1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
|
/**CFile***********************************************************************
FileName [cuddMatMult.c]
PackageName [cudd]
Synopsis [Matrix multiplication functions.]
Description [External procedures included in this module:
<ul>
<li> Cudd_addMatrixMultiply()
<li> Cudd_addTimesPlus()
<li> Cudd_addTriangle()
<li> Cudd_addOuterSum()
</ul>
Static procedures included in this module:
<ul>
<li> addMMRecur()
<li> addTriangleRecur()
<li> cuddAddOuterSumRecur()
</ul>]
Author [Fabio Somenzi]
Copyright [This file was created at the University of Colorado at
Boulder. The University of Colorado at Boulder makes no warranty
about the suitability of this software for any purpose. It is
presented on an AS IS basis.]
******************************************************************************/
#include "util_hack.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.1.1.1 2003/02/24 22:23:52 wjiang Exp $";
#endif
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/**AutomaticStart*************************************************************/
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
static DdNode * addMMRecur ARGS((DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars));
static DdNode * addTriangleRecur ARGS((DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube));
static DdNode * cuddAddOuterSumRecur ARGS((DdManager *dd, DdNode *M, DdNode *r, DdNode *c));
/**AutomaticEnd***************************************************************/
/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Calculates the product of two matrices represented as
ADDs.]
Description [Calculates the product of two matrices, A and B,
represented as ADDs. This procedure implements the quasiring multiplication
algorithm. A is assumed to depend on variables x (rows) and z
(columns). B is assumed to depend on variables z (rows) and y
(columns). The product of A and B then depends on x (rows) and y
(columns). Only the z variables have to be explicitly identified;
they are the "summation" variables. Returns a pointer to the
result if successful; NULL otherwise.]
SideEffects [None]
SeeAlso [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract]
******************************************************************************/
DdNode *
Cudd_addMatrixMultiply(
DdManager * dd,
DdNode * A,
DdNode * B,
DdNode ** z,
int nz)
{
int i, nvars, *vars;
DdNode *res;
/* Array vars says what variables are "summation" variables. */
nvars = dd->size;
vars = ALLOC(int,nvars);
if (vars == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
for (i = 0; i < nvars; i++) {
vars[i] = 0;
}
for (i = 0; i < nz; i++) {
vars[z[i]->index] = 1;
}
do {
dd->reordered = 0;
res = addMMRecur(dd,A,B,-1,vars);
} while (dd->reordered == 1);
FREE(vars);
return(res);
} /* end of Cudd_addMatrixMultiply */
/**Function********************************************************************
Synopsis [Calculates the product of two matrices represented as
ADDs.]
Description [Calculates the product of two matrices, A and B,
represented as ADDs, using the CMU matrix by matrix multiplication
procedure by Clarke et al.. Matrix A has x's as row variables and z's
as column variables, while matrix B has z's as row variables and y's
as column variables. Returns the pointer to the result if successful;
NULL otherwise. The resulting matrix has x's as row variables and y's
as column variables.]
SideEffects [None]
SeeAlso [Cudd_addMatrixMultiply]
******************************************************************************/
DdNode *
Cudd_addTimesPlus(
DdManager * dd,
DdNode * A,
DdNode * B,
DdNode ** z,
int nz)
{
DdNode *w, *cube, *tmp, *res;
int i;
tmp = Cudd_addApply(dd,Cudd_addTimes,A,B);
if (tmp == NULL) return(NULL);
Cudd_Ref(tmp);
Cudd_Ref(cube = DD_ONE(dd));
for (i = nz-1; i >= 0; i--) {
w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd));
if (w == NULL) {
Cudd_RecursiveDeref(dd,tmp);
return(NULL);
}
Cudd_Ref(w);
Cudd_RecursiveDeref(dd,cube);
cube = w;
}
res = Cudd_addExistAbstract(dd,tmp,cube);
if (res == NULL) {
Cudd_RecursiveDeref(dd,tmp);
Cudd_RecursiveDeref(dd,cube);
return(NULL);
}
Cudd_Ref(res);
Cudd_RecursiveDeref(dd,cube);
Cudd_RecursiveDeref(dd,tmp);
Cudd_Deref(res);
return(res);
} /* end of Cudd_addTimesPlus */
/**Function********************************************************************
Synopsis [Performs the triangulation step for the shortest path
computation.]
Description [Implements the semiring multiplication algorithm used in
the triangulation step for the shortest path computation. f
is assumed to depend on variables x (rows) and z (columns). g is
assumed to depend on variables z (rows) and y (columns). The product
of f and g then depends on x (rows) and y (columns). Only the z
variables have to be explicitly identified; they are the
"abstraction" variables. Returns a pointer to the result if
successful; NULL otherwise. ]
SideEffects [None]
SeeAlso [Cudd_addMatrixMultiply Cudd_bddAndAbstract]
******************************************************************************/
DdNode *
Cudd_addTriangle(
DdManager * dd,
DdNode * f,
DdNode * g,
DdNode ** z,
int nz)
{
int i, nvars, *vars;
DdNode *res, *cube;
nvars = dd->size;
vars = ALLOC(int, nvars);
if (vars == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
for (i = 0; i < nvars; i++) vars[i] = -1;
for (i = 0; i < nz; i++) vars[z[i]->index] = i;
cube = Cudd_addComputeCube(dd, z, NULL, nz);
if (cube == NULL) {
FREE(vars);
return(NULL);
}
cuddRef(cube);
do {
dd->reordered = 0;
res = addTriangleRecur(dd, f, g, vars, cube);
} while (dd->reordered == 1);
if (res != NULL) cuddRef(res);
Cudd_RecursiveDeref(dd,cube);
if (res != NULL) cuddDeref(res);
FREE(vars);
return(res);
} /* end of Cudd_addTriangle */
/**Function********************************************************************
Synopsis [Takes the minimum of a matrix and the outer sum of two vectors.]
Description [Takes the pointwise minimum of a matrix and the outer
sum of two vectors. This procedure is used in the Floyd-Warshall
all-pair shortest path algorithm. Returns a pointer to the result if
successful; NULL otherwise.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
Cudd_addOuterSum(
DdManager *dd,
DdNode *M,
DdNode *r,
DdNode *c)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddAddOuterSumRecur(dd, M, r, c);
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_addOuterSum */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Performs the recursive step of Cudd_addMatrixMultiply.]
Description [Performs the recursive step of Cudd_addMatrixMultiply.
Returns a pointer to the result if successful; NULL otherwise.]
SideEffects [None]
******************************************************************************/
static DdNode *
addMMRecur(
DdManager * dd,
DdNode * A,
DdNode * B,
int topP,
int * vars)
{
DdNode *zero,
*At, /* positive cofactor of first operand */
*Ae, /* negative cofactor of first operand */
*Bt, /* positive cofactor of second operand */
*Be, /* negative cofactor of second operand */
*t, /* positive cofactor of result */
*e, /* negative cofactor of result */
*scaled, /* scaled result */
*add_scale, /* ADD representing the scaling factor */
*res;
int i; /* loop index */
double scale; /* scaling factor */
int index; /* index of the top variable */
CUDD_VALUE_TYPE value;
unsigned int topA, topB, topV;
DdNode *(*cacheOp)(DdManager *, DdNode *, DdNode *);
statLine(dd);
zero = DD_ZERO(dd);
if (A == zero || B == zero) {
return(zero);
}
if (cuddIsConstant(A) && cuddIsConstant(B)) {
/* Compute the scaling factor. It is 2^k, where k is the
** number of summation variables below the current variable.
** Indeed, these constants represent blocks of 2^k identical
** constant values in both A and B.
*/
value = cuddV(A) * cuddV(B);
for (i = 0; i < dd->size; i++) {
if (vars[i]) {
if (dd->perm[i] > topP) {
value *= (CUDD_VALUE_TYPE) 2;
}
}
}
res = cuddUniqueConst(dd, value);
return(res);
}
/* Standardize to increase cache efficiency. Clearly, A*B != B*A
** in matrix multiplication. However, which matrix is which is
** determined by the variables appearing in the ADDs and not by
** which one is passed as first argument.
*/
if (A > B) {
DdNode *tmp = A;
A = B;
B = tmp;
}
topA = cuddI(dd,A->index); topB = cuddI(dd,B->index);
topV = ddMin(topA,topB);
cacheOp = (DdNode *(*)(DdManager *, DdNode *, DdNode *)) addMMRecur;
res = cuddCacheLookup2(dd,cacheOp,A,B);
if (res != NULL) {
/* If the result is 0, there is no need to normalize.
** Otherwise we count the number of z variables between
** the current depth and the top of the ADDs. These are
** the missing variables that determine the size of the
** constant blocks.
*/
if (res == zero) return(res);
scale = 1.0;
for (i = 0; i < dd->size; i++) {
if (vars[i]) {
if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
scale *= 2;
}
}
}
if (scale > 1.0) {
cuddRef(res);
add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
if (add_scale == NULL) {
Cudd_RecursiveDeref(dd, res);
return(NULL);
}
cuddRef(add_scale);
scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
if (scaled == NULL) {
Cudd_RecursiveDeref(dd, add_scale);
Cudd_RecursiveDeref(dd, res);
return(NULL);
}
cuddRef(scaled);
Cudd_RecursiveDeref(dd, add_scale);
Cudd_RecursiveDeref(dd, res);
res = scaled;
cuddDeref(res);
}
return(res);
}
/* compute the cofactors */
if (topV == topA) {
At = cuddT(A);
Ae = cuddE(A);
} else {
At = Ae = A;
}
if (topV == topB) {
Bt = cuddT(B);
Be = cuddE(B);
} else {
Bt = Be = B;
}
t = addMMRecur(dd, At, Bt, (int)topV, vars);
if (t == NULL) return(NULL);
cuddRef(t);
e = addMMRecur(dd, Ae, Be, (int)topV, vars);
if (e == NULL) {
Cudd_RecursiveDeref(dd, t);
return(NULL);
}
cuddRef(e);
index = dd->invperm[topV];
if (vars[index] == 0) {
/* We have split on either the rows of A or the columns
** of B. We just need to connect the two subresults,
** which correspond to two submatrices of the result.
*/
res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
if (res == NULL) {
Cudd_RecursiveDeref(dd, t);
Cudd_RecursiveDeref(dd, e);
return(NULL);
}
cuddRef(res);
cuddDeref(t);
cuddDeref(e);
} else {
/* we have simultaneously split on the columns of A and
** the rows of B. The two subresults must be added.
*/
res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e);
if (res == NULL) {
Cudd_RecursiveDeref(dd, t);
Cudd_RecursiveDeref(dd, e);
return(NULL);
}
cuddRef(res);
Cudd_RecursiveDeref(dd, t);
Cudd_RecursiveDeref(dd, e);
}
cuddCacheInsert2(dd,cacheOp,A,B,res);
/* We have computed (and stored in the computed table) a minimal
** result; that is, a result that assumes no summation variables
** between the current depth of the recursion and its top
** variable. We now take into account the z variables by properly
** scaling the result.
*/
if (res != zero) {
scale = 1.0;
for (i = 0; i < dd->size; i++) {
if (vars[i]) {
if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
scale *= 2;
}
}
}
if (scale > 1.0) {
add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
if (add_scale == NULL) {
Cudd_RecursiveDeref(dd, res);
return(NULL);
}
cuddRef(add_scale);
scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
if (scaled == NULL) {
Cudd_RecursiveDeref(dd, res);
Cudd_RecursiveDeref(dd, add_scale);
return(NULL);
}
cuddRef(scaled);
Cudd_RecursiveDeref(dd, add_scale);
Cudd_RecursiveDeref(dd, res);
res = scaled;
}
}
cuddDeref(res);
return(res);
} /* end of addMMRecur */
/**Function********************************************************************
Synopsis [Performs the recursive step of Cudd_addTriangle.]
Description [Performs the recursive step of Cudd_addTriangle. Returns
a pointer to the result if successful; NULL otherwise.]
SideEffects [None]
******************************************************************************/
static DdNode *
addTriangleRecur(
DdManager * dd,
DdNode * f,
DdNode * g,
int * vars,
DdNode *cube)
{
DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res;
CUDD_VALUE_TYPE value;
int top, topf, topg, index;
statLine(dd);
if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) {
return(DD_PLUS_INFINITY(dd));
}
if (cuddIsConstant(f) && cuddIsConstant(g)) {
value = cuddV(f) + cuddV(g);
res = cuddUniqueConst(dd, value);
return(res);
}
if (f < g) {
DdNode *tmp = f;
f = g;
g = tmp;
}
if (f->ref != 1 || g->ref != 1) {
res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube);
if (res != NULL) {
return(res);
}
}
topf = cuddI(dd,f->index); topg = cuddI(dd,g->index);
top = ddMin(topf,topg);
if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}
t = addTriangleRecur(dd, fv, gv, vars, cube);
if (t == NULL) return(NULL);
cuddRef(t);
e = addTriangleRecur(dd, fvn, gvn, vars, cube);
if (e == NULL) {
Cudd_RecursiveDeref(dd, t);
return(NULL);
}
cuddRef(e);
index = dd->invperm[top];
if (vars[index] < 0) {
res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
if (res == NULL) {
Cudd_RecursiveDeref(dd, t);
Cudd_RecursiveDeref(dd, e);
return(NULL);
}
cuddDeref(t);
cuddDeref(e);
} else {
res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e);
if (res == NULL) {
Cudd_RecursiveDeref(dd, t);
Cudd_RecursiveDeref(dd, e);
return(NULL);
}
cuddRef(res);
Cudd_RecursiveDeref(dd, t);
Cudd_RecursiveDeref(dd, e);
cuddDeref(res);
}
if (f->ref != 1 || g->ref != 1) {
cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res);
}
return(res);
} /* end of addTriangleRecur */
/**Function********************************************************************
Synopsis [Performs the recursive step of Cudd_addOuterSum.]
Description [Performs the recursive step of Cudd_addOuterSum.
Returns a pointer to the result if successful; NULL otherwise.]
SideEffects [None]
SeeAlso []
******************************************************************************/
static DdNode *
cuddAddOuterSumRecur(
DdManager *dd,
DdNode *M,
DdNode *r,
DdNode *c)
{
DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re;
int topM, topc, topr;
int v, index;
statLine(dd);
/* Check special cases. */
if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M);
if (cuddIsConstant(c) && cuddIsConstant(r)) {
R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r));
cuddRef(R);
if (cuddIsConstant(M)) {
if (cuddV(R) <= cuddV(M)) {
cuddDeref(R);
return(R);
} else {
Cudd_RecursiveDeref(dd,R);
return(M);
}
} else {
P = Cudd_addApply(dd,Cudd_addMinimum,R,M);
cuddRef(P);
Cudd_RecursiveDeref(dd,R);
cuddDeref(P);
return(P);
}
}
/* Check the cache. */
R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c);
if (R != NULL) return(R);
topM = cuddI(dd,M->index); topr = cuddI(dd,r->index);
topc = cuddI(dd,c->index);
v = ddMin(topM,ddMin(topr,topc));
/* Compute cofactors. */
if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; }
if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; }
if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; }
/* Recursively solve. */
Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct);
if (Rt == NULL) return(NULL);
cuddRef(Rt);
Re = cuddAddOuterSumRecur(dd,Me,re,ce);
if (Re == NULL) {
Cudd_RecursiveDeref(dd, Rt);
return(NULL);
}
cuddRef(Re);
index = dd->invperm[v];
R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re);
if (R == NULL) {
Cudd_RecursiveDeref(dd, Rt);
Cudd_RecursiveDeref(dd, Re);
return(NULL);
}
cuddDeref(Rt);
cuddDeref(Re);
/* Store the result in the cache. */
cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R);
return(R);
} /* end of cuddAddOuterSumRecur */
|