1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
/**CFile****************************************************************
FileName [mapperTree.c]
PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]
Synopsis [Generic technology mapping engine.]
Author [MVSIS Group]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - June 1, 2004.]
Revision [$Id: mapperTree.c,v 1.9 2005/01/23 06:59:45 alanmi Exp $]
***********************************************************************/
#ifdef __linux__
#include <libgen.h>
#endif
#include "mapperInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static int Map_LibraryReadFileTree( Map_SuperLib_t * pLib, FILE * pFile, char *pFileName );
static Map_Super_t * Map_LibraryReadGateTree( Map_SuperLib_t * pLib, char * pBuffer, int Number, int nVars );
static int Map_LibraryDeriveGateInfo( Map_SuperLib_t * pLib, st_table * tExcludeGate );
static void Map_LibraryAddFaninDelays( Map_SuperLib_t * pLib, Map_Super_t * pGate, Map_Super_t * pFanin, Mio_Pin_t * pPin );
static int Map_LibraryGetMaxSuperPi_rec( Map_Super_t * pGate );
static unsigned Map_LibraryGetGateSupp_rec( Map_Super_t * pGate );
// fanout limits
static const int s_MapFanoutLimits[10] = { 1/*0*/, 10/*1*/, 5/*2*/, 2/*3*/, 1/*4*/, 1/*5*/, 1/*6*/ };
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Reads the supergate library from file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Map_LibraryReadTree( Map_SuperLib_t * pLib, char * pFileName, char * pExcludeFile )
{
FILE * pFile;
int Status, num;
Abc_Frame_t * pAbc;
st_table * tExcludeGate = 0;
// read the beginning of the file
assert( pLib->pGenlib == NULL );
pFile = Io_FileOpen( pFileName, "open_path", "r", 1 );
// pFile = fopen( pFileName, "r" );
if ( pFile == NULL )
{
printf( "Cannot open input file \"%s\".\n", pFileName );
return 0;
}
if ( pExcludeFile )
{
pAbc = Abc_FrameGetGlobalFrame();
tExcludeGate = st_init_table(strcmp, st_strhash);
if ( (num = Mio_LibraryReadExclude( pExcludeFile, tExcludeGate )) == -1 )
{
st_free_table( tExcludeGate );
tExcludeGate = 0;
return 0;
}
fprintf ( Abc_FrameReadOut( pAbc ), "Read %d gates from exclude file\n", num );
}
Status = Map_LibraryReadFileTree( pLib, pFile, pFileName );
fclose( pFile );
if ( Status == 0 )
return 0;
// prepare the info about the library
return Map_LibraryDeriveGateInfo( pLib, tExcludeGate );
}
/**Function*************************************************************
Synopsis [Reads the library file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Map_LibraryReadFileTree( Map_SuperLib_t * pLib, FILE * pFile, char *pFileName )
{
ProgressBar * pProgress;
char pBuffer[5000], pLibFile[5000];
FILE * pFileGen;
Map_Super_t * pGate;
char * pTemp = 0, * pLibName;
int nCounter, k, i;
int RetValue;
// skip empty and comment lines
while ( fgets( pBuffer, 5000, pFile ) != NULL )
{
// skip leading spaces
for ( pTemp = pBuffer; *pTemp == ' ' || *pTemp == '\r' || *pTemp == '\n'; pTemp++ );
// skip comment lines and empty lines
if ( *pTemp != 0 && *pTemp != '#' )
break;
}
// get the genlib file name (base)
pLibName = strtok( pTemp, " \t\r\n" );
#ifdef __linux__
if( strchr( pLibName, '/' ) != NULL )
pLibName = strrchr( pLibName, '/' ) + 1;
#else
if( strchr( pLibName, '\\' ) != NULL )
pLibName = strrchr( pLibName, '\\' ) + 1;
#endif
if ( strcmp( pLibName, "GATE" ) == 0 )
{
printf( "The input file \"%s\" looks like a GENLIB file and not a supergate library file.\n", pLib->pName );
return 0;
}
// now figure out the directory if any in the pFileName
#ifdef __linux__
snprintf( pLibFile, 5000, "%s/%s", dirname(strdup(pFileName)), pLibName );
#else
{
char * pStr;
strcpy( pLibFile, pFileName );
pStr = pLibFile + strlen(pBuffer) - 1;
while ( pStr > pLibFile && *pStr != '\\' && *pStr != '/' )
pStr--;
if ( pStr == pLibFile )
strcpy( pLibFile, pLibName );
else
sprintf( pStr, "\\%s", pLibName );
}
#endif
pFileGen = Io_FileOpen( pLibFile, "open_path", "r", 1 );
// pFileGen = fopen( pLibFile, "r" );
if ( pFileGen == NULL )
{
printf( "Cannot open the GENLIB file \"%s\".\n", pLibFile );
return 0;
}
fclose( pFileGen );
// read the genlib library
pLib->pGenlib = Mio_LibraryRead( pLibFile, 0, 0 );
if ( pLib->pGenlib == NULL )
{
printf( "Cannot read GENLIB file \"%s\".\n", pLibFile );
return 0;
}
// read the number of variables
RetValue = fscanf( pFile, "%d\n", &pLib->nVarsMax );
if ( pLib->nVarsMax < 2 || pLib->nVarsMax > 10 )
{
printf( "Suspicious number of variables (%d).\n", pLib->nVarsMax );
return 0;
}
// read the number of gates
RetValue = fscanf( pFile, "%d\n", &pLib->nSupersReal );
if ( pLib->nSupersReal < 1 || pLib->nSupersReal > 10000000 )
{
printf( "Suspicious number of gates (%d).\n", pLib->nSupersReal );
return 0;
}
// read the number of lines
RetValue = fscanf( pFile, "%d\n", &pLib->nLines );
if ( pLib->nLines < 1 || pLib->nLines > 10000000 )
{
printf( "Suspicious number of lines (%d).\n", pLib->nLines );
return 0;
}
// allocate room for supergate pointers
pLib->ppSupers = ABC_ALLOC( Map_Super_t *, pLib->nLines + 10000 );
// create the elementary supergates
for ( i = 0; i < pLib->nVarsMax; i++ )
{
// get a new gate
pGate = (Map_Super_t *)Extra_MmFixedEntryFetch( pLib->mmSupers );
memset( pGate, 0, sizeof(Map_Super_t) );
// assign the elementary variable, the truth table, and the delays
pGate->Num = i;
// set the truth table
pGate->uTruth[0] = pLib->uTruths[i][0];
pGate->uTruth[1] = pLib->uTruths[i][1];
// set the arrival times of all input to non-existent delay
for ( k = 0; k < pLib->nVarsMax; k++ )
{
pGate->tDelaysR[k].Rise = pGate->tDelaysR[k].Fall = MAP_NO_VAR;
pGate->tDelaysF[k].Rise = pGate->tDelaysF[k].Fall = MAP_NO_VAR;
}
// set an existent arrival time for rise and fall
pGate->tDelaysR[i].Rise = 0.0;
pGate->tDelaysF[i].Fall = 0.0;
// set the gate
pLib->ppSupers[i] = pGate;
}
// read the lines
nCounter = pLib->nVarsMax;
pProgress = Extra_ProgressBarStart( stdout, pLib->nLines );
while ( fgets( pBuffer, 5000, pFile ) != NULL )
{
for ( pTemp = pBuffer; *pTemp == ' ' || *pTemp == '\r' || *pTemp == '\n'; pTemp++ );
if ( pTemp[0] == '\0' )
continue;
// if ( pTemp[0] == 'a' || pTemp[2] == 'a' )
// {
// pLib->nLines--;
// continue;
// }
// get the gate
pGate = Map_LibraryReadGateTree( pLib, pTemp, nCounter, pLib->nVarsMax );
if ( pGate == NULL )
{
Extra_ProgressBarStop( pProgress );
return 0;
}
pLib->ppSupers[nCounter++] = pGate;
// later we will derive: truth table, delays, area, number of component gates, etc
// update the progress bar
Extra_ProgressBarUpdate( pProgress, nCounter, NULL );
}
Extra_ProgressBarStop( pProgress );
if ( nCounter != pLib->nLines )
printf( "The number of lines read (%d) is different what the file says (%d).\n", nCounter, pLib->nLines );
pLib->nSupersAll = nCounter;
// count the number of real supergates
nCounter = 0;
for ( k = 0; k < pLib->nLines; k++ )
nCounter += pLib->ppSupers[k]->fSuper;
if ( nCounter != pLib->nSupersReal )
printf( "The number of gates read (%d) is different what the file says (%d).\n", nCounter, pLib->nSupersReal );
pLib->nSupersReal = nCounter;
return 1;
}
/**Function*************************************************************
Synopsis [Reads one gate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Map_Super_t * Map_LibraryReadGateTree( Map_SuperLib_t * pLib, char * pBuffer, int Number, int nVarsMax )
{
Map_Super_t * pGate;
char * pTemp;
int i, Num;
// start and clean the gate
pGate = (Map_Super_t *)Extra_MmFixedEntryFetch( pLib->mmSupers );
memset( pGate, 0, sizeof(Map_Super_t) );
// set the gate number
pGate->Num = Number;
// read the mark
pTemp = strtok( pBuffer, " " );
if ( pTemp[0] == '*' )
{
pGate->fSuper = 1;
pTemp = strtok( NULL, " " );
}
// read the root gate
pGate->pRoot = Mio_LibraryReadGateByName( pLib->pGenlib, pTemp );
if ( pGate->pRoot == NULL )
{
printf( "Cannot read the root gate names %s.\n", pTemp );
return NULL;
}
// set the max number of fanouts
pGate->nFanLimit = s_MapFanoutLimits[ Mio_GateReadInputs(pGate->pRoot) ];
// read the pin-to-pin delay
for ( i = 0; ( pTemp = strtok( NULL, " \n\0" ) ); i++ )
{
if ( pTemp[0] == '#' )
break;
if ( i == nVarsMax )
{
printf( "There are too many entries on the line.\n" );
return NULL;
}
Num = atoi(pTemp);
if ( Num < 0 )
{
printf( "The number of a child supergate is negative.\n" );
return NULL;
}
if ( Num > pLib->nLines )
{
printf( "The number of a child supergate (%d) exceeded the number of lines (%d).\n",
Num, pLib->nLines );
return NULL;
}
pGate->pFanins[i] = pLib->ppSupers[Num];
}
pGate->nFanins = i;
if ( pGate->nFanins != (unsigned)Mio_GateReadInputs(pGate->pRoot) )
{
printf( "The number of fanins of a root gate is wrong.\n" );
return NULL;
}
// save the gate name, just in case
if ( pTemp && pTemp[0] == '#' )
{
if ( pTemp[1] == 0 )
pTemp = strtok( NULL, " \n\0" );
else // skip spaces
for ( pTemp++; *pTemp == ' '; pTemp++ );
// save the formula
pGate->pFormula = Extra_MmFlexEntryFetch( pLib->mmForms, strlen(pTemp)+1 );
strcpy( pGate->pFormula, pTemp );
}
// check the rest of the string
pTemp = strtok( NULL, " \n\0" );
if ( pTemp != NULL )
printf( "The following trailing symbols found \"%s\".\n", pTemp );
return pGate;
}
/**Function*************************************************************
Synopsis [Derives information about the library.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Map_LibraryDeriveGateInfo( Map_SuperLib_t * pLib, st_table * tExcludeGate )
{
Map_Super_t * pGate, * pFanin;
Mio_Pin_t * pPin;
unsigned uCanon[2];
unsigned uTruths[6][2];
int i, k, nRealVars;
// set all the derivable info related to the supergates
for ( i = pLib->nVarsMax; i < (int)pLib->nLines; i++ )
{
pGate = pLib->ppSupers[i];
if ( tExcludeGate )
{
if ( st_is_member( tExcludeGate, Mio_GateReadName( pGate->pRoot ) ) )
pGate->fExclude = 1;
for ( k = 0; k < (int)pGate->nFanins; k++ )
{
pFanin = pGate->pFanins[k];
if ( pFanin->fExclude )
{
pGate->fExclude = 1;
continue;
}
}
}
// collect the truth tables of the fanins
for ( k = 0; k < (int)pGate->nFanins; k++ )
{
pFanin = pGate->pFanins[k];
uTruths[k][0] = pFanin->uTruth[0];
uTruths[k][1] = pFanin->uTruth[1];
}
// derive the new truth table
Mio_DeriveTruthTable( pGate->pRoot, uTruths, pGate->nFanins, 6, pGate->uTruth );
// set the initial delays of the supergate
for ( k = 0; k < pLib->nVarsMax; k++ )
{
pGate->tDelaysR[k].Rise = pGate->tDelaysR[k].Fall = MAP_NO_VAR;
pGate->tDelaysF[k].Rise = pGate->tDelaysF[k].Fall = MAP_NO_VAR;
}
// get the linked list of pins for the given root gate
pPin = Mio_GateReadPins( pGate->pRoot );
// update the initial delay of the supergate using info from the corresponding pin
for ( k = 0; k < (int)pGate->nFanins; k++, pPin = Mio_PinReadNext(pPin) )
{
// if there is no corresponding pin, this is a bug, return fail
if ( pPin == NULL )
{
printf( "There are less pins than gate inputs.\n" );
return 0;
}
// update the delay information of k-th fanins info from the corresponding pin
Map_LibraryAddFaninDelays( pLib, pGate, pGate->pFanins[k], pPin );
}
// if there are some pins left, this is a bug, return fail
if ( pPin != NULL )
{
printf( "There are more pins than gate inputs.\n" );
return 0;
}
// find the max delay
pGate->tDelayMax.Rise = pGate->tDelayMax.Fall = MAP_NO_VAR;
for ( k = 0; k < pLib->nVarsMax; k++ )
{
// the rise of the output depends on the rise and fall of the output
if ( pGate->tDelayMax.Rise < pGate->tDelaysR[k].Rise )
pGate->tDelayMax.Rise = pGate->tDelaysR[k].Rise;
if ( pGate->tDelayMax.Rise < pGate->tDelaysR[k].Fall )
pGate->tDelayMax.Rise = pGate->tDelaysR[k].Fall;
// the fall of the output depends on the rise and fall of the output
if ( pGate->tDelayMax.Fall < pGate->tDelaysF[k].Rise )
pGate->tDelayMax.Fall = pGate->tDelaysF[k].Rise;
if ( pGate->tDelayMax.Fall < pGate->tDelaysF[k].Fall )
pGate->tDelayMax.Fall = pGate->tDelaysF[k].Fall;
pGate->tDelaysF[k].Worst = MAP_MAX( pGate->tDelaysF[k].Fall, pGate->tDelaysF[k].Rise );
pGate->tDelaysR[k].Worst = MAP_MAX( pGate->tDelaysR[k].Fall, pGate->tDelaysR[k].Rise );
}
// count gates and area of the supergate
pGate->nGates = 1;
pGate->Area = (float)Mio_GateReadArea(pGate->pRoot);
for ( k = 0; k < (int)pGate->nFanins; k++ )
{
pGate->nGates += pGate->pFanins[k]->nGates;
pGate->Area += pGate->pFanins[k]->Area;
}
// do not add the gate to the table, if this gate is an internal gate
// of some supegate and does not correspond to a supergate output
if ( ( !pGate->fSuper ) || pGate->fExclude )
continue;
// find the maximum index of a variable in the support of the supergates
// this is important for two reasons:
// (1) to limit the number of permutations considered for canonicization
// (2) to get rid of equivalence phases to speed-up matching
nRealVars = Map_LibraryGetMaxSuperPi_rec( pGate ) + 1;
assert( nRealVars > 0 && nRealVars <= pLib->nVarsMax );
// if there are some problems with this code, try this instead
// nRealVars = pLib->nVarsMax;
// find the N-canonical form of this supergate
pGate->nPhases = Map_CanonComputeSlow( pLib->uTruths, pLib->nVarsMax, nRealVars, pGate->uTruth, pGate->uPhases, uCanon );
// add the supergate into the table by its N-canonical table
Map_SuperTableInsertC( pLib->tTableC, uCanon, pGate );
/*
{
int uCanon1, uCanon2;
uCanon1 = uCanon[0];
pGate->uTruth[0] = ~pGate->uTruth[0];
pGate->uTruth[1] = ~pGate->uTruth[1];
Map_CanonComputeSlow( pLib->uTruths, pLib->nVarsMax, nRealVars, pGate->uTruth, pGate->uPhases, uCanon );
uCanon2 = uCanon[0];
Rwt_Man5ExploreCount( uCanon1 < uCanon2 ? uCanon1 : uCanon2 );
}
*/
}
// sort the gates in each line
Map_SuperTableSortSupergatesByDelay( pLib->tTableC, pLib->nSupersAll );
// let the glory be manifest
// Map_LibraryPrintTree( pLib );
return 1;
}
/**Function*************************************************************
Synopsis [Finds the largest PI number in the support of the supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Map_LibraryGetMaxSuperPi_rec( Map_Super_t * pGate )
{
int i, VarCur, VarMax = 0;
if ( pGate->pRoot == NULL )
return pGate->Num;
for ( i = 0; i < (int)pGate->nFanins; i++ )
{
VarCur = Map_LibraryGetMaxSuperPi_rec( pGate->pFanins[i] );
if ( VarMax < VarCur )
VarMax = VarCur;
}
return VarMax;
}
/**Function*************************************************************
Synopsis [Finds the largest PI number in the support of the supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Map_LibraryGetGateSupp_rec( Map_Super_t * pGate )
{
unsigned uSupport;
int i;
if ( pGate->pRoot == NULL )
return (unsigned)(1 << (pGate->Num));
uSupport = 0;
for ( i = 0; i < (int)pGate->nFanins; i++ )
uSupport |= Map_LibraryGetGateSupp_rec( pGate->pFanins[i] );
return uSupport;
}
/**Function*************************************************************
Synopsis [Derives the pin-to-pin delay constraints for the supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Map_LibraryAddFaninDelays( Map_SuperLib_t * pLib, Map_Super_t * pGate, Map_Super_t * pFanin, Mio_Pin_t * pPin )
{
Mio_PinPhase_t PinPhase;
float tDelayBlockRise, tDelayBlockFall, tDelayPin;
int fMaxDelay = 0;
int i;
// use this node to enable max-delay model
if ( fMaxDelay )
{
float tDelayBlockMax;
// get the maximum delay
tDelayBlockMax = (float)Mio_PinReadDelayBlockMax(pPin);
// go through the supergate inputs
for ( i = 0; i < pLib->nVarsMax; i++ )
{
if ( pFanin->tDelaysR[i].Rise < 0 )
continue;
tDelayPin = pFanin->tDelaysR[i].Rise + tDelayBlockMax;
if ( pGate->tDelaysR[i].Rise < tDelayPin )
pGate->tDelaysR[i].Rise = tDelayPin;
}
// go through the supergate inputs
for ( i = 0; i < pLib->nVarsMax; i++ )
{
if ( pFanin->tDelaysF[i].Fall < 0 )
continue;
tDelayPin = pFanin->tDelaysF[i].Fall + tDelayBlockMax;
if ( pGate->tDelaysF[i].Fall < tDelayPin )
pGate->tDelaysF[i].Fall = tDelayPin;
}
return;
}
// get the interesting parameters of this pin
PinPhase = Mio_PinReadPhase(pPin);
tDelayBlockRise = (float)Mio_PinReadDelayBlockRise( pPin );
tDelayBlockFall = (float)Mio_PinReadDelayBlockFall( pPin );
// update the rise and fall of the output depending on the phase of the pin
if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present
{
// the rise of the gate is determined by the rise of the fanin
// the fall of the gate is determined by the fall of the fanin
for ( i = 0; i < pLib->nVarsMax; i++ )
{
////////////////////////////////////////////////////////
// consider the rise of the gate
////////////////////////////////////////////////////////
// check two types of constraints on the rise of the fanin:
// (1) the constraints related to the rise of the PIs
// (2) the constraints related to the fall of the PIs
if ( pFanin->tDelaysR[i].Rise >= 0 ) // case (1)
{ // fanin's rise depends on the rise of i-th PI
// update the rise of the gate's output
if ( pGate->tDelaysR[i].Rise < pFanin->tDelaysR[i].Rise + tDelayBlockRise )
pGate->tDelaysR[i].Rise = pFanin->tDelaysR[i].Rise + tDelayBlockRise;
}
if ( pFanin->tDelaysR[i].Fall >= 0 ) // case (2)
{ // fanin's rise depends on the fall of i-th PI
// update the rise of the gate's output
if ( pGate->tDelaysR[i].Fall < pFanin->tDelaysR[i].Fall + tDelayBlockRise )
pGate->tDelaysR[i].Fall = pFanin->tDelaysR[i].Fall + tDelayBlockRise;
}
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// consider the fall of the gate (similar)
////////////////////////////////////////////////////////
// check two types of constraints on the fall of the fanin:
// (1) the constraints related to the rise of the PIs
// (2) the constraints related to the fall of the PIs
if ( pFanin->tDelaysF[i].Rise >= 0 ) // case (1)
{
if ( pGate->tDelaysF[i].Rise < pFanin->tDelaysF[i].Rise + tDelayBlockFall )
pGate->tDelaysF[i].Rise = pFanin->tDelaysF[i].Rise + tDelayBlockFall;
}
if ( pFanin->tDelaysF[i].Fall >= 0 ) // case (2)
{
if ( pGate->tDelaysF[i].Fall < pFanin->tDelaysF[i].Fall + tDelayBlockFall )
pGate->tDelaysF[i].Fall = pFanin->tDelaysF[i].Fall + tDelayBlockFall;
}
////////////////////////////////////////////////////////
}
}
if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present
{
// the rise of the gate is determined by the fall of the fanin
// the fall of the gate is determined by the rise of the fanin
for ( i = 0; i < pLib->nVarsMax; i++ )
{
////////////////////////////////////////////////////////
// consider the rise of the gate's output
////////////////////////////////////////////////////////
// check two types of constraints on the fall of the fanin:
// (1) the constraints related to the rise of the PIs
// (2) the constraints related to the fall of the PIs
if ( pFanin->tDelaysF[i].Rise >= 0 ) // case (1)
{ // fanin's rise depends on the rise of i-th PI
// update the rise of the gate
if ( pGate->tDelaysR[i].Rise < pFanin->tDelaysF[i].Rise + tDelayBlockRise )
pGate->tDelaysR[i].Rise = pFanin->tDelaysF[i].Rise + tDelayBlockRise;
}
if ( pFanin->tDelaysF[i].Fall >= 0 ) // case (2)
{ // fanin's rise depends on the fall of i-th PI
// update the rise of the gate
if ( pGate->tDelaysR[i].Fall < pFanin->tDelaysF[i].Fall + tDelayBlockRise )
pGate->tDelaysR[i].Fall = pFanin->tDelaysF[i].Fall + tDelayBlockRise;
}
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// consider the fall of the gate (similar)
////////////////////////////////////////////////////////
// check two types of constraints on the rise of the fanin:
// (1) the constraints related to the rise of the PIs
// (2) the constraints related to the fall of the PIs
if ( pFanin->tDelaysR[i].Rise >= 0 ) // case (1)
{
if ( pGate->tDelaysF[i].Rise < pFanin->tDelaysR[i].Rise + tDelayBlockFall )
pGate->tDelaysF[i].Rise = pFanin->tDelaysR[i].Rise + tDelayBlockFall;
}
if ( pFanin->tDelaysR[i].Fall >= 0 ) // case (2)
{
if ( pGate->tDelaysF[i].Fall < pFanin->tDelaysR[i].Fall + tDelayBlockFall )
pGate->tDelaysF[i].Fall = pFanin->tDelaysR[i].Fall + tDelayBlockFall;
}
////////////////////////////////////////////////////////
}
}
}
/**Function*************************************************************
Synopsis [Performs phase transformation for one function.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Map_CalculatePhase( unsigned uTruths[][2], int nVars, unsigned uTruth, unsigned uPhase )
{
int v, Shift;
for ( v = 0, Shift = 1; v < nVars; v++, Shift <<= 1 )
if ( uPhase & Shift )
uTruth = (((uTruth & ~uTruths[v][0]) << Shift) | ((uTruth & uTruths[v][0]) >> Shift));
return uTruth;
}
/**Function*************************************************************
Synopsis [Performs phase transformation for one function.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Map_CalculatePhase6( unsigned uTruths[][2], int nVars, unsigned uTruth[], unsigned uPhase, unsigned uTruthRes[] )
{
unsigned uTemp;
int v, Shift;
// initialize the result
uTruthRes[0] = uTruth[0];
uTruthRes[1] = uTruth[1];
if ( uPhase == 0 )
return;
// compute the phase
for ( v = 0, Shift = 1; v < nVars; v++, Shift <<= 1 )
if ( uPhase & Shift )
{
if ( Shift < 32 )
{
uTruthRes[0] = (((uTruthRes[0] & ~uTruths[v][0]) << Shift) | ((uTruthRes[0] & uTruths[v][0]) >> Shift));
uTruthRes[1] = (((uTruthRes[1] & ~uTruths[v][1]) << Shift) | ((uTruthRes[1] & uTruths[v][1]) >> Shift));
}
else
{
uTemp = uTruthRes[0];
uTruthRes[0] = uTruthRes[1];
uTruthRes[1] = uTemp;
}
}
}
/**Function*************************************************************
Synopsis [Prints the supergate library after deriving parameters.]
Description [This procedure is very useful to see the library after
it has been read into the mapper by "read_super" and all the information
about the supergates derived.]
SideEffects []
SeeAlso []
***********************************************************************/
void Map_LibraryPrintTree( Map_SuperLib_t * pLib )
{
Map_Super_t * pGate;
int i, k;
// print all the info related to the supergates
// for ( i = pLib->nVarsMax; i < (int)pLib->nLines; i++ )
for ( i = pLib->nVarsMax; i < 20; i++ )
{
pGate = pLib->ppSupers[i];
// write the gate's fanin info and formula
printf( "%6d ", pGate->Num );
printf( "%c ", pGate->fSuper? '*' : ' ' );
printf( "%6s", Mio_GateReadName(pGate->pRoot) );
for ( k = 0; k < (int)pGate->nFanins; k++ )
printf( " %6d", pGate->pFanins[k]->Num );
printf( " %s", pGate->pFormula );
printf( "\n" );
// write the gate's derived info
Extra_PrintBinary( stdout, pGate->uTruth, 64 );
printf( " %3d", pGate->nGates );
printf( " %6.2f", pGate->Area );
printf( " (%4.2f, %4.2f)", pGate->tDelayMax.Rise, pGate->tDelayMax.Fall );
printf( "\n" );
for ( k = 0; k < pLib->nVarsMax; k++ )
{
// print the constraint on the rise of the gate in the form (D1, D2),
// where D1 is the constraint related to the rise of the k-th PI
// where D2 is the constraint related to the fall of the k-th PI
if ( pGate->tDelaysR[k].Rise < 0 && pGate->tDelaysR[k].Fall < 0 )
printf( " (----, ----)" );
else if ( pGate->tDelaysR[k].Fall < 0 )
printf( " (%4.2f, ----)", pGate->tDelaysR[k].Rise );
else if ( pGate->tDelaysR[k].Rise < 0 )
printf( " (----, %4.2f)", pGate->tDelaysR[k].Fall );
else
printf( " (%4.2f, %4.2f)", pGate->tDelaysR[k].Rise, pGate->tDelaysR[k].Fall );
// print the constraint on the fall of the gate in the form (D1, D2),
// where D1 is the constraint related to the rise of the k-th PI
// where D2 is the constraint related to the fall of the k-th PI
if ( pGate->tDelaysF[k].Rise < 0 && pGate->tDelaysF[k].Fall < 0 )
printf( " (----, ----)" );
else if ( pGate->tDelaysF[k].Fall < 0 )
printf( " (%4.2f, ----)", pGate->tDelaysF[k].Rise );
else if ( pGate->tDelaysF[k].Rise < 0 )
printf( " (----, %4.2f)", pGate->tDelaysF[k].Fall );
else
printf( " (%4.2f, %4.2f)", pGate->tDelaysF[k].Rise, pGate->tDelaysF[k].Fall );
printf( "\n" );
}
printf( "\n" );
}
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|