1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
|
/**CFile****************************************************************
FileName [wlcNdr.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Experimental procedures.]
Synopsis [Constructing WLC network from NDR data structure.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 22, 2014.]
Revision [$Id: wlcNdr.c,v 1.00 2014/09/12 00:00:00 alanmi Exp $]
***********************************************************************/
#include "wlc.h"
#include "aig/miniaig/ndr.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ndr_TypeNdr2Wlc( int Type )
{
if ( Type == ABC_OPER_CONST ) return WLC_OBJ_CONST; // 06: constant
if ( Type == ABC_OPER_BIT_BUF ) return WLC_OBJ_BUF; // 07: buffer
if ( Type == ABC_OPER_BIT_MUX ) return WLC_OBJ_MUX; // 08: multiplexer
if ( Type == ABC_OPER_SHIFT_R ) return WLC_OBJ_SHIFT_R; // 09: shift right
if ( Type == ABC_OPER_SHIFT_RA ) return WLC_OBJ_SHIFT_RA; // 10: shift right (arithmetic)
if ( Type == ABC_OPER_SHIFT_L ) return WLC_OBJ_SHIFT_L; // 11: shift left
if ( Type == ABC_OPER_SHIFT_LA ) return WLC_OBJ_SHIFT_LA; // 12: shift left (arithmetic)
if ( Type == ABC_OPER_SHIFT_ROTR ) return WLC_OBJ_ROTATE_R; // 13: rotate right
if ( Type == ABC_OPER_SHIFT_ROTL ) return WLC_OBJ_ROTATE_L; // 14: rotate left
if ( Type == ABC_OPER_BIT_INV ) return WLC_OBJ_BIT_NOT; // 15: bitwise NOT
if ( Type == ABC_OPER_BIT_AND ) return WLC_OBJ_BIT_AND; // 16: bitwise AND
if ( Type == ABC_OPER_BIT_OR ) return WLC_OBJ_BIT_OR; // 17: bitwise OR
if ( Type == ABC_OPER_BIT_XOR ) return WLC_OBJ_BIT_XOR; // 18: bitwise XOR
if ( Type == ABC_OPER_BIT_NAND ) return WLC_OBJ_BIT_NAND; // 19: bitwise AND
if ( Type == ABC_OPER_BIT_NOR ) return WLC_OBJ_BIT_NOR; // 20: bitwise OR
if ( Type == ABC_OPER_BIT_NXOR ) return WLC_OBJ_BIT_NXOR; // 21: bitwise NXOR
if ( Type == ABC_OPER_SLICE ) return WLC_OBJ_BIT_SELECT; // 22: bit selection
if ( Type == ABC_OPER_CONCAT ) return WLC_OBJ_BIT_CONCAT; // 23: bit concatenation
if ( Type == ABC_OPER_ZEROPAD ) return WLC_OBJ_BIT_ZEROPAD; // 24: zero padding
if ( Type == ABC_OPER_SIGNEXT ) return WLC_OBJ_BIT_SIGNEXT; // 25: sign extension
if ( Type == ABC_OPER_LOGIC_NOT ) return WLC_OBJ_LOGIC_NOT; // 26: logic NOT
if ( Type == ABC_OPER_LOGIC_IMPL ) return WLC_OBJ_LOGIC_IMPL; // 27: logic implication
if ( Type == ABC_OPER_LOGIC_AND ) return WLC_OBJ_LOGIC_AND; // 28: logic AND
if ( Type == ABC_OPER_LOGIC_OR ) return WLC_OBJ_LOGIC_OR; // 29: logic OR
if ( Type == ABC_OPER_LOGIC_XOR ) return WLC_OBJ_LOGIC_XOR; // 30: logic XOR
if ( Type == ABC_OPER_SEL_NMUX ) return WLC_OBJ_MUX; // 08: multiplexer
if ( Type == ABC_OPER_SEL_SEL ) return WLC_OBJ_SEL; // 57: selector
if ( Type == ABC_OPER_SEL_DEC ) return WLC_OBJ_DEC; // 58: decoder
if ( Type == ABC_OPER_COMP_EQU ) return WLC_OBJ_COMP_EQU; // 31: compare equal
if ( Type == ABC_OPER_COMP_NOTEQU ) return WLC_OBJ_COMP_NOTEQU; // 32: compare not equal
if ( Type == ABC_OPER_COMP_LESS ) return WLC_OBJ_COMP_LESS; // 33: compare less
if ( Type == ABC_OPER_COMP_MORE ) return WLC_OBJ_COMP_MORE; // 34: compare more
if ( Type == ABC_OPER_COMP_LESSEQU ) return WLC_OBJ_COMP_LESSEQU; // 35: compare less or equal
if ( Type == ABC_OPER_COMP_MOREEQU ) return WLC_OBJ_COMP_MOREEQU; // 36: compare more or equal
if ( Type == ABC_OPER_RED_AND ) return WLC_OBJ_REDUCT_AND; // 37: reduction AND
if ( Type == ABC_OPER_RED_OR ) return WLC_OBJ_REDUCT_OR; // 38: reduction OR
if ( Type == ABC_OPER_RED_XOR ) return WLC_OBJ_REDUCT_XOR; // 39: reduction XOR
if ( Type == ABC_OPER_RED_NAND ) return WLC_OBJ_REDUCT_NAND; // 40: reduction NAND
if ( Type == ABC_OPER_RED_NOR ) return WLC_OBJ_REDUCT_NOR; // 41: reduction NOR
if ( Type == ABC_OPER_RED_NXOR ) return WLC_OBJ_REDUCT_NXOR; // 42: reduction NXOR
if ( Type == ABC_OPER_ARI_ADD ) return WLC_OBJ_ARI_ADD; // 43: arithmetic addition
if ( Type == ABC_OPER_ARI_SUB ) return WLC_OBJ_ARI_SUB; // 44: arithmetic subtraction
if ( Type == ABC_OPER_ARI_MUL ) return WLC_OBJ_ARI_MULTI; // 45: arithmetic multiplier
if ( Type == ABC_OPER_ARI_DIV ) return WLC_OBJ_ARI_DIVIDE; // 46: arithmetic division
if ( Type == ABC_OPER_ARI_REM ) return WLC_OBJ_ARI_REM; // 47: arithmetic remainder
if ( Type == ABC_OPER_ARI_MOD ) return WLC_OBJ_ARI_MODULUS; // 48: arithmetic modulus
if ( Type == ABC_OPER_ARI_POW ) return WLC_OBJ_ARI_POWER; // 49: arithmetic power
if ( Type == ABC_OPER_ARI_MIN ) return WLC_OBJ_ARI_MINUS; // 50: arithmetic minus
if ( Type == ABC_OPER_ARI_SQRT ) return WLC_OBJ_ARI_SQRT; // 51: integer square root
if ( Type == ABC_OPER_ARI_SQUARE ) return WLC_OBJ_ARI_SQUARE; // 52: integer square
if ( Type == ABC_OPER_ARI_ADDSUB ) return WLC_OBJ_ARI_ADDSUB; // 56: adder-subtractor
if ( Type == ABC_OPER_ARI_SMUL ) return WLC_OBJ_ARI_MULTI; // 45: signed multiplier
if ( Type == ABC_OPER_DFF ) return WLC_OBJ_FO; // 03: flop
if ( Type == ABC_OPER_DFFRSE ) return WLC_OBJ_FF; // 05: flop
if ( Type == ABC_OPER_RAMR ) return WLC_OBJ_READ; // 54: read port
if ( Type == ABC_OPER_RAMW ) return WLC_OBJ_WRITE; // 55: write port
if ( Type == ABC_OPER_LUT ) return WLC_OBJ_LUT; // 59: LUT
return -1;
}
int Ndr_TypeWlc2Ndr( int Type )
{
if ( Type == WLC_OBJ_CONST ) return ABC_OPER_CONST; // 06: constant
if ( Type == WLC_OBJ_BUF ) return ABC_OPER_BIT_BUF; // 07: buffer
if ( Type == WLC_OBJ_MUX ) return ABC_OPER_BIT_MUX; // 08: multiplexer
if ( Type == WLC_OBJ_SHIFT_R ) return ABC_OPER_SHIFT_R; // 09: shift right
if ( Type == WLC_OBJ_SHIFT_RA ) return ABC_OPER_SHIFT_RA; // 10: shift right (arithmetic)
if ( Type == WLC_OBJ_SHIFT_L ) return ABC_OPER_SHIFT_L; // 11: shift left
if ( Type == WLC_OBJ_SHIFT_LA ) return ABC_OPER_SHIFT_LA; // 12: shift left (arithmetic)
if ( Type == WLC_OBJ_ROTATE_R ) return ABC_OPER_SHIFT_ROTR; // 13: rotate right
if ( Type == WLC_OBJ_ROTATE_L ) return ABC_OPER_SHIFT_ROTL; // 14: rotate left
if ( Type == WLC_OBJ_BIT_NOT ) return ABC_OPER_BIT_INV; // 15: bitwise NOT
if ( Type == WLC_OBJ_BIT_AND ) return ABC_OPER_BIT_AND; // 16: bitwise AND
if ( Type == WLC_OBJ_BIT_OR ) return ABC_OPER_BIT_OR; // 17: bitwise OR
if ( Type == WLC_OBJ_BIT_XOR ) return ABC_OPER_BIT_XOR; // 18: bitwise XOR
if ( Type == WLC_OBJ_BIT_NAND ) return ABC_OPER_BIT_NAND; // 19: bitwise AND
if ( Type == WLC_OBJ_BIT_NOR ) return ABC_OPER_BIT_NOR; // 20: bitwise OR
if ( Type == WLC_OBJ_BIT_NXOR ) return ABC_OPER_BIT_NXOR; // 21: bitwise NXOR
if ( Type == WLC_OBJ_BIT_SELECT ) return ABC_OPER_SLICE; // 22: bit selection
if ( Type == WLC_OBJ_BIT_CONCAT ) return ABC_OPER_CONCAT; // 23: bit concatenation
if ( Type == WLC_OBJ_BIT_ZEROPAD ) return ABC_OPER_ZEROPAD; // 24: zero padding
if ( Type == WLC_OBJ_BIT_SIGNEXT ) return ABC_OPER_SIGNEXT; // 25: sign extension
if ( Type == WLC_OBJ_LOGIC_NOT ) return ABC_OPER_LOGIC_NOT; // 26: logic NOT
if ( Type == WLC_OBJ_LOGIC_IMPL ) return ABC_OPER_LOGIC_IMPL; // 27: logic implication
if ( Type == WLC_OBJ_LOGIC_AND ) return ABC_OPER_LOGIC_AND; // 28: logic AND
if ( Type == WLC_OBJ_LOGIC_OR ) return ABC_OPER_LOGIC_OR; // 29: logic OR
if ( Type == WLC_OBJ_LOGIC_XOR ) return ABC_OPER_LOGIC_XOR; // 30: logic XOR
if ( Type == WLC_OBJ_SEL ) return ABC_OPER_SEL_SEL; // 57: selector
if ( Type == WLC_OBJ_DEC ) return ABC_OPER_SEL_DEC; // 58: decoder
if ( Type == WLC_OBJ_COMP_EQU ) return ABC_OPER_COMP_EQU; // 31: compare equal
if ( Type == WLC_OBJ_COMP_NOTEQU ) return ABC_OPER_COMP_NOTEQU; // 32: compare not equal
if ( Type == WLC_OBJ_COMP_LESS ) return ABC_OPER_COMP_LESS; // 33: compare less
if ( Type == WLC_OBJ_COMP_MORE ) return ABC_OPER_COMP_MORE; // 34: compare more
if ( Type == WLC_OBJ_COMP_LESSEQU ) return ABC_OPER_COMP_LESSEQU; // 35: compare less or equal
if ( Type == WLC_OBJ_COMP_MOREEQU ) return ABC_OPER_COMP_MOREEQU; // 36: compare more or equal
if ( Type == WLC_OBJ_REDUCT_AND ) return ABC_OPER_RED_AND; // 37: reduction AND
if ( Type == WLC_OBJ_REDUCT_OR ) return ABC_OPER_RED_OR; // 38: reduction OR
if ( Type == WLC_OBJ_REDUCT_XOR ) return ABC_OPER_RED_XOR; // 39: reduction XOR
if ( Type == WLC_OBJ_REDUCT_NAND ) return ABC_OPER_RED_NAND; // 40: reduction NAND
if ( Type == WLC_OBJ_REDUCT_NOR ) return ABC_OPER_RED_NOR; // 41: reduction NOR
if ( Type == WLC_OBJ_REDUCT_NXOR ) return ABC_OPER_RED_NXOR; // 42: reduction NXOR
if ( Type == WLC_OBJ_ARI_ADD ) return ABC_OPER_ARI_ADD; // 43: arithmetic addition
if ( Type == WLC_OBJ_ARI_SUB ) return ABC_OPER_ARI_SUB; // 44: arithmetic subtraction
if ( Type == WLC_OBJ_ARI_MULTI ) return ABC_OPER_ARI_MUL; // 45: arithmetic multiplier
if ( Type == WLC_OBJ_ARI_DIVIDE ) return ABC_OPER_ARI_DIV; // 46: arithmetic division
if ( Type == WLC_OBJ_ARI_REM ) return ABC_OPER_ARI_REM; // 47: arithmetic remainder
if ( Type == WLC_OBJ_ARI_MODULUS ) return ABC_OPER_ARI_MOD; // 48: arithmetic modulus
if ( Type == WLC_OBJ_ARI_POWER ) return ABC_OPER_ARI_POW; // 49: arithmetic power
if ( Type == WLC_OBJ_ARI_MINUS ) return ABC_OPER_ARI_MIN; // 50: arithmetic minus
if ( Type == WLC_OBJ_ARI_SQRT ) return ABC_OPER_ARI_SQRT; // 51: integer square root
if ( Type == WLC_OBJ_ARI_SQUARE ) return ABC_OPER_ARI_SQUARE; // 52: integer square
if ( Type == WLC_OBJ_ARI_ADDSUB ) return ABC_OPER_ARI_ADDSUB; // 56: adder-subtractor
if ( Type == WLC_OBJ_ARI_MULTI ) return ABC_OPER_ARI_SMUL; // 45: signed multiplier
if ( Type == WLC_OBJ_FO ) return ABC_OPER_DFFRSE; // 03: flop
if ( Type == WLC_OBJ_FF ) return ABC_OPER_DFFRSE; // 05: flop
if ( Type == WLC_OBJ_READ ) return ABC_OPER_RAMR; // 54: read port
if ( Type == WLC_OBJ_WRITE ) return ABC_OPER_RAMW; // 55: write port
if ( Type == WLC_OBJ_LUT ) return ABC_OPER_LUT; // 59: LUT
return -1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char * Ndr_ObjWriteConstant( unsigned * pBits, int nBits )
{
static char Buffer[10000]; int i, Len;
assert( nBits + 10 < 10000 );
sprintf( Buffer, "%d\'b", nBits );
Len = strlen(Buffer);
for ( i = nBits-1; i >= 0; i-- )
Buffer[Len++] = '0' + Abc_InfoHasBit(pBits, i);
Buffer[Len] = 0;
return Buffer;
}
void * Wlc_NtkToNdr( Wlc_Ntk_t * pNtk )
{
Wlc_Obj_t * pObj;
int i, k, iFanin, iOutId, Type;
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModId = Ndr_AddModule( pDesign, 1 );
// add primary inputs
Vec_Int_t * vFanins = Vec_IntAlloc( 10 );
Wlc_NtkForEachPi( pNtk, pObj, i )
{
iOutId = Wlc_ObjId(pNtk, pObj);
Ndr_AddObject( pDesign, ModId, ABC_OPER_CI, 0,
pObj->End, pObj->Beg, pObj->Signed,
0, NULL, 1, &iOutId, NULL ); // no fanins
}
// add internal nodes
Wlc_NtkForEachObj( pNtk, pObj, iOutId )
{
char * pFunction = NULL;
if ( Wlc_ObjIsPi(pObj) || pObj->Type == 0 )
continue;
Vec_IntClear( vFanins );
Wlc_ObjForEachFanin( pObj, iFanin, k )
Vec_IntPush( vFanins, iFanin );
if ( pObj->Type == WLC_OBJ_CONST )
pFunction = Ndr_ObjWriteConstant( (unsigned *)Wlc_ObjFanins(pObj), Wlc_ObjRange(pObj) );
if ( pObj->Type == WLC_OBJ_MUX && Wlc_ObjRange(Wlc_ObjFanin0(pNtk, pObj)) > 1 )
Type = ABC_OPER_SEL_NMUX;
else if ( pObj->Type == WLC_OBJ_FO )
{
Wlc_Obj_t * pFi = Wlc_ObjFo2Fi( pNtk, pObj );
assert( Vec_IntSize(vFanins) == 0 );
Vec_IntPush( vFanins, Wlc_ObjId(pNtk, pFi) );
Vec_IntFillExtra( vFanins, 7, 0 );
Type = ABC_OPER_DFFRSE;
}
else
Type = Ndr_TypeWlc2Ndr(pObj->Type);
assert( Type > 0 );
Ndr_AddObject( pDesign, ModId, Type, 0,
pObj->End, pObj->Beg, pObj->Signed,
Vec_IntSize(vFanins), Vec_IntArray(vFanins), 1, &iOutId, pFunction );
}
// add primary outputs
Wlc_NtkForEachObj( pNtk, pObj, iOutId )
{
if ( !Wlc_ObjIsPo(pObj) )
continue;
Vec_IntFill( vFanins, 1, iOutId );
Ndr_AddObject( pDesign, ModId, ABC_OPER_CO, 0,
pObj->End, pObj->Beg, pObj->Signed,
1, Vec_IntArray(vFanins), 0, NULL, NULL );
}
Vec_IntFree( vFanins );
return pDesign;
}
void Wlc_WriteNdr( Wlc_Ntk_t * pNtk, char * pFileName )
{
void * pDesign = Wlc_NtkToNdr( pNtk );
Ndr_Write( pFileName, pDesign );
Ndr_Delete( pDesign );
printf( "Dumped the current design into file \"%s\".\n", pFileName );
}
void Wlc_NtkToNdrTest( Wlc_Ntk_t * pNtk )
{
// transform
void * pDesign = Wlc_NtkToNdr( pNtk );
// collect names
Wlc_Obj_t * pObj; int i;
char ** ppNames = ABC_ALLOC( char *, Wlc_NtkObjNum(pNtk) + 1 );
Wlc_NtkForEachObj( pNtk, pObj, i )
ppNames[i] = Wlc_ObjName(pNtk, i);
// verify by writing Verilog
Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "test.ndr", pDesign );
// cleanup
Ndr_Delete( pDesign );
ABC_FREE( ppNames );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ndr_ObjReadRange( Ndr_Data_t * p, int Obj, int * End, int * Beg )
{
int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray );
int Signed = 0; *End = *Beg = 0;
if ( nArray == 0 )
return 0;
if ( nArray == 3 )
Signed = 1;
if ( nArray == 1 )
*End = *Beg = pArray[0];
else
*End = pArray[0], *Beg = pArray[1];
return Signed;
}
void Ndr_ObjReadConstant( Vec_Int_t * vFanins, char * pStr )
{
int i, k, Len = pStr ? strlen(pStr) : 0;
for ( k = 0; k < Len; k++ )
if ( pStr[k] == 'b' )
break;
if ( pStr == NULL || pStr[k] != 'b' )
{
printf( "Constants should be represented in binary Verilog notation <nbits>\'b<bits> as char strings (for example, \"4'b1010\").\n" );
return;
}
Vec_IntFill( vFanins, Abc_BitWordNum(Len-k-1), 0 );
for ( i = k+1; i < Len; i++ )
if ( pStr[i] == '1' )
Abc_InfoSetBit( (unsigned *)Vec_IntArray(vFanins), Len-i-1 );
else if ( pStr[i] != '0' )
printf( "Wrongn symbol (%c) in binary Verilog constant \"%s\".\n", pStr[i], pStr );
}
void Ndr_NtkPrintNodes( Wlc_Ntk_t * pNtk )
{
Wlc_Obj_t * pObj; int i, k;
printf( "Node IDs and their fanins:\n" );
Wlc_NtkForEachObj( pNtk, pObj, i )
{
int * pFanins = Wlc_ObjFanins(pObj);
printf( "%5d = ", i );
for ( k = 0; k < Wlc_ObjFaninNum(pObj); k++ )
printf( "%5d ", pFanins[k] );
for ( ; k < 4; k++ )
printf( " " );
printf( " Name Id %d ", Wlc_ObjNameId(pNtk, i) );
if ( Wlc_ObjIsPi(pObj) )
printf( " pi " );
if ( Wlc_ObjIsPo(pObj) )
printf( " po " );
printf( "\n" );
}
}
void Wlc_NtkCheckIntegrity( void * pData )
{
Ndr_Data_t * p = (Ndr_Data_t *)pData;
Vec_Int_t * vMap = Vec_IntAlloc( 100 );
int Mod = 2, Obj;
Ndr_ModForEachObj( p, Mod, Obj )
{
int NameId = Ndr_ObjReadBody( p, Obj, NDR_OUTPUT );
if ( NameId == -1 )
{
int Type = Ndr_ObjReadBody( p, Obj, NDR_OPERTYPE );
if ( Type != ABC_OPER_CO )
printf( "Internal object %d of type %s has no output name.\n", Obj, Abc_OperName(Type) );
continue;
}
if ( Vec_IntGetEntry(vMap, NameId) > 0 )
printf( "Output name %d is used more than once (obj %d and obj %d).\n", NameId, Vec_IntGetEntry(vMap, NameId), Obj );
Vec_IntSetEntry( vMap, NameId, Obj );
}
Ndr_ModForEachObj( p, Mod, Obj )
{
int Type = Ndr_ObjReadBody( p, Obj, NDR_OPERTYPE );
int i, * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
for ( i = 0; i < nArray; i++ )
if ( Vec_IntGetEntry(vMap, pArray[i]) == 0 && !(Type == ABC_OPER_DFFRSE && (i >= 5 && i <= 7)) )
printf( "Input name %d appearing as fanin %d of obj %d is not used as output name in any object.\n", pArray[i], i, Obj );
}
Vec_IntFree( vMap );
}
Wlc_Ntk_t * Wlc_NtkFromNdr( void * pData )
{
Ndr_Data_t * p = (Ndr_Data_t *)pData;
Wlc_Obj_t * pObj; Vec_Int_t * vName2Obj, * vFanins = Vec_IntAlloc( 100 );
int Mod = 2, i, k, Obj, * pArray, nDigits, fFound, NameId, NameIdMax;
Vec_Wrd_t * vTruths = NULL; int nTruths[2] = {0};
Wlc_Ntk_t * pTemp, * pNtk = Wlc_NtkAlloc( "top", Ndr_DataObjNum(p, Mod)+1 );
Wlc_NtkCheckIntegrity( pData );
Vec_IntClear( &pNtk->vFfs );
//pNtk->pSpec = Abc_UtilStrsav( pFileName );
// construct network and save name IDs
Wlc_NtkCleanNameId( pNtk );
Ndr_ModForEachPi( p, Mod, Obj )
{
int End, Beg, Signed = Ndr_ObjReadRange(p, Obj, &End, &Beg);
int iObj = Wlc_ObjAlloc( pNtk, WLC_OBJ_PI, Signed, End, Beg );
int NameId = Ndr_ObjReadBody( p, Obj, NDR_OUTPUT );
Wlc_ObjSetNameId( pNtk, iObj, NameId );
}
Ndr_ModForEachNode( p, Mod, Obj )
{
int End, Beg, Signed = Ndr_ObjReadRange(p, Obj, &End, &Beg);
int Type = Ndr_ObjReadBody( p, Obj, NDR_OPERTYPE );
int nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
Vec_Int_t F = {nArray, nArray, pArray}, * vTemp = &F;
int iObj = Wlc_ObjAlloc( pNtk, Ndr_TypeNdr2Wlc(Type), Signed, End, Beg );
int NameId = Ndr_ObjReadBody( p, Obj, NDR_OUTPUT );
Vec_IntClear( vFanins );
Vec_IntAppend( vFanins, vTemp );
if ( Type == ABC_OPER_DFF )
{
// save init state
if ( pNtk->vInits == NULL )
pNtk->vInits = Vec_IntAlloc( 100 );
if ( Vec_IntSize(vFanins) == 2 )
Vec_IntPush( pNtk->vInits, Vec_IntPop(vFanins) );
else // assume const0 if init is not given
Vec_IntPush( pNtk->vInits, -(End-Beg+1) );
// save flop output
pObj = Wlc_NtkObj(pNtk, iObj);
assert( Wlc_ObjType(pObj) == WLC_OBJ_FO );
Wlc_ObjSetNameId( pNtk, iObj, NameId );
Vec_IntPush( &pNtk->vFfs, NameId );
// save flop input
assert( Vec_IntSize(vFanins) == 1 );
Vec_IntPush( &pNtk->vFfs, Vec_IntEntry(vFanins, 0) );
continue;
}
if ( Type == ABC_OPER_DFFRSE )
Vec_IntPush( &pNtk->vFfs2, iObj );
if ( Type == ABC_OPER_LUT )
{
word * pTruth;
if ( vTruths == NULL )
vTruths = Vec_WrdStart( 1000 );
if ( NameId >= Vec_WrdSize(vTruths) )
Vec_WrdFillExtra( vTruths, 2*NameId, 0 );
pTruth = (word *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION);
Vec_WrdWriteEntry( vTruths, NameId, pTruth ? *pTruth : 0 );
nTruths[ pTruth != NULL ]++;
}
if ( Type == ABC_OPER_SLICE )
Vec_IntPushTwo( vFanins, End, Beg );
else if ( Type == ABC_OPER_CONST )
Ndr_ObjReadConstant( vFanins, (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
else if ( Type == ABC_OPER_BIT_MUX && Vec_IntSize(vFanins) == 3 )
ABC_SWAP( int, Vec_IntEntryP(vFanins, 1)[0], Vec_IntEntryP(vFanins, 2)[0] );
Wlc_ObjAddFanins( pNtk, Wlc_NtkObj(pNtk, iObj), vFanins );
Wlc_ObjSetNameId( pNtk, iObj, NameId );
if ( Type == ABC_OPER_ARI_SMUL )
{
pObj = Wlc_NtkObj(pNtk, iObj);
assert( Wlc_ObjFaninNum(pObj) == 2 );
Wlc_ObjFanin0(pNtk, pObj)->Signed = 1;
Wlc_ObjFanin1(pNtk, pObj)->Signed = 1;
}
}
if ( nTruths[0] )
printf( "Warning! The number of LUTs without function is %d (out of %d).\n", nTruths[0], nTruths[0]+nTruths[1] );
// mark primary outputs
Ndr_ModForEachPo( p, Mod, Obj )
{
int End, Beg, Signed = Ndr_ObjReadRange(p, Obj, &End, &Beg);
int nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
int iObj = Wlc_ObjAlloc( pNtk, WLC_OBJ_BUF, Signed, End, Beg );
int NameId = Ndr_ObjReadBody( p, Obj, NDR_OUTPUT );
assert( nArray == 1 && NameId == -1 );
pObj = Wlc_NtkObj( pNtk, iObj );
Vec_IntFill( vFanins, 1, pArray[0] );
Wlc_ObjAddFanins( pNtk, pObj, vFanins );
Wlc_ObjSetCo( pNtk, pObj, 0 );
}
Vec_IntFree( vFanins );
// map name IDs into object IDs
vName2Obj = Vec_IntInvert( &pNtk->vNameIds, 0 );
Wlc_NtkForEachObj( pNtk, pObj, i )
{
int * pFanins = Wlc_ObjFanins(pObj);
for ( k = 0; k < Wlc_ObjFaninNum(pObj); k++ )
pFanins[k] = Vec_IntEntry(vName2Obj, pFanins[k]);
}
if ( pNtk->vInits )
{
Vec_IntForEachEntry( &pNtk->vFfs, NameId, i )
Vec_IntWriteEntry( &pNtk->vFfs, i, Vec_IntEntry(vName2Obj, NameId) );
Vec_IntForEachEntry( pNtk->vInits, NameId, i )
if ( NameId > 0 )
Vec_IntWriteEntry( pNtk->vInits, i, Vec_IntEntry(vName2Obj, NameId) );
// move FO/FI to be part of CI/CO
assert( (Vec_IntSize(&pNtk->vFfs) & 1) == 0 );
assert( Vec_IntSize(&pNtk->vFfs) == 2 * Vec_IntSize(pNtk->vInits) );
Wlc_NtkForEachFf( pNtk, pObj, i )
if ( i & 1 )
Wlc_ObjSetCo( pNtk, pObj, 1 );
//else
// Wlc_ObjSetCi( pNtk, pObj );
Vec_IntClear( &pNtk->vFfs );
// convert init values into binary string
//Vec_IntPrint( &p->pNtk->vInits );
pNtk->pInits = Wlc_PrsConvertInitValues( pNtk );
//printf( "%s", p->pNtk->pInits );
}
Vec_IntFree(vName2Obj);
// create fake object names
NameIdMax = Vec_IntFindMax(&pNtk->vNameIds);
nDigits = Abc_Base10Log( NameIdMax+1 );
pNtk->pManName = Abc_NamStart( NameIdMax+1, 10 );
for ( i = 1; i <= NameIdMax; i++ )
{
char pName[100]; sprintf( pName, "s%0*d", nDigits, i );
NameId = Abc_NamStrFindOrAdd( pNtk->pManName, pName, &fFound );
assert( !fFound && i == NameId );
}
//Ndr_NtkPrintNodes( pNtk );
//Wlc_WriteVer( pNtk, "temp_ndr.v", 0, 0 );
// derive topological order
pNtk = Wlc_NtkDupDfs( pTemp = pNtk, 0, 1 );
Wlc_NtkFree( pTemp );
// copy truth tables
if ( vTruths )
{
pNtk->vLutTruths = Vec_WrdStart( Wlc_NtkObjNumMax(pNtk) );
Wlc_NtkForEachObj( pNtk, pObj, i )
{
int iObj = Wlc_ObjId(pNtk, pObj);
int NameId = Wlc_ObjNameId(pNtk, iObj);
word Truth;
if ( pObj->Type != WLC_OBJ_LUT || NameId == 0 )
continue;
Truth = Vec_WrdEntry(vTruths, NameId);
assert( sizeof(void *) == 8 || Wlc_ObjFaninNum(pObj) < 6 );
Vec_WrdWriteEntry( pNtk->vLutTruths, iObj, Truth );
}
Vec_WrdFreeP( &vTruths );
}
//Ndr_NtkPrintNodes( pNtk );
pNtk->fMemPorts = 1; // the network contains memory ports
pNtk->fEasyFfs = 1; // the network contains simple flops
return pNtk;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ndr_DumpNdr( void * pDesign )
{
int i;
char ** pNames = ABC_CALLOC( char *, 10000 );
for ( i = 0; i < 10000; i++ )
{
char Buffer[100];
sprintf( Buffer, "s%d", i );
pNames[i] = Abc_UtilStrsav( Buffer );
}
Ndr_WriteVerilog( "temp.v", pDesign, pNames, 0 );
}
Wlc_Ntk_t * Wlc_ReadNdr( char * pFileName )
{
void * pData = Ndr_Read( pFileName );
Wlc_Ntk_t * pNtk = Wlc_NtkFromNdr( pData );
//Ndr_DumpNdr( pData );
//char * ppNames[10] = { NULL, "a", "b", "c", "d", "e", "f", "g", "h", "i" };
//Ndr_WriteVerilog( NULL, pData, ppNames, 0 );
//Ndr_Delete( pData );
Abc_FrameInputNdr( Abc_FrameGetGlobalFrame(), pData );
return pNtk;
}
void Wlc_ReadNdrTest()
{
Wlc_Ntk_t * pNtk = Wlc_ReadNdr( "top.ndr" );
Wlc_WriteVer( pNtk, "top.v", 0, 0 );
Wlc_NtkFree( pNtk );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|