *(++L1); break; /* advance left pointer */
case 0:
RESET(pr, ACTIVE);
INLINEset_or(pl, pl, pr);
pr = *(++R1);
default:
;
}
}
/* compl_cube -- return the complement of a single cube (De Morgan's law) */
static pcover compl_cube(p)
register pcube p;
{
register pcube diff=cube.temp[7], pdest, mask, full=cube.fullset;
int var;
pcover R;
/* Allocate worst-case size cover (to avoid checking overflow) */
R = new_cover(cube.num_vars);
/* Compute bit-wise complement of the cube */
INLINEset_diff(diff, full, p);
for(var = 0; var < cube.num_vars; var++) {
mask = cube.var_mask[var];
/* If the bit-wise complement is not empty in var ... */
if (! setp_disjoint(diff, mask)) {
pdest = GETSET(R, R->count++);
INLINEset_merge(pdest, diff, full, mask);
}
}
return R;
}
/* simp_comp -- quick simplification of T */
void simp_comp(T, Tnew, Tbar)
pcube *T; /* T will be disposed of */
pcover *Tnew;
pcover *Tbar;
{
register pcube cl, cr;
register int best;
pcover Tl, Tr, Tlbar, Trbar;
int lifting;
static int simplify_level = 0;
if (debug & COMPL)
debug_print(T, "SIMPCOMP", simplify_level++);
if (simp_comp_special_cases(T, Tnew, Tbar) == MAYBE) {
/* Allocate space for the partition cubes */
cl = new_cube();
cr = new_cube();
best = binate_split_select(T, cl, cr, COMPL);
/* Complement the left and right halves */
simp_comp(scofactor(T, cl, best), &Tl, &Tlbar);
simp_comp(scofactor(T, cr, best), &Tr, &Trbar);
lifting = USE_COMPL_LIFT;
*Tnew = compl_merge(T, Tl, Tr, cl, cr, best, lifting);
lifting = USE_COMPL_LIFT;
*Tbar = compl_merge(T, Tlbar, Trbar, cl, cr, best, lifting);
/* All of this work for nothing ? Let's hope not ... */
if ((*Tnew)->count > CUBELISTSIZE(T)) {
sf_free(*Tnew);
*Tnew = cubeunlist(T);
}
free_cube(cl);
free_cube(cr);
free_cubelist(T);
}
if (debug & COMPL) {
debug1_print(*Tnew, "exit SIMPCOMP (new)", simplify_level);
debug1_print(*Tbar, "exit SIMPCOMP (compl)", simplify_level);
simplify_level--;
}
}
static bool simp_comp_special_cases(T, Tnew, Tbar)
pcube *T; /* will be disposed if answer is determined */
pcover *Tnew; /* returned only if answer determined */
pcover *Tbar; /* returned only if answer determined */
{
register pcube *T1, p, ceil, cof=T[0];
pcube last;
pcover A;
/* Check for no cubes in the cover (function is empty) */
if (T[2] == NULL) {
*Tnew = new_cover(1);
*Tbar = sf_addset(new_cover(1), cube.fullset);
free_cubelist(T);
return TRUE;
}
/* Check for only a single cube in the cover */
if (T[3] == NULL) {
(void) set_or(cof, cof, T[2]);
*Tnew = sf_addset(new_cover(1), cof);
*Tbar = compl_cube(cof);
free_cubelist(T);
return TRUE;
}
/* Check for a row of all 1's (function is a tautology) */
for(T1 = T+2; (p = *T1++) != NULL; ) {
if (full_row(p, cof)) {
*Tnew = sf_addset(new_cover(1), cube.fullset);
*Tbar = new_cover(1);
free_cubelist(T);
return TRUE;
}
}
/* Check for a column of all 0's which can be factored out */
ceil = set_save(cof);
for(T1 = T+2; (p = *T1++) != NULL; ) {
INLINEset_or(ceil, ceil, p);
}
if (! setp_equal(ceil, cube.fullset)) {
p = new_cube();
(void) set_diff(p, cube.fullset, ceil);
(void) set_or(cof, cof, p);
set_free(p);
simp_comp(T, Tnew, Tbar);
/* Adjust the ON-set */
A = *Tnew;
foreach_set(A, last, p) {
INLINEset_and(p, p, ceil);
}
/* Compute the new complement */
*Tbar = sf_append(*Tbar, compl_cube(ceil));
set_free(ceil);
return TRUE;
}
set_free(ceil);
/* Collect column counts, determine unate variables, etc. */
massive_count(T);
/* If single active variable not factored out above, then tautology ! */
if (cdata.vars_active == 1) {
*Tnew = sf_addset(new_cover(1), cube.fullset);
*Tbar = new_cover(1);
free_cubelist(T);
return TRUE;
/* Check for unate cover */
} else if (cdata.vars_unate == cdata.vars_active) {
/* Make the cover minimum by single-cube containment */
A = cubeunlist(T);
*Tnew = sf_contain(A);
/* Now form a minimum representation of the complement */
A = map_cover_to_unate(T);
A = unate_compl(A);
*Tbar = map_unate_to_cover(A);
sf_free(A);
free_cubelist(T);
return TRUE;
/* Not much we can do about it */
} else {
return MAYBE;
}
}
/* simplify -- quick simplification of T */
pcover simplify(T)
pcube *T; /* T will be disposed of */
{
register pcube cl, cr;
register int best;
pcover Tbar, Tl, Tr;
int lifting;
static int simplify_level = 0;
if (debug & COMPL) {
debug_print(T, "SIMPLIFY", simplify_level++);
}
if (simplify_special_cases(T, &Tbar) == MAYBE) {
/* Allocate space for the partition cubes */
cl = new_cube();
cr = new_cube();
best = binate_split_select(T, cl, cr, COMPL);
/* Complement the left and right halves */
Tl = simplify(scofactor(T, cl, best));
Tr = simplify(scofactor(T, cr, best));
lifting = USE_COMPL_LIFT;
Tbar = compl_merge(T, Tl, Tr, cl, cr, best, lifting);
/* All of this work for nothing ? Let's hope not ... */
if (Tbar->count > CUBELISTSIZE(T)) {
sf_free(Tbar);
Tbar = cubeunlist(T);
}
free_cube(cl);
free_cube(cr);
free_cubelist(T);
}
if (debug & COMPL) {
debug1_print(Tbar, "exit SIMPLIFY", --simplify_level);
}
return Tbar;
}
static bool simplify_special_cases(T, Tnew)
pcube *T; /* will be disposed if answer is determined */
pcover *Tnew; /* returned only if answer determined */
{
register pcube *T1, p, ceil, cof=T[0];
pcube last;
pcover A;
/* Check for no cubes in the cover */
if (T[2] == NULL) {
*Tnew = new_cover(0);
free_cubelist(T);
return TRUE;
}
/* Check for only a single cube in the cover */
if (T[3] == NULL) {
*Tnew = sf_addset(new_cover(1), set_or(cof, cof, T[2]));
free_cubelist(T);
return TRUE;
}
/* Check for a row of all 1's (implies function is a tautology) */
for(T1 = T+2; (p = *T1++) != NULL; ) {
if (full_row(p, cof)) {
*Tnew = sf_addset(new_cover(1), cube.fullset);
free_cubelist(T);
return TRUE;
}
}
/* Check for a column of all 0's which can be factored out */
ceil = set_save(cof);
for(T1 = T+2; (p = *T1++) != NULL; ) {
INLINEset_or(ceil, ceil, p);
}
if (! setp_equal(ceil, cube.fullset)) {
p = new_cube();
(void) set_diff(p, cube.fullset, ceil);
(void) set_or(cof, cof, p);
free_cube(p);
A = simplify(T);
foreach_set(A, last, p) {
INLINEset_and(p, p, ceil);
}
*Tnew = A;
set_free(ceil);
return TRUE;
}
set_free(ceil);
/* Collect column counts, determine unate variables, etc. */
massive_count(T);
/* If single active variable not factored out above, then tautology ! */
if (cdata.vars_active == 1) {
*Tnew = sf_addset(new_cover(1), cube.fullset);
free_cubelist(T);
return TRUE;
/* Check for unate cover */
} else if (cdata.vars_unate == cdata.vars_active) {
A = cubeunlist(T);
*Tnew = sf_contain(A);
free_cubelist(T);
return TRUE;
/* Not much we can do about it */
} else {
return MAYBE;
}
}
ABC_NAMESPACE_IMPL_END
|