summaryrefslogtreecommitdiffstats
path: root/src/map/mapper/mapperTime.c
blob: 7e8055389728c5c46f3a745908083022f4c083be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/**CFile****************************************************************

  FileName    [mapperTime.c]

  PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]

  Synopsis    [Generic technology mapping engine.]

  Author      [MVSIS Group]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 2.0. Started - June 1, 2004.]

  Revision    [$Id: mapperTime.c,v 1.3 2005/03/02 02:35:54 alanmi Exp $]

***********************************************************************/

#include "mapperInt.h"

#include "misc/util/utilNam.h"
#include "map/scl/sclCon.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Computes the maximum arrival times.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Map_TimeComputeArrivalMax( Map_Man_t * p )
{
    float tReqMax, tReq;
    int i, fPhase;
    // get the critical PO arrival time
    tReqMax = -MAP_FLOAT_LARGE;
    for ( i = 0; i < p->nOutputs; i++ )
    {
        if ( Map_NodeIsConst(p->pOutputs[i]) )
            continue;
        fPhase  = !Map_IsComplement(p->pOutputs[i]);
        tReq    = Map_Regular(p->pOutputs[i])->tArrival[fPhase].Worst;
        tReqMax = MAP_MAX( tReqMax, tReq );
    }
    return tReqMax;
}

/**Function*************************************************************

  Synopsis    [Computes the arrival times of the cut.]

  Description [Computes the arrival times of the cut if it is implemented using 
  the given supergate with the given phase. Uses the constraint-type specification
  of rise/fall arrival times.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Map_TimeCutComputeArrival( Map_Node_t * pNode, Map_Cut_t * pCut, int fPhase, float tWorstLimit )
{
    Map_Match_t * pM = pCut->M + fPhase;
    Map_Super_t * pSuper = pM->pSuperBest;
    unsigned uPhaseTot = pM->uPhaseBest;
    Map_Time_t * ptArrRes = &pM->tArrive;
    Map_Time_t * ptArrIn;
    int fPinPhase;
    float tDelay, tExtra;
    int i;

    tExtra = pNode->p->pNodeDelays ? pNode->p->pNodeDelays[pNode->Num] : 0;
    ptArrRes->Rise  = ptArrRes->Fall = 0.0;
    ptArrRes->Worst = MAP_FLOAT_LARGE;
    for ( i = pCut->nLeaves - 1; i >= 0; i-- )
    {
        // get the phase of the given pin
        fPinPhase = ((uPhaseTot & (1 << i)) == 0);
        ptArrIn = pCut->ppLeaves[i]->tArrival + fPinPhase;

        // get the rise of the output due to rise of the inputs
        if ( pSuper->tDelaysR[i].Rise > 0 )
        {
            tDelay = ptArrIn->Rise + pSuper->tDelaysR[i].Rise + tExtra;
            if ( tDelay > tWorstLimit )
                return MAP_FLOAT_LARGE;
            if ( ptArrRes->Rise < tDelay )
                ptArrRes->Rise = tDelay;
        }

        // get the rise of the output due to fall of the inputs
        if ( pSuper->tDelaysR[i].Fall > 0 )
        {
            tDelay = ptArrIn->Fall + pSuper->tDelaysR[i].Fall + tExtra;
            if ( tDelay > tWorstLimit )
                return MAP_FLOAT_LARGE;
            if ( ptArrRes->Rise < tDelay )
                ptArrRes->Rise = tDelay;
        }

        // get the fall of the output due to rise of the inputs
        if ( pSuper->tDelaysF[i].Rise > 0 )
        {
            tDelay = ptArrIn->Rise + pSuper->tDelaysF[i].Rise + tExtra;
            if ( tDelay > tWorstLimit )
                return MAP_FLOAT_LARGE;
            if ( ptArrRes->Fall < tDelay )
                ptArrRes->Fall = tDelay;
        }

        // get the fall of the output due to fall of the inputs
        if ( pSuper->tDelaysF[i].Fall > 0 )
        {
            tDelay = ptArrIn->Fall + pSuper->tDelaysF[i].Fall + tExtra;
            if ( tDelay > tWorstLimit )
                return MAP_FLOAT_LARGE;
            if ( ptArrRes->Fall < tDelay )
                ptArrRes->Fall = tDelay;
        }
    }
    // return the worst-case of rise/fall arrival times
    ptArrRes->Worst = MAP_MAX(ptArrRes->Rise, ptArrRes->Fall);
    return ptArrRes->Worst;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Map_TimePropagateRequiredPhase( Map_Man_t * p, Map_Node_t * pNode, int fPhase )
{
    Map_Time_t * ptReqIn, * ptReqOut;
    Map_Cut_t * pCut;
    Map_Super_t * pSuper;
    float tNewReqTime, tExtra;
    unsigned uPhase;
    int fPinPhase, i;

    tExtra = pNode->p->pNodeDelays ? pNode->p->pNodeDelays[pNode->Num] : 0;
    // get the cut to be propagated
    pCut = pNode->pCutBest[fPhase];
    assert( pCut != NULL );
    // get the supergate and its polarity
    pSuper  = pCut->M[fPhase].pSuperBest;
    uPhase  = pCut->M[fPhase].uPhaseBest;
    // get the required time of the output of the supergate
    ptReqOut = pNode->tRequired + fPhase;
    // set the required time of the children
    for ( i = 0; i < pCut->nLeaves; i++ )
    {
        // get the phase of the given pin of the supergate
        fPinPhase = ((uPhase & (1 << i)) == 0);
        ptReqIn = pCut->ppLeaves[i]->tRequired + fPinPhase;
        assert( pCut->ppLeaves[i]->nRefAct[2] > 0 );

        // get the rise of the output due to rise of the inputs
//            if ( ptArrOut->Rise < ptArrIn->Rise + pSuper->tDelaysR[i].Rise )
//                ptArrOut->Rise = ptArrIn->Rise + pSuper->tDelaysR[i].Rise;
        if ( pSuper->tDelaysR[i].Rise > 0 )
        {
            tNewReqTime = ptReqOut->Rise - pSuper->tDelaysR[i].Rise - tExtra;
            ptReqIn->Rise = MAP_MIN( ptReqIn->Rise, tNewReqTime );
        }

        // get the rise of the output due to fall of the inputs
//            if ( ptArrOut->Rise < ptArrIn->Fall + pSuper->tDelaysR[i].Fall )
//                ptArrOut->Rise = ptArrIn->Fall + pSuper->tDelaysR[i].Fall;
        if ( pSuper->tDelaysR[i].Fall > 0 )
        {
            tNewReqTime = ptReqOut->Rise - pSuper->tDelaysR[i].Fall - tExtra;
            ptReqIn->Fall = MAP_MIN( ptReqIn->Fall, tNewReqTime );
        }

        // get the fall of the output due to rise of the inputs
//            if ( ptArrOut->Fall < ptArrIn->Rise + pSuper->tDelaysF[i].Rise )
//                ptArrOut->Fall = ptArrIn->Rise + pSuper->tDelaysF[i].Rise;
        if ( pSuper->tDelaysF[i].Rise > 0 )
        {
            tNewReqTime = ptReqOut->Fall - pSuper->tDelaysF[i].Rise - tExtra;
            ptReqIn->Rise = MAP_MIN( ptReqIn->Rise, tNewReqTime );
        }

        // get the fall of the output due to fall of the inputs
//            if ( ptArrOut->Fall < ptArrIn->Fall + pSuper->tDelaysF[i].Fall )
//                ptArrOut->Fall = ptArrIn->Fall + pSuper->tDelaysF[i].Fall;
        if ( pSuper->tDelaysF[i].Fall > 0 )
        {
            tNewReqTime = ptReqOut->Fall - pSuper->tDelaysF[i].Fall - tExtra;
            ptReqIn->Fall = MAP_MIN( ptReqIn->Fall, tNewReqTime );
        }
    }

    // compare the required times with the arrival times
//    assert( pNode->tArrival[fPhase].Rise < ptReqOut->Rise + p->fEpsilon );
//    assert( pNode->tArrival[fPhase].Fall < ptReqOut->Fall + p->fEpsilon );
}
float Map_MatchComputeReqTimes( Map_Cut_t * pCut, int fPhase, Map_Time_t * ptArrRes )
{
    Map_Time_t * ptArrIn;
    Map_Super_t * pSuper;
    unsigned uPhaseTot;
    int fPinPhase, i;
    float tDelay;

    // get the supergate and the phase
    pSuper = pCut->M[fPhase].pSuperBest;
    uPhaseTot = pCut->M[fPhase].uPhaseBest;

    // propagate the arrival times 
    ptArrRes->Rise = ptArrRes->Fall = -MAP_FLOAT_LARGE;
    for ( i = 0; i < pCut->nLeaves; i++ )
    {
        // get the phase of the given pin
        fPinPhase = ((uPhaseTot & (1 << i)) == 0);
        ptArrIn = pCut->ppLeaves[i]->tRequired + fPinPhase;
//        assert( ptArrIn->Worst < MAP_FLOAT_LARGE );

        // get the rise of the output due to rise of the inputs
        if ( pSuper->tDelaysR[i].Rise > 0 )
        {
            tDelay = ptArrIn->Rise + pSuper->tDelaysR[i].Rise;
            if ( ptArrRes->Rise < tDelay )
                ptArrRes->Rise = tDelay;
        }

        // get the rise of the output due to fall of the inputs
        if ( pSuper->tDelaysR[i].Fall > 0 )
        {
            tDelay = ptArrIn->Fall + pSuper->tDelaysR[i].Fall;
            if ( ptArrRes->Rise < tDelay )
                ptArrRes->Rise = tDelay;
        }

        // get the fall of the output due to rise of the inputs
        if ( pSuper->tDelaysF[i].Rise > 0 )
        {
            tDelay = ptArrIn->Rise + pSuper->tDelaysF[i].Rise;
            if ( ptArrRes->Fall < tDelay )
                ptArrRes->Fall = tDelay;
        }

        // get the fall of the output due to fall of the inputs
        if ( pSuper->tDelaysF[i].Fall > 0 )
        {
            tDelay = ptArrIn->Fall + pSuper->tDelaysF[i].Fall;
            if ( ptArrRes->Fall < tDelay )
                ptArrRes->Fall = tDelay;
        }
    }
    // return the worst-case of rise/fall arrival times
    return MAP_MAX(ptArrRes->Rise, ptArrRes->Fall);
}


/**Function*************************************************************

  Synopsis    [Computes the required times of all nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Map_TimePropagateRequired( Map_Man_t * p )
{
    Map_Node_t * pNode;
    //Map_Time_t tReqOutTest, * ptReqOutTest = &tReqOutTest;
    Map_Time_t * ptReqIn, * ptReqOut;
    int fPhase, k;

    // go through the nodes in the reverse topological order
    for ( k = p->vMapObjs->nSize - 1; k >= 0; k-- )
    {
        pNode = p->vMapObjs->pArray[k];
        if ( pNode->nRefAct[2] == 0 )
            continue;

        // propagate required times through the buffer
        if ( Map_NodeIsBuf(pNode) )
        {
            assert( pNode->p2 == NULL );
            Map_Regular(pNode->p1)->tRequired[ Map_IsComplement(pNode->p1)] = pNode->tRequired[0];
            Map_Regular(pNode->p1)->tRequired[!Map_IsComplement(pNode->p1)] = pNode->tRequired[1];
            continue;
        }

        // this computation works for regular nodes only
        assert( !Map_IsComplement(pNode) );
        // at least one phase should be mapped
        assert( pNode->pCutBest[0] != NULL || pNode->pCutBest[1] != NULL );
        // the node should be used in the currently assigned mapping
        assert( pNode->nRefAct[0] > 0 || pNode->nRefAct[1] > 0 );

        // if one of the cuts is not given, project the required times from the other cut
        if ( pNode->pCutBest[0] == NULL || pNode->pCutBest[1] == NULL )
        {
//            assert( 0 );
            // get the missing phase 
            fPhase = (pNode->pCutBest[1] == NULL); 
            // check if the missing phase is needed in the mapping
            if ( pNode->nRefAct[fPhase] > 0 )
            {
                // get the pointers to the required times of the missing phase
                ptReqOut = pNode->tRequired +  fPhase;
//                assert( ptReqOut->Fall < MAP_FLOAT_LARGE );
                // get the pointers to the required times of the present phase
                ptReqIn  = pNode->tRequired + !fPhase;
                // propagate the required times from the missing phase to the present phase
    //            tArrInv.Fall  = pMatch->tArrive.Rise + p->pSuperLib->tDelayInv.Fall;
    //            tArrInv.Rise  = pMatch->tArrive.Fall + p->pSuperLib->tDelayInv.Rise;
                ptReqIn->Fall = MAP_MIN( ptReqIn->Fall, ptReqOut->Rise - p->pSuperLib->tDelayInv.Rise );
                ptReqIn->Rise = MAP_MIN( ptReqIn->Rise, ptReqOut->Fall - p->pSuperLib->tDelayInv.Fall );
            }
        }

        // finalize the worst case computation
        pNode->tRequired[0].Worst = MAP_MIN( pNode->tRequired[0].Fall, pNode->tRequired[0].Rise );
        pNode->tRequired[1].Worst = MAP_MIN( pNode->tRequired[1].Fall, pNode->tRequired[1].Rise );

        // skip the PIs
        if ( !Map_NodeIsAnd(pNode) )
            continue;

        // propagate required times of different phases of the node
        // the ordering of phases does not matter since they are mapped independently
        if ( pNode->pCutBest[0] && pNode->tRequired[0].Worst < MAP_FLOAT_LARGE )
            Map_TimePropagateRequiredPhase( p, pNode, 0 );
        if ( pNode->pCutBest[1] && pNode->tRequired[1].Worst < MAP_FLOAT_LARGE )
            Map_TimePropagateRequiredPhase( p, pNode, 1 );
    }
/*
    // in the end, we verify the required times
    // for this, we compute the arrival times of the outputs of each phase 
    // of the supergates using the fanins' required times as the fanins' arrival times
    // the resulting arrival time of the supergate should be less than the actual required time
    for ( k = p->vMapObjs->nSize - 1; k >= 0; k-- )
    {
        pNode = p->vMapObjs->pArray[k];
        if ( pNode->nRefAct[2] == 0 )
            continue;
        if ( !Map_NodeIsAnd(pNode) )
            continue;
        // verify that the required times are propagated correctly
//        if ( pNode->pCutBest[0] && (pNode->nRefAct[0] > 0 || pNode->pCutBest[1] == NULL) )
        if ( pNode->pCutBest[0] && pNode->tRequired[0].Worst < MAP_FLOAT_LARGE/2 )
        {
            Map_MatchComputeReqTimes( pNode->pCutBest[0], 0, ptReqOutTest );
//            assert( ptReqOutTest->Rise < pNode->tRequired[0].Rise + p->fEpsilon );
//            assert( ptReqOutTest->Fall < pNode->tRequired[0].Fall + p->fEpsilon );
        }
//        if ( pNode->pCutBest[1] && (pNode->nRefAct[1] > 0 || pNode->pCutBest[0] == NULL) )
        if ( pNode->pCutBest[1] && pNode->tRequired[1].Worst < MAP_FLOAT_LARGE/2 )
        {
            Map_MatchComputeReqTimes( pNode->pCutBest[1], 1, ptReqOutTest );
//            assert( ptReqOutTest->Rise < pNode->tRequired[1].Rise + p->fEpsilon );
//            assert( ptReqOutTest->Fall < pNode->tRequired[1].Fall + p->fEpsilon );
        }
    }
*/
}
void Map_TimeComputeRequiredGlobal( Map_Man_t * p )
{
    int fUseConMan = Scl_ConIsRunning() && Scl_ConHasOutReqs();
    Map_Time_t * ptTime, * ptTimeA;
    int fPhase, i; 
    // update the required times according to the target
    p->fRequiredGlo = Map_TimeComputeArrivalMax( p );
    if ( p->DelayTarget != -1 )
    {
        if ( p->fRequiredGlo > p->DelayTarget + p->fEpsilon )
        {
            if ( p->fMappingMode == 1 )
                printf( "Cannot meet the target required times (%4.2f). Continue anyway.\n", p->DelayTarget );
        }
        else if ( p->fRequiredGlo < p->DelayTarget - p->fEpsilon )
        {
            if ( p->fMappingMode == 1 && p->fVerbose )
                printf( "Relaxing the required times from (%4.2f) to the target (%4.2f).\n", p->fRequiredGlo, p->DelayTarget );
            p->fRequiredGlo = p->DelayTarget;
        }
    }
    // clean the required times
    for ( i = 0; i < p->vMapObjs->nSize; i++ )
    {
        p->vMapObjs->pArray[i]->tRequired[0].Rise  = MAP_FLOAT_LARGE;
        p->vMapObjs->pArray[i]->tRequired[0].Fall  = MAP_FLOAT_LARGE;
        p->vMapObjs->pArray[i]->tRequired[0].Worst = MAP_FLOAT_LARGE;
        p->vMapObjs->pArray[i]->tRequired[1].Rise  = MAP_FLOAT_LARGE;
        p->vMapObjs->pArray[i]->tRequired[1].Fall  = MAP_FLOAT_LARGE;
        p->vMapObjs->pArray[i]->tRequired[1].Worst = MAP_FLOAT_LARGE;
    }
    // set the required times for the POs
    for ( i = 0; i < p->nOutputs; i++ )
    {
        fPhase  = !Map_IsComplement(p->pOutputs[i]);
        ptTime  =  Map_Regular(p->pOutputs[i])->tRequired + fPhase;
        ptTimeA =  Map_Regular(p->pOutputs[i])->tArrival + fPhase;

        if ( fUseConMan )
        {
            float Value = Scl_ConGetOutReqFloat(i);
            // if external required time can be achieved, use it
            if ( Value > 0 && ptTimeA->Worst <= Value )//&& Value <= p->fRequiredGlo )
                ptTime->Rise = ptTime->Fall = ptTime->Worst = Value;
            // if external required cannot be achieved, set the earliest possible arrival time
            else if ( Value > 0 && ptTimeA->Worst > Value )
                ptTime->Rise = ptTime->Fall = ptTime->Worst = ptTimeA->Worst;
            // otherwise, set the global required time
            else
                ptTime->Rise = ptTime->Fall = ptTime->Worst = p->fRequiredGlo;
        }
        else
        {
            // if external required time can be achieved, use it
            if ( p->pOutputRequireds && p->pOutputRequireds[i].Worst > 0 && ptTimeA->Worst <= p->pOutputRequireds[i].Worst )//&& p->pOutputRequireds[i].Worst <= p->fRequiredGlo )
                ptTime->Rise = ptTime->Fall = ptTime->Worst = p->pOutputRequireds[i].Worst;
            // if external required cannot be achieved, set the earliest possible arrival time
            else if ( p->pOutputRequireds && p->pOutputRequireds[i].Worst > 0 && ptTimeA->Worst > p->pOutputRequireds[i].Worst )
                ptTime->Rise = ptTime->Fall = ptTime->Worst = ptTimeA->Worst;
            // otherwise, set the global required time
            else
                ptTime->Rise = ptTime->Fall = ptTime->Worst = p->fRequiredGlo;
        }
    }
    // visit nodes in the reverse topological order
    Map_TimePropagateRequired( p );
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END