summaryrefslogtreecommitdiffstats
path: root/src/base/seq/seqCreate.c
blob: b0c2e084e85f61b0fe939a05ae987a27eacc6405 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/**CFile****************************************************************

  FileName    [seqCreate.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Construction and manipulation of sequential AIGs.]

  Synopsis    [Transformations to and from the sequential AIG.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: seqCreate.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "seqInt.h"

/*
    A sequential network is similar to AIG in that it contains only
    AND gates. However, the AND-gates are currently not hashed. 

    When converting AIG into sequential AIG:
    - Const1/PIs/POs remain the same as in the original AIG.
    - Instead of the latches, a new cutset is added, which is currently
      defined as a set of AND gates that have a latch among their fanouts.
    - The edges of a sequential AIG are labeled with latch attributes
      in addition to the complementation attibutes. 
    - The attributes contain information about the number of latches 
      and their initial states. 
    - The number of latches is stored directly on the edges. The initial 
      states are stored in the sequential AIG manager.

    In the current version of the code, the sequential AIG is static 
    in the sense that the new AIG nodes are never created.
    The retiming (or retiming/mapping) is performed by moving the
    latches over the static nodes of the AIG.
    The new initial state after backward retiming is computed 
    by setting up and solving a SAT problem.
*/

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static Abc_Obj_t * Abc_NodeAigToSeq( Abc_Obj_t * pObjNew, Abc_Obj_t * pObj, int Edge, Vec_Int_t * vInitValues );
static void        Abc_NtkAigCutsetCopy( Abc_Ntk_t * pNtk );
static Abc_Obj_t * Abc_NodeSeqToLogic( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanin, Seq_Lat_t * pRing, int nLatches );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////


/**Function*************************************************************

  Synopsis    [Converts combinational AIG with latches into sequential AIG.]

  Description [The const/PI/PO nodes are duplicated. The internal
  nodes are duplicated in the topological order. The dangling nodes
  are not duplicated. The choice nodes are duplicated.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew;
    Abc_Obj_t * pObj, * pFaninNew;
    Vec_Int_t * vInitValues;
    Abc_InitType_t Init;
    int i, k, RetValue;

    // make sure it is an AIG without self-feeding latches
    assert( Abc_NtkIsStrash(pNtk) );
    assert( Abc_NtkIsDfsOrdered(pNtk) );

    if ( RetValue = Abc_NtkRemoveSelfFeedLatches(pNtk) )
        printf( "Modified %d self-feeding latches. The result will not verify.\n", RetValue );
    assert( Abc_NtkCountSelfFeedLatches(pNtk) == 0 );

    // start the network
    pNtkNew = Abc_NtkAlloc( ABC_NTK_SEQ, ABC_FUNC_AIG );
    // duplicate the name and the spec
    pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
    pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);

    // map the constant nodes
    Abc_NtkCleanCopy( pNtk );
    Abc_NtkConst1(pNtk)->pCopy = Abc_NtkConst1(pNtkNew);

    // copy all objects, except the latches and constant
    Vec_PtrFill( pNtkNew->vObjs, Abc_NtkObjNumMax(pNtk), NULL );
    Vec_PtrWriteEntry( pNtkNew->vObjs, 0, Abc_NtkConst1(pNtk)->pCopy );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        if ( i == 0 || Abc_ObjIsLatch(pObj) )
            continue;
        pObj->pCopy = Abc_ObjAlloc( pNtkNew, pObj->Type );
        pObj->pCopy->Id     = pObj->Id;      // the ID is the same for both
        pObj->pCopy->fPhase = pObj->fPhase;  // used to work with choices
        pObj->pCopy->Level  = pObj->Level;   // used for upper bound on clock cycle
        Vec_PtrWriteEntry( pNtkNew->vObjs, pObj->pCopy->Id, pObj->pCopy );
        pNtkNew->nObjs++;
    }
    pNtkNew->nNodes = pNtk->nNodes;
    pNtkNew->nPis   = pNtk->nPis;
    pNtkNew->nPos   = pNtk->nPos;

    // create PI/PO and their names
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        Vec_PtrPush( pNtkNew->vCis, pObj->pCopy );
        Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
    }
    Abc_NtkForEachPo( pNtk, pObj, i ) 
    {
        Vec_PtrPush( pNtkNew->vCos, pObj->pCopy );
        Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
    }

    // relink the choice nodes
    Abc_AigForEachAnd( pNtk, pObj, i )
        if ( pObj->pData )
            pObj->pCopy->pData = ((Abc_Obj_t *)pObj->pData)->pCopy;

    // start the storage for initial states
    Seq_Resize( pNtkNew->pManFunc, Abc_NtkObjNumMax(pNtkNew) );
    // reconnect the internal nodes
    vInitValues = Vec_IntAlloc( 100 );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        // skip constants, PIs, and latches
        if ( Abc_ObjFaninNum(pObj) == 0 || Abc_ObjIsLatch(pObj) )
            continue;
        // process the first fanin
        Vec_IntClear( vInitValues );
        pFaninNew = Abc_NodeAigToSeq( pObj->pCopy, pObj, 0, vInitValues );
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
        // store the initial values
        Vec_IntForEachEntry( vInitValues, Init, k )
            Seq_NodeInsertFirst( pObj->pCopy, 0, Init );
        // skip single-input nodes
        if ( Abc_ObjFaninNum(pObj) == 1 )
            continue;
        // process the second fanin
        Vec_IntClear( vInitValues );
        pFaninNew = Abc_NodeAigToSeq( pObj->pCopy, pObj, 1, vInitValues );
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
        // store the initial values
        Vec_IntForEachEntry( vInitValues, Init, k )
            Seq_NodeInsertFirst( pObj->pCopy, 1, Init );
    }
    Vec_IntFree( vInitValues );

    // set the cutset composed of latch drivers
    Abc_NtkAigCutsetCopy( pNtk );
    Seq_NtkLatchGetEqualFaninNum( pNtkNew );

    // copy EXDC and check correctness
    if ( pNtk->pExdc )
        fprintf( stdout, "Warning: EXDC is not copied when converting to sequential AIG.\n" );
    if ( !Abc_NtkCheck( pNtkNew ) )
        fprintf( stdout, "Abc_NtkAigToSeq(): Network check has failed.\n" );
    return pNtkNew;
}

/**Function*************************************************************

  Synopsis    [Determines the fanin that is transparent for latches.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Obj_t * Abc_NodeAigToSeq( Abc_Obj_t * pObjNew, Abc_Obj_t * pObj, int Edge, Vec_Int_t * vInitValues )
{
    Abc_Obj_t * pFanin, * pFaninNew;
    Abc_InitType_t Init;
    // get the given fanin of the node
    pFanin = Abc_ObjFanin( pObj, Edge );
    // if fanin is the internal node, return its copy in the corresponding polarity
    if ( !Abc_ObjIsLatch(pFanin) )
        return Abc_ObjNotCond( pFanin->pCopy, Abc_ObjFaninC(pObj, Edge) );
    // fanin is a latch
    // get the new fanins
    pFaninNew = Abc_NodeAigToSeq( pObjNew, pFanin, 0, vInitValues );
    // get the initial state
    Init = Abc_LatchInit(pFanin);
    // complement the initial state if the inv is retimed over the latch
    if ( Abc_ObjIsComplement(pFaninNew) ) 
    {
        if ( Init == ABC_INIT_ZERO )
            Init = ABC_INIT_ONE;
        else if ( Init == ABC_INIT_ONE )
            Init = ABC_INIT_ZERO;
        else if ( Init != ABC_INIT_DC )
            assert( 0 );
    }
    // record the initial state
    Vec_IntPush( vInitValues, Init );
    return Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC(pObj, Edge) );
}

/**Function*************************************************************

  Synopsis    [Collects the cut set nodes.]

  Description [These are internal AND gates that have latch fanouts.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkAigCutsetCopy( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pLatch, * pDriver, * pDriverNew;
    int i;
    Abc_NtkIncrementTravId(pNtk);
    Abc_NtkForEachLatch( pNtk, pLatch, i )
    {
        pDriver = Abc_ObjFanin0(pLatch);
        if ( Abc_NodeIsTravIdCurrent(pDriver) || !Abc_NodeIsAigAnd(pDriver) )
            continue;
        Abc_NodeSetTravIdCurrent(pDriver);
        pDriverNew = pDriver->pCopy;
        Vec_PtrPush( pDriverNew->pNtk->vCutSet, pDriverNew );
    }
}

/**Function*************************************************************

  Synopsis    [Converts a sequential AIG into a logic SOP network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkSeqToLogicSop( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew; 
    Abc_Obj_t * pObj, * pObjNew, * pFaninNew;
    Seq_Lat_t * pRing;
    int i;

    assert( Abc_NtkIsSeq(pNtk) );
    // start the network without latches
    pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP );
    // duplicate the nodes
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        Abc_NtkDupObj(pNtkNew, pObj);
        pObj->pCopy->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
    }
    // share and create the latches
    Seq_NtkShareLatches( pNtkNew, pNtk );
    // connect the objects
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        if ( pRing = Seq_NodeGetRing(pObj,0) )
            pFaninNew = pRing->pLatch;
        else
            pFaninNew = Abc_ObjFanin0(pObj)->pCopy;
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );

        if ( pRing = Seq_NodeGetRing(pObj,1) )
            pFaninNew = pRing->pLatch;
        else
            pFaninNew = Abc_ObjFanin1(pObj)->pCopy;
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
    }
    // connect the POs
    Abc_NtkForEachPo( pNtk, pObj, i )
    {
        if ( pRing = Seq_NodeGetRing(pObj,0) )
            pFaninNew = pRing->pLatch;
        else
            pFaninNew = Abc_ObjFanin0(pObj)->pCopy;
        pFaninNew = Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC0(pObj) );
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
    }
    // clean the latch pointers
    Seq_NtkShareLatchesClean( pNtk );

    // add the latches and their names
    Abc_NtkAddDummyLatchNames( pNtkNew );
    Abc_NtkForEachLatch( pNtkNew, pObjNew, i )
    {
        Vec_PtrPush( pNtkNew->vCis, pObjNew );
        Vec_PtrPush( pNtkNew->vCos, pObjNew );
    }
    // fix the problem with complemented and duplicated CO edges
    Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
    if ( !Abc_NtkCheck( pNtkNew ) )
        fprintf( stdout, "Abc_NtkSeqToLogicSop(): Network check has failed.\n" );
    return pNtkNew;
}


/**Function*************************************************************

  Synopsis    [Converts a sequential AIG into a logic SOP network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkSeqToLogicSop_old( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew; 
    Abc_Obj_t * pObj, * pObjNew, * pFaninNew;
    int i;

    assert( Abc_NtkIsSeq(pNtk) );
    // start the network without latches
    pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP );

    // duplicate the nodes, create node functions
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        // skip the constant
        if ( Abc_ObjFaninNum(pObj) == 0 )
            continue;
        // duplicate the node
        Abc_NtkDupObj(pNtkNew, pObj);
        if ( Abc_ObjFaninNum(pObj) == 1 )
        {
            assert( !Abc_ObjFaninC0(pObj) );
            pObj->pCopy->pData = Abc_SopCreateBuf( pNtkNew->pManFunc );
            continue;
        }
        pObj->pCopy->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
    }
    // connect the objects
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        assert( (int)pObj->Id == i );
        // skip PIs and the constant
        if ( Abc_ObjFaninNum(pObj) == 0 )
            continue;
        // create the edge
        pFaninNew = Abc_NodeSeqToLogic( pNtkNew, Abc_ObjFanin0(pObj), Seq_NodeGetRing(pObj,0), Seq_ObjFaninL0(pObj) );
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
        if ( Abc_ObjFaninNum(pObj) == 1 )
        {
            // create the complemented edge
            if ( Abc_ObjFaninC0(pObj) )
                Abc_ObjSetFaninC( pObj->pCopy, 0 );
            continue;
        }
        // create the edge
        pFaninNew = Abc_NodeSeqToLogic( pNtkNew, Abc_ObjFanin1(pObj), Seq_NodeGetRing(pObj,1), Seq_ObjFaninL1(pObj) );
        Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
        // the complemented edges are subsumed by the node function
    }
    // add the latches and their names
    Abc_NtkAddDummyLatchNames( pNtkNew );
    Abc_NtkForEachLatch( pNtkNew, pObjNew, i )
    {
        Vec_PtrPush( pNtkNew->vCis, pObjNew );
        Vec_PtrPush( pNtkNew->vCos, pObjNew );
    }
    // fix the problem with complemented and duplicated CO edges
    Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
    if ( !Abc_NtkCheck( pNtkNew ) )
        fprintf( stdout, "Abc_NtkSeqToLogicSop(): Network check has failed.\n" );
    return pNtkNew;
}
 

/**Function*************************************************************

  Synopsis    [Creates latches on one edge.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Obj_t * Abc_NodeSeqToLogic( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanin, Seq_Lat_t * pRing, int nLatches )
{
    Abc_Obj_t * pLatch;
    if ( nLatches == 0 )
    {
        assert( pFanin->pCopy );
        return pFanin->pCopy;
    }
    pFanin = Abc_NodeSeqToLogic( pNtkNew, pFanin, Seq_LatNext(pRing), nLatches - 1 );
    pLatch = Abc_NtkCreateLatch( pNtkNew );
    pLatch->pData = (void *)Seq_LatInit( pRing );
    Abc_ObjAddFanin( pLatch, pFanin );
    return pLatch;    
}

/**Function*************************************************************

  Synopsis    [Makes sure that every node in the table is in the network and vice versa.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
bool Abc_NtkSeqCheck( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj;
    int i, nFanins;
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        nFanins = Abc_ObjFaninNum(pObj);
        if ( nFanins == 0 )
        {
            if ( pObj != Abc_NtkConst1(pNtk) )
            {
                printf( "Abc_SeqCheck: The AIG has non-standard constant nodes.\n" );
                return 0;
            }
            continue;
        }
        if ( nFanins == 1 )
        {
            printf( "Abc_SeqCheck: The AIG has single input nodes.\n" );
            return 0;
        }
        if ( nFanins > 2 )
        {
            printf( "Abc_SeqCheck: The AIG has non-standard nodes.\n" );
            return 0;
        }
    }
    // check the correctness of the internal representation of the initial states
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        nFanins = Abc_ObjFaninNum(pObj);
        if ( nFanins == 0 )
            continue;
        if ( nFanins == 1 )
        {
            if ( Seq_NodeCountLats(pObj, 0) != Seq_ObjFaninL0(pObj) )
            {
                printf( "Abc_SeqCheck: Node %d has mismatch in the number of latches.\n", Abc_ObjName(pObj) );
                return 0;
            }
        }
        // look at both inputs
        if ( Seq_NodeCountLats(pObj, 0) != Seq_ObjFaninL0(pObj) )
        {
            printf( "Abc_SeqCheck: The first fanin of node %d has mismatch in the number of latches.\n", Abc_ObjName(pObj) );
            return 0;
        }
        if ( Seq_NodeCountLats(pObj, 1) != Seq_ObjFaninL1(pObj) )
        {
            printf( "Abc_SeqCheck: The second fanin of node %d has mismatch in the number of latches.\n", Abc_ObjName(pObj) );
            return 0;
        }
    }
    return 1;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////