1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
|
/**CFile****************************************************************
FileName [ifDec10f.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [FPGA mapping based on priority cuts.]
Synopsis [Fast checking procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - November 21, 2006.]
Revision [$Id: ifDec10f.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $]
***********************************************************************/
#include "if.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define CLU_MAX 16
// decomposition
typedef struct If_Bst_t_ If_Bst_t;
struct If_Bst_t_
{
int nMyu;
int nVars;
int Vars[CLU_MAX];
float Dels[CLU_MAX];
word Truth[1 << (CLU_MAX-6)];
};
// the bit count for the first 256 integer numbers
static int BitCount8[256] = {
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
// variable swapping code
static word PMasks[5][3] = {
{ 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 },
{ 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 },
{ 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 },
{ 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 },
{ 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 }
};
// elementary truth tables
static word Truth6[6] = {
0xAAAAAAAAAAAAAAAA,
0xCCCCCCCCCCCCCCCC,
0xF0F0F0F0F0F0F0F0,
0xFF00FF00FF00FF00,
0xFFFF0000FFFF0000,
0xFFFFFFFF00000000
};
static word TruthAll[CLU_MAX][1 << (CLU_MAX-6)];
extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits );
// group representation (MSB <-> LSB)
// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0
// if nCofs > 2, v0 is the shared variable
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
void If_CluInitTruthTables()
{
int i, k;
assert( CLU_MAX <= 16 );
for ( i = 0; i < 6; i++ )
for ( k = 0; k < (1 << (CLU_MAX-6)); k++ )
TruthAll[i][k] = Truth6[i];
for ( i = 6; i < CLU_MAX; i++ )
for ( k = 0; k < (1 << (CLU_MAX-6)); k++ )
TruthAll[i][k] = ((k >> i) & 1) ? ~0 : 0;
}
// variable permutation for large functions
static inline int If_CluWordNum( int nVars )
{
return nVars <= 6 ? 1 : 1 << (nVars-6);
}
static inline void If_CluCopy( word * pOut, word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pOut[w] = pIn[w];
}
static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nVars )
{
int i, k, nWords = If_CluWordNum( nVars );
assert( iVar < nVars - 1 );
if ( iVar < 5 )
{
int Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift);
}
else if ( iVar > 5 )
{
int Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 4*Step )
{
for ( i = 0; i < Step; i++ )
pOut[i] = pIn[i];
for ( i = 0; i < Step; i++ )
pOut[Step+i] = pIn[2*Step+i];
for ( i = 0; i < Step; i++ )
pOut[2*Step+i] = pIn[Step+i];
for ( i = 0; i < Step; i++ )
pOut[3*Step+i] = pIn[3*Step+i];
pIn += 4*Step;
pOut += 4*Step;
}
}
else // if ( iVar == 5 )
{
for ( i = 0; i < nWords; i += 2 )
{
pOut[i] = (pIn[i] & 0x00000000FFFFFFFF) | ((pIn[i+1] & 0x00000000FFFFFFFF) << 32);
pOut[i+1] = (pIn[i+1] & 0xFFFFFFFF00000000) | ((pIn[i] & 0xFFFFFFFF00000000) >> 32);
}
}
}
// moves one var (v) to the given position (p)
void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p )
{
word pG[1 << (CLU_MAX-6)], * pIn = pF, * pOut = pG, * pTemp;
int iPlace0, iPlace1, Count = 0;
assert( v >= 0 && v < nVars );
if ( Var2Pla[v] <= p )
{
while ( Var2Pla[v] < p )
{
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
else
{
while ( Var2Pla[v] > p )
{
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
if ( Count & 1 )
If_CluCopy( pF, pIn, nVars );
assert( Pla2Var[p] == v );
}
// moves vars to be the most signiticant ones (Group[0] is MSB)
void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, word Group )
{
char * pVars = (char *)&Group;
int v;
for ( v = 0; v < pVars[7]; v++ )
If_CluMoveVar( pF, nVars, V2P, P2V, pVars[pVars[7] - 1 - v], nVars - 1 - v );
}
// return the number of cofactors w.r.t. the topmost vars (nBSsize)
int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift )
{
int nShift = (1 << (nVars - nBSsize));
word Mask = (((word)1) << nShift) - 1;
word iCofs[64], iCof;
int i, c, nMints = (1 << nBSsize), nCofs = 1;
assert( nBSsize >= 3 && nBSsize <= 6 );
assert( nVars - nBSsize > 0 && nVars - nBSsize <= 6 );
if ( nVars - nBSsize == 6 )
Mask = ~0;
iCofs[0] = (pF[iShift / 64] >> (iShift & 63)) & Mask;
for ( i = 1; i < nMints; i++ )
{
iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
for ( c = 0; c < nCofs; c++ )
if ( iCof == iCofs[c] )
break;
if ( c == nCofs )
iCofs[nCofs++] = iCof;
if ( nCofs == 5 )
break;
}
assert( nCofs >= 2 && nCofs <= 5 );
return nCofs;
}
void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
{
pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift);
pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift);
}
return;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
{
pCof0[i] = pCof0[Step+i] = pF[i];
pCof1[i] = pCof1[Step+i] = pF[Step+i];
}
pF += 2*Step;
pCof0 += 2*Step;
pCof1 += 2*Step;
}
return;
}
}
// check non-disjoint decomposition
int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, int nBSsize, char * pGroup )
{
int v, i, nCofsBest2;
if ( (pGroup[6] == 3 || pGroup[6] == 4) )
{
word pCof0[1 << (CLU_MAX-6)];
word pCof1[1 << (CLU_MAX-6)];
// try cofactoring w.r.t. each variable
for ( v = 0; v < pGroup[7]; v++ )
{
If_CluCofactors( pF, nVars, pGroup[v], pCof0, pCof1 );
nCofsBest2 = If_CluCountCofs( pCof0, nVars, nBSsize, 0 );
if ( nCofsBest2 > 2 )
continue;
nCofsBest2 = If_CluCountCofs( pCof1, nVars, nBSsize, 0 );
if ( nCofsBest2 > 2 )
continue;
// find a good variable - move to the end
If_CluMoveVar( pF, nVars, V2P, P2V, pGroup[v], nVars-1 );
for ( i = 0; i < nBSsize; i++ )
pGroup[i] = P2V[nVars-nBSsize+i];
return 1;
}
}
return 0;
}
void If_CluPrintGroup( word Group )
{
char * pGroup = (char *)&Group;
int i;
for ( i = 0; i < pGroup[7]; i++ )
printf( "%d ", pGroup[i] );
printf( "\n" );
printf( "Cofs = %d", pGroup[6] );
printf( "\n" );
printf( "Vars = %d", pGroup[7] );
printf( "\n" );
}
// finds a good var group (cof count < 6; vars are MSBs)
word If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint )
{
int nRounds = 3;
word GroupBest = 0;
char * pGroupBest = (char *)&GroupBest;
int i, r, v, nCofs, VarBest, nCofsBest2;
assert( nVars >= nBSsize + iVarStart && nVars <= CLU_MAX );
assert( nBSsize >= 3 && nBSsize <= 6 );
// start with the default group
pGroupBest[7] = nBSsize;
pGroupBest[6] = If_CluCountCofs( pF, nVars, nBSsize, 0 );
for ( i = 0; i < nBSsize; i++ )
pGroupBest[i] = P2V[nVars-nBSsize+i];
// check if good enough
if ( pGroupBest[6] == 2 )
return GroupBest;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, nBSsize, pGroupBest ) )
return GroupBest;
printf( "Iter %d ", -1 );
If_CluPrintGroup( GroupBest );
// try to find better group
for ( r = 0; r < nRounds; r++ )
{
// find the best var to add
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0 );
for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
{
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0 );
if ( nCofsBest2 > nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// find the best var to remove
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0 );
for ( v = nVars-nBSsize; v < nVars; v++ )
{
If_CluMoveVar( pF, nVars, V2P, P2V, v, nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0 );
if ( nCofsBest2 > nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0 );
assert( nCofs == nCofsBest2 );
if ( pGroupBest[6] > nCofs )
{
pGroupBest[7] = nBSsize;
pGroupBest[6] = nCofs;
for ( i = 0; i < nBSsize; i++ )
pGroupBest[i] = P2V[nVars-nBSsize+i];
}
printf( "Iter %d ", r );
If_CluPrintGroup( GroupBest );
// check if good enough
if ( pGroupBest[6] == 2 )
return GroupBest;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, nBSsize, pGroupBest ) )
return GroupBest;
}
assert( r == nRounds );
return 0;
}
// double check that the given group has a decomposition
void If_CluCheckGroup( word * pTruth, int nVars, word Group )
{
word pF[1 << (CLU_MAX-6)];
int v, nCofs, V2P[CLU_MAX], P2V[CLU_MAX];
char * pVars = (char *)&Group;
assert( pVars[7] >= 3 && pVars[7] <= 6 ); // vars
assert( pVars[6] >= 2 && pVars[6] <= 4 ); // cofs
// create permutation
for ( v = 0; v < nVars; v++ )
V2P[v] = P2V[v] = v;
// create truth table
If_CluCopy( pF, pTruth, nVars );
// move group up
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, Group );
// check the number of cofactors
nCofs = If_CluCountCofs( pF, nVars, pVars[7], 0 );
if ( nCofs != pVars[6] )
printf( "Group check 0 has failed.\n" );
// check compatible
if ( nCofs > 2 )
{
nCofs = If_CluCountCofs( pF, nVars-1, pVars[7]-1, 0 );
if ( nCofs > 2 )
printf( "Group check 1 has failed.\n" );
nCofs = If_CluCountCofs( pF, nVars-1, pVars[7]-1, (1 << (nVars-1)) );
if ( nCofs > 2 )
printf( "Group check 2 has failed.\n" );
}
}
static inline int If_CluSuppIsMinBase( int Supp )
{
return (Supp & (Supp+1)) == 0;
}
static inline int If_CluHasVar( word * t, int nVars, int iVar )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
if ( (t[i] & ~Truth6[iVar]) != ((t[i] & Truth6[iVar]) >> Shift) )
return 1;
return 0;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
if ( t[i] != t[Step+i] )
return 1;
t += 2*Step;
}
return 0;
}
}
static inline int If_CluSupport( word * t, int nVars )
{
int v, Supp = 0;
for ( v = 0; v < nVars; v++ )
if ( If_CluHasVar( t, nVars, v ) )
Supp |= (1 << v);
return Supp;
}
// returns the number of nodes and conf bits in vConf
word If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot )
{
int V2P[CLU_MAX], P2V[CLU_MAX];
word Group1, pF[1 << (CLU_MAX-6)];
int i, nSupp;
assert( nVars <= CLU_MAX );
assert( nVars <= nLutLeaf + nLutRoot - 1 );
// check minnimum base
If_CluCopy( pF, pTruth, nVars );
nSupp = If_CluSupport( pF, nVars );
if ( !nSupp || !If_CluSuppIsMinBase(nSupp) )
return 0;
// perform testing
for ( i = 0; i < nVars; i++ )
V2P[i] = P2V[i] = i;
Group1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
if ( Group1 == 0 )
return 0;
// perform checking
If_CluCheckGroup( pTruth, nVars, Group1 );
// compute conf bits
return Group1;
}
// computes delay of the decomposition
float If_CluDelayMax( word Group, float * pDelays )
{
char * pVars = (char *)&Group;
float Delay = 0.0;
int i;
for ( i = 0; i < pVars[7]; i++ )
Delay = Abc_MaxFloat( Delay, pDelays[pVars[i]] );
return Delay;
}
// returns delay of the decomposition; sets area of the cut as its cost
float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay )
{
float Delays[CLU_MAX+2];
int fUsed[CLU_MAX+2] = {0};
If_Obj_t * pLeaf;
word Group1 = 0, Group2 = 0, Group3 = 0;
char * pGroup1 = (char *)&Group1;
char * pGroup2 = (char *)&Group2;
char * pGroup3 = (char *)&Group3;
int nLeaves = If_CutLeaveNum(pCut);
int i, nLutLeaf, nLutRoot;
// mark the cut as user cut
pCut->fUser = 1;
// quit if parameters are wrong
if ( strlen(pStr) != 2 )
{
printf( "Wrong LUT struct (%s)\n", pStr );
return ABC_INFINITY;
}
nLutLeaf = pStr[0] - '0';
if ( nLutLeaf < 3 || nLutLeaf > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf );
return ABC_INFINITY;
}
nLutRoot = pStr[1] - '0';
if ( nLutRoot < 3 || nLutRoot > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
return ABC_INFINITY;
}
if ( nLeaves > nLutLeaf + nLutRoot - 1 )
{
printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot );
return ABC_INFINITY;
}
// remember the delays
If_CutForEachLeaf( p, pCut, pLeaf, i )
Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay;
// consider easy case
if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
{
assert( nLeaves <= 6 );
for ( i = 0; i < nLeaves; i++ )
{
pCut->pPerm[i] = 1;
pGroup1[i] = i;
}
pGroup1[7] = nLeaves;
pCut->Cost = 1;
return 1.0 + If_CluDelayMax( Group1, Delays );
}
// derive the first group
Group1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot );
if ( Group1 == 0 )
return ABC_INFINITY;
// compute the delay
Delays[nLeaves] = If_CluDelayMax( Group1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
if ( Group2 )
Delays[nLeaves+1] = If_CluDelayMax( Group2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
// mark used groups
for ( i = 0; i < pGroup1[7]; i++ )
fUsed[pGroup1[i]] = 1;
for ( i = 0; i < pGroup2[7]; i++ )
fUsed[pGroup2[i]] = 1;
// mark unused groups
assert( pGroup1[6] >= 2 && pGroup1[6] <= 4 );
if ( pGroup1[6] > 2 )
fUsed[pGroup1[0]] = 0;
assert( pGroup2[6] >= 2 && pGroup2[6] <= 4 );
if ( pGroup2[6] > 2 )
fUsed[pGroup2[0]] = 0;
// create remaining group
assert( pGroup3[7] == 0 );
for ( i = 0; i < nLeaves; i++ )
if ( !fUsed[i] )
pGroup3[pGroup3[7]++] = i;
pGroup3[pGroup3[7]++] = nLeaves;
if ( Group2 )
pGroup3[pGroup3[7]++] = nLeaves+1;
assert( pGroup1[7] + pGroup2[7] + pGroup3[7] == nLeaves + (pGroup1[7] > 0) + (pGroup2[7] > 0) + (pGroup1[6] > 2) + (pGroup2[6] > 2) );
// what if both non-disjoint vars are the same???
pCut->Cost = 2 + (pGroup2[7] > 0);
return 1.0 + If_CluDelayMax( Group3, Delays );
}
// testing procedure
void If_CluTest()
{
// word t = 0xff00f0f0ccccaaaa;
word t = 0xfedcba9876543210;
int nLeaves = 6;
int nLutLeaf = 4;
int nLutRoot = 4;
word Group1;
char * pVars = (char *)&Group1;
// return;
Group1 = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot );
If_CluPrintGroup( Group1 );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|