1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
|
/**CFile****************************************************************
FileName [mapperMatch.c]
PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]
Synopsis [Generic technology mapping engine.]
Author [MVSIS Group]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - June 1, 2004.]
Revision [$Id: mapperMatch.c,v 1.7 2004/09/30 21:18:10 satrajit Exp $]
***********************************************************************/
#include "mapperInt.h"
/*
A potential improvement:
When an internal node is not used in the mapping, its required times
are set to be +infinity. So when we recover area, we try to find the
best match for area and completely disregard the delay for the nodes
that are not currently used in the mapping because any match whose
arrival times are less than the required times (+infinity) can be used.
It may be possible to develop a better approach to recover area for
the nodes that are not currently used in the mapping...
*/
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static int Map_MatchNodePhase( Map_Man_t * p, Map_Node_t * pNode, int fPhase );
static int Map_MatchNodeCut( Map_Man_t * p, Map_Node_t * pNode, Map_Cut_t * pCut, int fPhase, float fWorstLimit );
static void Map_MappingSetPiArrivalTimes( Map_Man_t * p );
static void Map_NodeTryDroppingOnePhase( Map_Man_t * p, Map_Node_t * pNode );
static void Map_NodeTransferArrivalTimes( Map_Man_t * p, Map_Node_t * pNode );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes the best matches of the nodes.]
Description [Uses parameter p->fMappingMode to decide how to assign
the matches for both polarities of the node. While the matches are
being assigned, one of them may turn out to be better than the other
(in terms of delay, for example). In this case, the worse match can
be permanently dropped, and the corresponding pointer set to NULL.]
SideEffects []
SeeAlso []
***********************************************************************/
int Map_MappingMatches( Map_Man_t * p )
{
ProgressBar * pProgress;
Map_Node_t * pNode;
int i;
assert( p->fMappingMode >= 0 && p->fMappingMode <= 4 );
// use the externally given PI arrival times
if ( p->fMappingMode == 0 )
Map_MappingSetPiArrivalTimes( p );
// estimate the fanouts
if ( p->fMappingMode == 0 )
Map_MappingEstimateRefsInit( p );
else if ( p->fMappingMode == 1 )
Map_MappingEstimateRefs( p );
// the PI cuts are matched in the cut computation package
// in the loop below we match the internal nodes
pProgress = Extra_ProgressBarStart( stdout, p->vAnds->nSize );
for ( i = 0; i < p->vAnds->nSize; i++ )
{
// skip primary inputs and secondary nodes if mapping with choices
pNode = p->vAnds->pArray[i];
if ( !Map_NodeIsAnd( pNode ) || pNode->pRepr )
continue;
// make sure that at least one non-trival cut is present
if ( pNode->pCuts->pNext == NULL )
{
printf( "\nError: A node in the mapping graph does not have feasible cuts.\n" );
return 0;
}
// match negative phase
if ( !Map_MatchNodePhase( p, pNode, 0 ) )
return 0;
// match positive phase
if ( !Map_MatchNodePhase( p, pNode, 1 ) )
return 0;
// make sure that at least one phase is mapped
if ( pNode->pCutBest[0] == NULL && pNode->pCutBest[1] == NULL )
{
printf( "\nError: Could not match both phases of AIG node %d.\n", pNode->Num );
printf( "Please make sure that the supergate library has equivalents of AND2 or NAND2.\n" );
printf( "If such supergates exist in the library, report a bug.\n" );
return 0;
}
// if both phases are assigned, check if one of them can be dropped
Map_NodeTryDroppingOnePhase( p, pNode );
// set the arrival times of the node using the best cuts
Map_NodeTransferArrivalTimes( p, pNode );
// update the progress bar
Extra_ProgressBarUpdate( pProgress, i, "Matches ..." );
}
Extra_ProgressBarStop( pProgress );
return 1;
}
/**Function*************************************************************
Synopsis [Find the matching of one polarity of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Map_MatchNodePhase( Map_Man_t * p, Map_Node_t * pNode, int fPhase )
{
Map_Match_t MatchBest, * pMatch;
Map_Cut_t * pCut, * pCutBest;
float Area1 = 0.0; // Suppress "might be used uninitialized
float Area2, fWorstLimit;
// skip the cuts that have been unassigned during area recovery
pCutBest = pNode->pCutBest[fPhase];
if ( p->fMappingMode != 0 && pCutBest == NULL )
return 1;
// recompute the arrival times of the current best match
// because the arrival times of the fanins may have changed
// as a result of remapping fanins in the topological order
if ( p->fMappingMode != 0 )
{
Map_TimeCutComputeArrival( pNode, pCutBest, fPhase, MAP_FLOAT_LARGE );
// make sure that the required times are met
assert( pCutBest->M[fPhase].tArrive.Rise < pNode->tRequired[fPhase].Rise + p->fEpsilon );
assert( pCutBest->M[fPhase].tArrive.Fall < pNode->tRequired[fPhase].Fall + p->fEpsilon );
}
// recompute the exact area of the current best match
// because the exact area of the fanins may have changed
// as a result of remapping fanins in the topological order
if ( p->fMappingMode == 2 || p->fMappingMode == 3 )
{
pMatch = pCutBest->M + fPhase;
if ( pNode->nRefAct[fPhase] > 0 ||
(pNode->pCutBest[!fPhase] == NULL && pNode->nRefAct[!fPhase] > 0) )
pMatch->AreaFlow = Area1 = Map_CutDeref( pCutBest, fPhase );
else
pMatch->AreaFlow = Area1 = Map_CutGetAreaDerefed( pCutBest, fPhase );
}
else if ( p->fMappingMode == 4 )
{
pMatch = pCutBest->M + fPhase;
if ( pNode->nRefAct[fPhase] > 0 ||
(pNode->pCutBest[!fPhase] == NULL && pNode->nRefAct[!fPhase] > 0) )
pMatch->AreaFlow = Area1 = Map_SwitchCutDeref( pNode, pCutBest, fPhase );
else
pMatch->AreaFlow = Area1 = Map_SwitchCutGetDerefed( pNode, pCutBest, fPhase );
}
// save the old mapping
if ( pCutBest )
MatchBest = pCutBest->M[fPhase];
else
Map_MatchClean( &MatchBest );
// select the new best cut
fWorstLimit = pNode->tRequired[fPhase].Worst;
for ( pCut = pNode->pCuts->pNext; pCut; pCut = pCut->pNext )
{
pMatch = pCut->M + fPhase;
if ( pMatch->pSupers == NULL )
continue;
// find the matches for the cut
Map_MatchNodeCut( p, pNode, pCut, fPhase, fWorstLimit );
if ( pMatch->pSuperBest == NULL || pMatch->tArrive.Worst > fWorstLimit + p->fEpsilon )
continue;
// if the cut can be matched compare the matchings
if ( Map_MatchCompare( p, &MatchBest, pMatch, p->fMappingMode ) )
{
pCutBest = pCut;
MatchBest = *pMatch;
// if we are mapping for delay, the worst-case limit should be tightened
if ( p->fMappingMode == 0 )
fWorstLimit = MatchBest.tArrive.Worst;
}
}
if ( pCutBest == NULL )
return 1;
// set the new mapping
pNode->pCutBest[fPhase] = pCutBest;
pCutBest->M[fPhase] = MatchBest;
// reference the new cut if it used
if ( p->fMappingMode >= 2 &&
(pNode->nRefAct[fPhase] > 0 ||
(pNode->pCutBest[!fPhase] == NULL && pNode->nRefAct[!fPhase] > 0)) )
{
if ( p->fMappingMode == 2 || p->fMappingMode == 3 )
Area2 = Map_CutRef( pNode->pCutBest[fPhase], fPhase );
else if ( p->fMappingMode == 4 )
Area2 = Map_SwitchCutRef( pNode, pNode->pCutBest[fPhase], fPhase );
else
assert( 0 );
// assert( Area2 < Area1 + p->fEpsilon );
}
// make sure that the requited times are met
assert( MatchBest.tArrive.Rise < pNode->tRequired[fPhase].Rise + p->fEpsilon );
assert( MatchBest.tArrive.Fall < pNode->tRequired[fPhase].Fall + p->fEpsilon );
return 1;
}
/**Function*************************************************************
Synopsis [Find the best matching of the cut.]
Description [The parameters: the node (pNode), the cut (pCut), the phase to be matched
(fPhase), and the upper bound on the arrival times of the cut (fWorstLimit). This
procedure goes through the matching supergates up to the phase assignment, and selects the
best supergate, which will be used to map the cut. As a result of calling this procedure
the matching information is written into pMatch.]
SideEffects []
SeeAlso []
***********************************************************************/
int Map_MatchNodeCut( Map_Man_t * p, Map_Node_t * pNode, Map_Cut_t * pCut, int fPhase, float fWorstLimit )
{
Map_Match_t MatchBest, * pMatch = pCut->M + fPhase;
Map_Super_t * pSuper;
int i, Counter;
// save the current match of the cut
MatchBest = *pMatch;
// go through the supergates
for ( pSuper = pMatch->pSupers, Counter = 0; pSuper; pSuper = pSuper->pNext, Counter++ )
{
p->nMatches++;
// this is an attempt to reduce the runtime of matching and area
// at the cost of rare and very minor increase in delay
// (the supergates are sorted by increasing area)
if ( Counter == 30 )
break;
// go through different phases of the given match and supergate
pMatch->pSuperBest = pSuper;
for ( i = 0; i < (int)pSuper->nPhases; i++ )
{
p->nPhases++;
// find the overall phase of this match
pMatch->uPhaseBest = pMatch->uPhase ^ pSuper->uPhases[i];
if ( p->fMappingMode == 0 )
{
// get the arrival time
Map_TimeCutComputeArrival( pNode, pCut, fPhase, fWorstLimit );
// skip the cut if the arrival times exceed the required times
if ( pMatch->tArrive.Worst > fWorstLimit + p->fEpsilon )
continue;
// get the area (area flow)
pMatch->AreaFlow = Map_CutGetAreaFlow( pCut, fPhase );
}
else
{
// get the area (area flow)
if ( p->fMappingMode == 2 || p->fMappingMode == 3 )
pMatch->AreaFlow = Map_CutGetAreaDerefed( pCut, fPhase );
else if ( p->fMappingMode == 4 )
pMatch->AreaFlow = Map_SwitchCutGetDerefed( pNode, pCut, fPhase );
else
pMatch->AreaFlow = Map_CutGetAreaFlow( pCut, fPhase );
// skip if the cut is too large
if ( pMatch->AreaFlow > MatchBest.AreaFlow + p->fEpsilon )
continue;
// get the arrival time
Map_TimeCutComputeArrival( pNode, pCut, fPhase, fWorstLimit );
// skip the cut if the arrival times exceed the required times
if ( pMatch->tArrive.Worst > fWorstLimit + p->fEpsilon )
continue;
}
// if the cut is non-trivial, compare it
if ( Map_MatchCompare( p, &MatchBest, pMatch, p->fMappingMode ) )
{
MatchBest = *pMatch;
// if we are mapping for delay, the worst-case limit should be reduced
if ( p->fMappingMode == 0 )
fWorstLimit = MatchBest.tArrive.Worst;
}
}
}
// set the best match
*pMatch = MatchBest;
// recompute the arrival time and area (area flow) of this cut
if ( pMatch->pSuperBest )
{
Map_TimeCutComputeArrival( pNode, pCut, fPhase, MAP_FLOAT_LARGE );
if ( p->fMappingMode == 2 || p->fMappingMode == 3 )
pMatch->AreaFlow = Map_CutGetAreaDerefed( pCut, fPhase );
else if ( p->fMappingMode == 4 )
pMatch->AreaFlow = Map_SwitchCutGetDerefed( pNode, pCut, fPhase );
else
pMatch->AreaFlow = Map_CutGetAreaFlow( pCut, fPhase );
}
return 1;
}
/**Function*************************************************************
Synopsis [Cleans the match.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Map_MatchClean( Map_Match_t * pMatch )
{
memset( pMatch, 0, sizeof(Map_Match_t) );
pMatch->AreaFlow = MAP_FLOAT_LARGE; // unassigned
pMatch->tArrive.Rise = MAP_FLOAT_LARGE; // unassigned
pMatch->tArrive.Fall = MAP_FLOAT_LARGE; // unassigned
pMatch->tArrive.Worst = MAP_FLOAT_LARGE; // unassigned
}
/**Function*************************************************************
Synopsis [Compares two matches.]
Description [Returns 1 if the second match is better. Otherwise returns 0.]
SideEffects []
SeeAlso []
***********************************************************************/
int Map_MatchCompare( Map_Man_t * pMan, Map_Match_t * pM1, Map_Match_t * pM2, int fDoingArea )
{
if ( !fDoingArea )
{
// compare the arrival times
if ( pM1->tArrive.Worst < pM2->tArrive.Worst - pMan->fEpsilon )
return 0;
if ( pM1->tArrive.Worst > pM2->tArrive.Worst + pMan->fEpsilon )
return 1;
// compare the areas or area flows
if ( pM1->AreaFlow < pM2->AreaFlow - pMan->fEpsilon )
return 0;
if ( pM1->AreaFlow > pM2->AreaFlow + pMan->fEpsilon )
return 1;
// compare the fanout limits
if ( pM1->pSuperBest->nFanLimit > pM2->pSuperBest->nFanLimit )
return 0;
if ( pM1->pSuperBest->nFanLimit < pM2->pSuperBest->nFanLimit )
return 1;
// compare the number of leaves
if ( pM1->pSuperBest->nFanins < pM2->pSuperBest->nFanins )
return 0;
if ( pM1->pSuperBest->nFanins > pM2->pSuperBest->nFanins )
return 1;
// otherwise prefer the old cut
return 0;
}
else
{
// compare the areas or area flows
if ( pM1->AreaFlow < pM2->AreaFlow - pMan->fEpsilon )
return 0;
if ( pM1->AreaFlow > pM2->AreaFlow + pMan->fEpsilon )
return 1;
// compare the arrival times
if ( pM1->tArrive.Worst < pM2->tArrive.Worst - pMan->fEpsilon )
return 0;
if ( pM1->tArrive.Worst > pM2->tArrive.Worst + pMan->fEpsilon )
return 1;
// compare the fanout limits
if ( pM1->pSuperBest->nFanLimit > pM2->pSuperBest->nFanLimit )
return 0;
if ( pM1->pSuperBest->nFanLimit < pM2->pSuperBest->nFanLimit )
return 1;
// compare the number of leaves
if ( pM1->pSuperBest->nFanins < pM2->pSuperBest->nFanins )
return 0;
if ( pM1->pSuperBest->nFanins > pM2->pSuperBest->nFanins )
return 1;
// otherwise prefer the old cut
return 0;
}
}
/**Function*************************************************************
Synopsis [Sets the PI arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Map_MappingSetPiArrivalTimes( Map_Man_t * p )
{
Map_Node_t * pNode;
int i;
for ( i = 0; i < p->nInputs; i++ )
{
pNode = p->pInputs[i];
// set the arrival time of the positive phase
pNode->tArrival[1] = p->pInputArrivals[i];
// set the arrival time of the negative phase
pNode->tArrival[0].Rise = pNode->tArrival[1].Fall + p->pSuperLib->tDelayInv.Rise;
pNode->tArrival[0].Fall = pNode->tArrival[1].Rise + p->pSuperLib->tDelayInv.Fall;
pNode->tArrival[0].Worst = MAP_MAX(pNode->tArrival[0].Rise, pNode->tArrival[0].Fall);
}
}
/**Function*************************************************************
Synopsis [Attempts dropping one phase of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Map_NodeTryDroppingOnePhase( Map_Man_t * p, Map_Node_t * pNode )
{
Map_Match_t * pMatchBest0, * pMatchBest1;
float tWorst0Using1, tWorst1Using0;
int fUsePhase1, fUsePhase0;
// nothing to do if one of the phases is already dropped
if ( pNode->pCutBest[0] == NULL || pNode->pCutBest[1] == NULL )
return;
// do not drop while recovering area flow
if ( p->fMappingMode == 1 )//|| p->fMappingMode == 2 )
return;
// get the pointers to the matches of the best cuts
pMatchBest0 = pNode->pCutBest[0]->M + 0;
pMatchBest1 = pNode->pCutBest[1]->M + 1;
// get the worst arrival times of each phase
// implemented using the other phase with inverter added
tWorst0Using1 = Map_TimeMatchWithInverter( p, pMatchBest1 );
tWorst1Using0 = Map_TimeMatchWithInverter( p, pMatchBest0 );
// consider the case of mapping for delay
if ( p->fMappingMode == 0 )
{
// if the arrival time of a phase is larger than the arrival time
// of the opposite phase plus the inverter, drop this phase
if ( pMatchBest0->tArrive.Worst > tWorst0Using1 + p->fEpsilon )
pNode->pCutBest[0] = NULL;
else if ( pMatchBest1->tArrive.Worst > tWorst1Using0 + p->fEpsilon )
pNode->pCutBest[1] = NULL;
return;
}
// do not perform replacement if one of the phases is unused
if ( pNode->nRefAct[0] == 0 || pNode->nRefAct[1] == 0 )
return;
// check if replacement of each phase is possible using required times
fUsePhase0 = fUsePhase1 = 0;
if ( p->fMappingMode == 2 )
{
fUsePhase0 = (pNode->tRequired[1].Worst > tWorst1Using0 + 3*p->pSuperLib->tDelayInv.Worst + p->fEpsilon);
fUsePhase1 = (pNode->tRequired[0].Worst > tWorst0Using1 + 3*p->pSuperLib->tDelayInv.Worst + p->fEpsilon);
}
else if ( p->fMappingMode == 3 || p->fMappingMode == 4 )
{
fUsePhase0 = (pNode->tRequired[1].Worst > tWorst1Using0 + p->fEpsilon);
fUsePhase1 = (pNode->tRequired[0].Worst > tWorst0Using1 + p->fEpsilon);
}
if ( !fUsePhase0 && !fUsePhase1 )
return;
// if replacement is possible both ways, use the one that works better
if ( fUsePhase0 && fUsePhase1 )
{
if ( pMatchBest0->AreaFlow < pMatchBest1->AreaFlow )
fUsePhase1 = 0;
else
fUsePhase0 = 0;
}
// only one phase should be used
assert( fUsePhase0 ^ fUsePhase1 );
// set the corresponding cut to NULL
if ( fUsePhase0 )
{
// deref phase 1 cut if necessary
if ( p->fMappingMode >= 2 && pNode->nRefAct[1] > 0 )
Map_CutDeref( pNode->pCutBest[1], 1 );
// get rid of the cut
pNode->pCutBest[1] = NULL;
// ref phase 0 cut if necessary
if ( p->fMappingMode >= 2 && pNode->nRefAct[0] == 0 )
Map_CutRef( pNode->pCutBest[0], 0 );
}
else
{
// deref phase 0 cut if necessary
if ( p->fMappingMode >= 2 && pNode->nRefAct[0] > 0 )
Map_CutDeref( pNode->pCutBest[0], 0 );
// get rid of the cut
pNode->pCutBest[0] = NULL;
// ref phase 1 cut if necessary
if ( p->fMappingMode >= 2 && pNode->nRefAct[1] == 0 )
Map_CutRef( pNode->pCutBest[1], 1 );
}
}
/**Function*************************************************************
Synopsis [Transfers the arrival times from the best cuts to the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Map_NodeTransferArrivalTimes( Map_Man_t * p, Map_Node_t * pNode )
{
// if both phases are available, set their arrival times
if ( pNode->pCutBest[0] && pNode->pCutBest[1] )
{
pNode->tArrival[0] = pNode->pCutBest[0]->M[0].tArrive;
pNode->tArrival[1] = pNode->pCutBest[1]->M[1].tArrive;
}
// if only one phase is available, compute the arrival time of other phase
else if ( pNode->pCutBest[0] )
{
pNode->tArrival[0] = pNode->pCutBest[0]->M[0].tArrive;
pNode->tArrival[1].Rise = pNode->tArrival[0].Fall + p->pSuperLib->tDelayInv.Rise;
pNode->tArrival[1].Fall = pNode->tArrival[0].Rise + p->pSuperLib->tDelayInv.Fall;
pNode->tArrival[1].Worst = MAP_MAX(pNode->tArrival[1].Rise, pNode->tArrival[1].Fall);
}
else if ( pNode->pCutBest[1] )
{
pNode->tArrival[1] = pNode->pCutBest[1]->M[1].tArrive;
pNode->tArrival[0].Rise = pNode->tArrival[1].Fall + p->pSuperLib->tDelayInv.Rise;
pNode->tArrival[0].Fall = pNode->tArrival[1].Rise + p->pSuperLib->tDelayInv.Fall;
pNode->tArrival[0].Worst = MAP_MAX(pNode->tArrival[0].Rise, pNode->tArrival[0].Fall);
}
else
{
assert( 0 );
}
assert( pNode->tArrival[0].Rise < pNode->tRequired[0].Rise + p->fEpsilon );
assert( pNode->tArrival[0].Fall < pNode->tRequired[0].Fall + p->fEpsilon );
assert( pNode->tArrival[1].Rise < pNode->tRequired[1].Rise + p->fEpsilon );
assert( pNode->tArrival[1].Fall < pNode->tRequired[1].Fall + p->fEpsilon );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|