1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
/**CFile****************************************************************
FileName [sclBuff.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Standard-cell library representation.]
Synopsis [Buffering algorithms.]
Author [Alan Mishchenko, Niklas Een]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 24, 2012.]
Revision [$Id: sclBuff.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sclInt.h"
#include "map/mio/mio.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Make sure the network is in topo order without dangling nodes.]
Description [Returns 1 iff the network is fine.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose )
{
Abc_Obj_t * pObj, * pFanin;
int i, k, fFlag = 1;
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_NodeSetTravIdCurrent( pObj );
Abc_NtkForEachNode( p, pObj, i )
{
Abc_ObjForEachFanin( pObj, pFanin, k )
if ( !Abc_NodeIsTravIdCurrent( pFanin ) )
printf( "obj %d and its fanin %d are not in the topo order\n", Abc_ObjId(pObj), Abc_ObjId(pFanin) ), fFlag = 0;
Abc_NodeSetTravIdCurrent( pObj );
if ( Abc_ObjFanoutNum(pObj) == 0 )
printf( "node %d has no fanout\n", Abc_ObjId(pObj) ), fFlag = 0;
if ( !fFlag )
break;
}
if ( fFlag && fVerbose )
printf( "The network is in topo order and no dangling nodes.\n" );
return fFlag;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCheckNtk2( Abc_Ntk_t * p )
{
Abc_Obj_t * pObj, * pFanout;
int i, k;
Abc_NtkStartReverseLevels( p, 0 );
Abc_NtkForEachNode( p, pObj, i )
{
if ( Abc_ObjFanoutNum(pObj) <= 3 )
continue;
printf( "Node %5d (%2d) : fans = %3d ", i, Abc_ObjLevel(pObj), Abc_ObjFanoutNum(pObj) );
Abc_ObjForEachFanout( pObj, pFanout, k )
printf( "%d ", Abc_ObjReverseLevel(pFanout) );
printf( "\n" );
}
return 1;
}
/**Function*************************************************************
Synopsis [Performs buffering of the mapped network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeCompareLevels( Abc_Obj_t ** pp1, Abc_Obj_t ** pp2 )
{
int Diff = Abc_ObjLevel(*pp1) - Abc_ObjLevel(*pp2);
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
Diff = (*pp1)->Id - (*pp2)->Id; // needed to make qsort() platform-infependent
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
return 0;
}
int Abc_SclComputeReverseLevel( Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i, Level = 0;
Abc_ObjForEachFanout( pObj, pFanout, i )
Level = Abc_MaxInt( Level, pFanout->Level );
return Level + 1;
}
Abc_Obj_t * Abc_SclPerformBufferingOne( Abc_Obj_t * pObj, int Degree, int fVerbose )
{
Vec_Ptr_t * vFanouts;
Abc_Obj_t * pBuffer, * pFanout;
int i, Degree0 = Degree;
assert( Abc_ObjFanoutNum(pObj) > Degree );
// collect fanouts and sort by reverse level
vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) );
Abc_NodeCollectFanouts( pObj, vFanouts );
Vec_PtrSort( vFanouts, (int (*)(void))Abc_NodeCompareLevels );
// select the first Degree fanouts
pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL );
// check if it is possible to not increase level
if ( Vec_PtrSize(vFanouts) < 2 * Degree )
{
Abc_Obj_t * pFanPrev = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Vec_PtrSize(vFanouts)-1-Degree);
Abc_Obj_t * pFanThis = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Degree-1);
Abc_Obj_t * pFanLast = (Abc_Obj_t *)Vec_PtrEntryLast(vFanouts);
if ( Abc_ObjLevel(pFanThis) == Abc_ObjLevel(pFanLast) &&
Abc_ObjLevel(pFanPrev) < Abc_ObjLevel(pFanThis) )
{
// find the first one whose level is the same as last
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
if ( Abc_ObjLevel(pFanout) == Abc_ObjLevel(pFanLast) )
break;
assert( i < Vec_PtrSize(vFanouts) );
if ( i > 1 )
Degree = i;
}
// make the last two more well-balanced
if ( Degree == Degree0 && Degree > Vec_PtrSize(vFanouts) - Degree )
Degree = Vec_PtrSize(vFanouts)/2 + (Vec_PtrSize(vFanouts) & 1);
assert( Degree <= Degree0 );
}
// select fanouts
Vec_PtrForEachEntryStop( Abc_Obj_t *, vFanouts, pFanout, i, Degree )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
if ( fVerbose )
{
printf( "%5d : ", Abc_ObjId(pObj) );
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
printf( "%d%s ", Abc_ObjLevel(pFanout), i == Degree-1 ? " " : "" );
printf( "\n" );
}
Vec_PtrFree( vFanouts );
Abc_ObjAddFanin( pBuffer, pObj );
pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer );
return pBuffer;
}
void Abc_SclPerformBuffering_rec( Abc_Obj_t * pObj, int Degree, int fVerbose )
{
Abc_Obj_t * pFanout;
int i;
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return;
Abc_NodeSetTravIdCurrent( pObj );
pObj->Level = 0;
if ( Abc_ObjIsCo(pObj) )
return;
assert( Abc_ObjIsCi(pObj) || Abc_ObjIsNode(pObj) );
// buffer fanouts and collect reverse levels
Abc_ObjForEachFanout( pObj, pFanout, i )
Abc_SclPerformBuffering_rec( pFanout, Degree, fVerbose );
// perform buffering as long as needed
while ( Abc_ObjFanoutNum(pObj) > Degree )
Abc_SclPerformBufferingOne( pObj, Degree, fVerbose );
// compute the new level of the node
pObj->Level = Abc_SclComputeReverseLevel( pObj );
}
Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int Degree, int fVerbose )
{
Vec_Int_t * vCiLevs;
Abc_Ntk_t * pNew;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkHasMapping(p) );
// remember CI levels
vCiLevs = Vec_IntAlloc( Abc_NtkCiNum(p) );
Abc_NtkForEachCi( p, pObj, i )
Vec_IntPush( vCiLevs, Abc_ObjLevel(pObj) );
// perform buffering
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_SclPerformBuffering_rec( pObj, Degree, fVerbose );
// recompute logic levels
Abc_NtkForEachCi( p, pObj, i )
pObj->Level = Vec_IntEntry( vCiLevs, i );
Abc_NtkForEachNode( p, pObj, i )
Abc_ObjLevelNew( pObj );
Vec_IntFree( vCiLevs );
// duplication in topo order
pNew = Abc_NtkDupDfs( p );
Abc_SclCheckNtk( pNew, fVerbose );
// Abc_NtkDelete( pNew );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|