summaryrefslogtreecommitdiffstats
path: root/src/base/io/ioWriteAiger.c
blob: b1eb40f471aa1ef94da55417294422b38054e0a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

import os

from _cffi_src.utils import build_ffi, compiler_type, extra_link_args


with open(os.path.join(
    os.path.dirname(__file__), "hazmat_src/padding.h"
)) as f:
    types = f.read()

with open(os.path.join(
    os.path.dirname(__file__), "hazmat_src/padding.c"
)) as f:
    functions = f.read()

ffi = build_ffi(
    module_name="_padding",
    cdef_source=types,
    verify_source=functions,
    extra_link_args=extra_link_args(compiler_type()),
)
f='#n287'>287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/**CFile****************************************************************

  FileName    [ioWriteAiger.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Command processing package.]

  Synopsis    [Procedures to write binary AIGER format developed by
  Armin Biere, Johannes Kepler University (http://fmv.jku.at/)]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - December 16, 2006.]

  Revision    [$Id: ioWriteAiger.c,v 1.00 2006/12/16 00:00:00 alanmi Exp $]

***********************************************************************/

// The code in this file is developed in collaboration with Mark Jarvin of Toronto.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "misc/bzlib/bzlib.h"
#include "misc/zlib/zlib.h"
#include "ioAbc.h"



ABC_NAMESPACE_IMPL_START


#ifdef _WIN32
#define vsnprintf _vsnprintf
#endif

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

/*
    The following is taken from the AIGER format description, 
    which can be found at http://fmv.jku.at/aiger
*/


/*
         The AIGER And-Inverter Graph (AIG) Format Version 20061129
         ----------------------------------------------------------
              Armin Biere, Johannes Kepler University, 2006

  This report describes the AIG file format as used by the AIGER library.
  The purpose of this report is not only to motivate and document the
  format, but also to allow independent implementations of writers and
  readers by giving precise and unambiguous definitions.

  ...

Introduction

  The name AIGER contains as one part the acronym AIG of And-Inverter
  Graphs and also if pronounced in German sounds like the name of the
  'Eiger', a mountain in the Swiss alps.  This choice should emphasize the
  origin of this format. It was first openly discussed at the Alpine
  Verification Meeting 2006 in Ascona as a way to provide a simple, compact
  file format for a model checking competition affiliated to CAV 2007.

  ...

Binary Format Definition

  The binary format is semantically a subset of the ASCII format with a
  slightly different syntax.  The binary format may need to reencode
  literals, but translating a file in binary format into ASCII format and
  then back in to binary format will result in the same file.

  The main differences of the binary format to the ASCII format are as
  follows.  After the header the list of input literals and all the
  current state literals of a latch can be omitted.  Furthermore the
  definitions of the AND gates are binary encoded.  However, the symbol
  table and the comment section are as in the ASCII format.

  The header of an AIGER file in binary format has 'aig' as format
  identifier, but otherwise is identical to the ASCII header.  The standard
  file extension for the binary format is therefore '.aig'. 
  
  A header for the binary format is still in ASCII encoding:

    aig M I L O A

  Constants, variables and literals are handled in the same way as in the
  ASCII format.  The first simplifying restriction is on the variable
  indices of inputs and latches.  The variable indices of inputs come first,
  followed by the pseudo-primary inputs of the latches and then the variable
  indices of all LHS of AND gates:

    input variable indices        1,          2,  ... ,  I
    latch variable indices      I+1,        I+2,  ... ,  (I+L)
    AND variable indices      I+L+1,      I+L+2,  ... ,  (I+L+A) == M

  The corresponding unsigned literals are

    input literals                2,          4,  ... ,  2*I
    latch literals            2*I+2,      2*I+4,  ... ,  2*(I+L)
    AND literals          2*(I+L)+2,  2*(I+L)+4,  ... ,  2*(I+L+A) == 2*M
                    
  All literals have to be defined, and therefore 'M = I + L + A'.  With this
  restriction it becomes possible that the inputs and the current state
  literals of the latches do not have to be listed explicitly.  Therefore,
  after the header only the list of 'L' next state literals follows, one per
  latch on a single line, and then the 'O' outputs, again one per line.

  In the binary format we assume that the AND gates are ordered and respect
  the child parent relation.  AND gates with smaller literals on the LHS
  come first.  Therefore we can assume that the literals on the right-hand
  side of a definition of an AND gate are smaller than the LHS literal.
  Furthermore we can sort the literals on the RHS, such that the larger
  literal comes first.  A definition thus consists of three literals
    
      lhs rhs0 rhs1

  with 'lhs' even and 'lhs > rhs0 >= rhs1'.  Also the variable indices are
  pairwise different to avoid combinational self loops.  Since the LHS
  indices of the definitions are all consecutive (as even integers),
  the binary format does not have to keep 'lhs'.  In addition, we can use
  the order restriction and only write the differences 'delta0' and 'delta1'
  instead of 'rhs0' and 'rhs1', with

      delta0 = lhs - rhs0,  delta1 = rhs0 - rhs1
  
  The differences will all be strictly positive, and in practice often very
  small.  We can take advantage of this fact by the simple little-endian
  encoding of unsigned integers of the next section.  After the binary delta
  encoding of the RHSs of all AND gates, the optional symbol table and
  optional comment section start in the same format as in the ASCII case.

  ...

*/

static unsigned Io_ObjMakeLit( int Var, int fCompl )                 { return (Var << 1) | fCompl;                   }
static unsigned Io_ObjAigerNum( Abc_Obj_t * pObj )                   { return (unsigned)(ABC_PTRINT_T)pObj->pCopy;  }
static void     Io_ObjSetAigerNum( Abc_Obj_t * pObj, unsigned Num )  { pObj->pCopy = (Abc_Obj_t *)(ABC_PTRINT_T)Num;     }

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Adds one unsigned AIG edge to the output buffer.]

  Description [This procedure is a slightly modified version of Armin Biere's
  procedure "void encode (FILE * file, unsigned x)" ]
  
  SideEffects [Returns the current writing position.]

  SeeAlso     []

***********************************************************************/
int Io_WriteAigerEncode( unsigned char * pBuffer, int Pos, unsigned x )
{
    unsigned char ch;
    while (x & ~0x7f)
    {
        ch = (x & 0x7f) | 0x80;
//        putc (ch, file);
        pBuffer[Pos++] = ch;
        x >>= 7;
    }
    ch = x;
//    putc (ch, file);
    pBuffer[Pos++] = ch;
    return Pos;
}

/**Function*************************************************************

  Synopsis    [Create the array of literals to be written.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Io_WriteAigerLiterals( Abc_Ntk_t * pNtk )
{
    Vec_Int_t * vLits;
    Abc_Obj_t * pObj, * pDriver;
    int i;
    vLits = Vec_IntAlloc( Abc_NtkCoNum(pNtk) );
    Abc_NtkForEachLatchInput( pNtk, pObj, i )
    {
        pDriver = Abc_ObjFanin0(pObj);
        Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
    }
    Abc_NtkForEachPo( pNtk, pObj, i )
    {
        pDriver = Abc_ObjFanin0(pObj);
        Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
    }
    return vLits;
}

/**Function*************************************************************

  Synopsis    [Creates the binary encoded array of literals.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Str_t * Io_WriteEncodeLiterals( Vec_Int_t * vLits )
{
    Vec_Str_t * vBinary;
    int Pos = 0, Lit, LitPrev, Diff, i;
    vBinary = Vec_StrAlloc( 2 * Vec_IntSize(vLits) );
    LitPrev = Vec_IntEntry( vLits, 0 );
    Pos = Io_WriteAigerEncode( (unsigned char *)Vec_StrArray(vBinary), Pos, LitPrev ); 
    Vec_IntForEachEntryStart( vLits, Lit, i, 1 )
    {
        Diff = Lit - LitPrev;
        Diff = (Lit < LitPrev)? -Diff : Diff;
        Diff = (Diff << 1) | (int)(Lit < LitPrev);
        Pos = Io_WriteAigerEncode( (unsigned char *)Vec_StrArray(vBinary), Pos, Diff );
        LitPrev = Lit;
        if ( Pos + 10 > vBinary->nCap )
            Vec_StrGrow( vBinary, vBinary->nCap+1 );
    }
    vBinary->nSize = Pos;
/*
    // verify
    {
        extern Vec_Int_t * Io_WriteDecodeLiterals( char ** ppPos, int nEntries );
        char * pPos = Vec_StrArray( vBinary );
        Vec_Int_t * vTemp = Io_WriteDecodeLiterals( &pPos, Vec_IntSize(vLits) );
        for ( i = 0; i < Vec_IntSize(vLits); i++ )
        {
            int Entry1 = Vec_IntEntry(vLits,i);
            int Entry2 = Vec_IntEntry(vTemp,i);
            assert( Entry1 == Entry2 );
        }
    }
*/
    return vBinary;
}

/**Function*************************************************************

  Synopsis    [Writes the AIG in the binary AIGER format.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteAiger_old( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols, int fCompact )
{
    ProgressBar * pProgress;
    FILE * pFile;
    Abc_Obj_t * pObj, * pDriver, * pLatch;
    int i, nNodes, nBufferSize, Pos, fExtended;
    unsigned char * pBuffer;
    unsigned uLit0, uLit1, uLit;

    fExtended = Abc_NtkConstrNum(pNtk);

    assert( Abc_NtkIsStrash(pNtk) );
    Abc_NtkForEachLatch( pNtk, pObj, i )
        if ( !Abc_LatchIsInit0(pObj) )
        {
            if ( !fCompact )
            {
                fExtended = 1;
                break;
            }
            fprintf( stdout, "Io_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" );
            return;
        }

    // start the output stream
    pFile = fopen( pFileName, "wb" );
    if ( pFile == NULL )
    {
        fprintf( stdout, "Io_WriteAiger(): Cannot open the output file \"%s\".\n", pFileName );
        return;
    }

    // set the node numbers to be used in the output file
    nNodes = 0;
    Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ );
    Abc_NtkForEachCi( pNtk, pObj, i )
        Io_ObjSetAigerNum( pObj, nNodes++ );
    Abc_AigForEachAnd( pNtk, pObj, i )
        Io_ObjSetAigerNum( pObj, nNodes++ );

    // write the header "M I L O A" where M = I + L + A
    fprintf( pFile, "aig%s %u %u %u %u %u", 
        fCompact? "2" : "",
        Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk), 
        Abc_NtkPiNum(pNtk),
        Abc_NtkLatchNum(pNtk),
        fExtended ? 0 : Abc_NtkPoNum(pNtk),
        Abc_NtkNodeNum(pNtk) );
    // write the extended header "B C J F"
    if ( fExtended )
        fprintf( pFile, " %u %u", Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk), Abc_NtkConstrNum(pNtk) );
    fprintf( pFile, "\n" );

    // if the driver node is a constant, we need to complement the literal below
    // because, in the AIGER format, literal 0/1 is represented as number 0/1
    // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0

    Abc_NtkInvertConstraints( pNtk );
    if ( !fCompact ) 
    {
        // write latch drivers
        Abc_NtkForEachLatch( pNtk, pLatch, i )
        {
            pObj = Abc_ObjFanin0(pLatch);
            pDriver = Abc_ObjFanin0(pObj);
            uLit = Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) );
            if ( Abc_LatchIsInit0(pLatch) )
                fprintf( pFile, "%u\n", uLit );
            else if ( Abc_LatchIsInit1(pLatch) )
                fprintf( pFile, "%u 1\n", uLit );
            else
            {
                // Both None and DC are written as 'uninitialized' e.g. a free boolean value
                assert( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) );
                fprintf( pFile, "%u %u\n", uLit, Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanout0(pLatch)), 0 ) );
            }
        }
        // write PO drivers
        Abc_NtkForEachPo( pNtk, pObj, i )
        {
            pDriver = Abc_ObjFanin0(pObj);
            fprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
        }
    }
    else
    {
        Vec_Int_t * vLits = Io_WriteAigerLiterals( pNtk );
        Vec_Str_t * vBinary = Io_WriteEncodeLiterals( vLits );
        fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), pFile );
        Vec_StrFree( vBinary );
        Vec_IntFree( vLits );
    }
    Abc_NtkInvertConstraints( pNtk );

    // write the nodes into the buffer
    Pos = 0;
    nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge
    pBuffer = ABC_ALLOC( unsigned char, nBufferSize );
    pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        uLit  = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 );
        uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) );
        uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) );
        if ( uLit0 > uLit1 )
        {
            unsigned Temp = uLit0;
            uLit0 = uLit1;
            uLit1 = Temp;
        }
        assert( uLit1 < uLit );
        Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit  - uLit1) );
        Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) );
        if ( Pos > nBufferSize - 10 )
        {
            printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
            fclose( pFile );
            return;
        }
    }
    assert( Pos < nBufferSize );
    Extra_ProgressBarStop( pProgress );

    // write the buffer
    fwrite( pBuffer, 1, Pos, pFile );
    ABC_FREE( pBuffer );

    // write the symbol table
    if ( fWriteSymbols )
    {
        // write PIs
        Abc_NtkForEachPi( pNtk, pObj, i )
            fprintf( pFile, "i%d %s\n", i, Abc_ObjName(pObj) );
        // write latches
        Abc_NtkForEachLatch( pNtk, pObj, i )
            fprintf( pFile, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) );
        // write POs
        Abc_NtkForEachPo( pNtk, pObj, i )
            if ( !fExtended )
                fprintf( pFile, "o%d %s\n", i, Abc_ObjName(pObj) );
            else if ( i < Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk) )
                fprintf( pFile, "b%d %s\n", i, Abc_ObjName(pObj) );
            else
                fprintf( pFile, "c%d %s\n", i - (Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk)), Abc_ObjName(pObj) );
    }

    // write the comment
    fprintf( pFile, "c\n" );
    if ( pNtk->pName && strlen(pNtk->pName) > 0 )
        fprintf( pFile, ".model %s\n", pNtk->pName );
    fprintf( pFile, "This file was produced by ABC on %s\n", Extra_TimeStamp() );
    fprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
    fclose( pFile );
}

/**Function*************************************************************

  Synopsis    [Writes the AIG in the binary AIGER format.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteAigerGz( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols )
{
    ProgressBar * pProgress;
    gzFile pFile;
    Abc_Obj_t * pObj, * pDriver, * pLatch;
    int i, nNodes, Pos, nBufferSize, fExtended;
    unsigned char * pBuffer;
    unsigned uLit0, uLit1, uLit;

    assert( Abc_NtkIsStrash(pNtk) );
    // start the output stream
    pFile = gzopen( pFileName, "wb" ); // if pFileName doesn't end in ".gz" then this acts as a passthrough to fopen
    if ( pFile == NULL )
    {
        fprintf( stdout, "Io_WriteAigerGz(): Cannot open the output file \"%s\".\n", pFileName );
        return;
    }

    fExtended = Abc_NtkConstrNum(pNtk);

    // set the node numbers to be used in the output file
    nNodes = 0;
    Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ );
    Abc_NtkForEachCi( pNtk, pObj, i )
        Io_ObjSetAigerNum( pObj, nNodes++ );
    Abc_AigForEachAnd( pNtk, pObj, i )
        Io_ObjSetAigerNum( pObj, nNodes++ );

    // write the header "M I L O A" where M = I + L + A
    gzprintf( pFile, "aig %u %u %u %u %u", 
              Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk), 
              Abc_NtkPiNum(pNtk),
              Abc_NtkLatchNum(pNtk),
              fExtended ? 0 : Abc_NtkPoNum(pNtk),
              Abc_NtkNodeNum(pNtk) );
    // write the extended header "B C J F"
    if ( fExtended )
        gzprintf( pFile, " %u %u", Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk), Abc_NtkConstrNum(pNtk) );
    gzprintf( pFile, "\n" ); 

    // if the driver node is a constant, we need to complement the literal below
    // because, in the AIGER format, literal 0/1 is represented as number 0/1
    // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0

    // write latch drivers
    Abc_NtkInvertConstraints( pNtk );
    Abc_NtkForEachLatch( pNtk, pLatch, i )
    {
        pObj = Abc_ObjFanin0(pLatch);
        pDriver = Abc_ObjFanin0(pObj);
        uLit = Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) );
        if ( Abc_LatchIsInit0(pLatch) )
            gzprintf( pFile, "%u\n", uLit );
        else if ( Abc_LatchIsInit1(pLatch) )
            gzprintf( pFile, "%u 1\n", uLit );
        else
        {
            // Both None and DC are written as 'uninitialized' e.g. a free boolean value
            assert( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) );
            gzprintf( pFile, "%u %u\n", uLit, Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanout0(pLatch)), 0 ) );
        }
    }
    // write PO drivers
    Abc_NtkForEachPo( pNtk, pObj, i )
    {
        pDriver = Abc_ObjFanin0(pObj);
        gzprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
    }
    Abc_NtkInvertConstraints( pNtk );

    // write the nodes into the buffer
    Pos = 0;
    nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge
    pBuffer = ABC_ALLOC( unsigned char, nBufferSize );
    pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        uLit  = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 );
        uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) );
        uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) );
        if ( uLit0 > uLit1 )
        {
            unsigned Temp = uLit0;
            uLit0 = uLit1;
            uLit1 = Temp;
        }
        assert( uLit1 < uLit );
        Pos = Io_WriteAigerEncode( pBuffer, Pos, uLit  - uLit1 );
        Pos = Io_WriteAigerEncode( pBuffer, Pos, uLit1 - uLit0 );
        if ( Pos > nBufferSize - 10 )
        {
            printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
            gzclose( pFile );
            return;
        }
    }
    assert( Pos < nBufferSize );
    Extra_ProgressBarStop( pProgress );

    // write the buffer
    gzwrite(pFile, pBuffer, Pos);
    ABC_FREE( pBuffer );

    // write the symbol table
    if ( fWriteSymbols )
    {
        // write PIs
        Abc_NtkForEachPi( pNtk, pObj, i )
            gzprintf( pFile, "i%d %s\n", i, Abc_ObjName(pObj) );
        // write latches
        Abc_NtkForEachLatch( pNtk, pObj, i )
            gzprintf( pFile, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) );
        // write POs
        Abc_NtkForEachPo( pNtk, pObj, i )
            if ( !fExtended )
                gzprintf( pFile, "o%d %s\n", i, Abc_ObjName(pObj) );
            else if ( i < Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk) )
                gzprintf( pFile, "b%d %s\n", i, Abc_ObjName(pObj) );
            else
                gzprintf( pFile, "c%d %s\n", i - (Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk)), Abc_ObjName(pObj) );
    }

    // write the comment
    gzprintf( pFile, "c\n" );
    if ( pNtk->pName && strlen(pNtk->pName) > 0 )
        gzprintf( pFile, ".model %s\n", pNtk->pName );
    gzprintf( pFile, "This file was produced by ABC on %s\n", Extra_TimeStamp() );
    gzprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
    gzclose( pFile );
}

 
/**Function*************************************************************

  Synopsis    [Procedure to write data into BZ2 file.]

  Description [Based on the vsnprintf() man page.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
typedef struct bz2file {
  FILE   * f;
  BZFILE * b;
  char   * buf;
  int      nBytes;
  int      nBytesMax;
} bz2file;

int fprintfBz2Aig( bz2file * b, char * fmt, ... ) {
    if (b->b) {
        char * newBuf;
        int bzError;
        va_list ap;
        while (1) {
            va_start(ap,fmt);
            b->nBytes = vsnprintf(b->buf,b->nBytesMax,fmt,ap);
            va_end(ap);
            if (b->nBytes > -1 && b->nBytes < b->nBytesMax)
                break;
            if (b->nBytes > -1)
                b->nBytesMax = b->nBytes + 1;
            else
                b->nBytesMax *= 2;
            if ((newBuf = ABC_REALLOC( char,b->buf,b->nBytesMax )) == NULL)
                return -1;
            else
                b->buf = newBuf;
        }
        BZ2_bzWrite( &bzError, b->b, b->buf, b->nBytes );
        if (bzError == BZ_IO_ERROR) {
            fprintf( stdout, "Ioa_WriteBlif(): I/O error writing to compressed stream.\n" );
            return -1;
        }
        return b->nBytes;
    } else {
        int n;
        va_list ap;
        va_start(ap,fmt);
        n = vfprintf( b->f, fmt, ap);
        va_end(ap);
        return n;
    }
}

/**Function*************************************************************

  Synopsis    [Writes the AIG in the binary AIGER format.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteAiger( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols, int fCompact, int fUnique )
{
    ProgressBar * pProgress;
//    FILE * pFile;
    Abc_Obj_t * pObj, * pDriver, * pLatch;
    int i, nNodes, nBufferSize, bzError, Pos, fExtended;
    unsigned char * pBuffer;
    unsigned uLit0, uLit1, uLit;
    bz2file b;

    // define unique writing
    if ( fUnique )
    {
        fWriteSymbols = 0;
        fCompact = 0;
    }

    fExtended = Abc_NtkConstrNum(pNtk);

    // check that the network is valid
    assert( Abc_NtkIsStrash(pNtk) );
    Abc_NtkForEachLatch( pNtk, pObj, i )
        if ( !Abc_LatchIsInit0(pObj) )
        {
            if ( !fCompact )
            {
                fExtended = 1;
                break;
            }
            fprintf( stdout, "Io_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" );
            return;
        }

    // write the GZ file
    if (!strncmp(pFileName+strlen(pFileName)-3,".gz",3)) 
    {
        Io_WriteAigerGz( pNtk, pFileName, fWriteSymbols );
        return;
    }

    memset(&b,0,sizeof(b));
    b.nBytesMax = (1<<12);
    b.buf = ABC_ALLOC( char,b.nBytesMax );

    // start the output stream
    b.f = fopen( pFileName, "wb" ); 
    if ( b.f == NULL )
    {
        fprintf( stdout, "Ioa_WriteBlif(): Cannot open the output file \"%s\".\n", pFileName );
        ABC_FREE(b.buf);
        return;
    }
    if (!strncmp(pFileName+strlen(pFileName)-4,".bz2",4)) {
        b.b = BZ2_bzWriteOpen( &bzError, b.f, 9, 0, 0 );
        if ( bzError != BZ_OK ) {
            BZ2_bzWriteClose( &bzError, b.b, 0, NULL, NULL );
            fprintf( stdout, "Ioa_WriteBlif(): Cannot start compressed stream.\n" );
            fclose( b.f );
            ABC_FREE(b.buf);
            return;
        }
    }

    // set the node numbers to be used in the output file
    nNodes = 0;
    Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ );
    Abc_NtkForEachCi( pNtk, pObj, i )
        Io_ObjSetAigerNum( pObj, nNodes++ );
    Abc_AigForEachAnd( pNtk, pObj, i )
        Io_ObjSetAigerNum( pObj, nNodes++ );

    // write the header "M I L O A" where M = I + L + A
    fprintfBz2Aig( &b, "aig%s %u %u %u %u %u", 
        fCompact? "2" : "",
        Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk), 
        Abc_NtkPiNum(pNtk),
        Abc_NtkLatchNum(pNtk),
        fExtended ? 0 : Abc_NtkPoNum(pNtk),
        Abc_NtkNodeNum(pNtk) );
    // write the extended header "B C J F"
    if ( fExtended )
        fprintfBz2Aig( &b, " %u %u", Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk), Abc_NtkConstrNum(pNtk) );
    fprintfBz2Aig( &b, "\n" );

    // if the driver node is a constant, we need to complement the literal below
    // because, in the AIGER format, literal 0/1 is represented as number 0/1
    // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0

    Abc_NtkInvertConstraints( pNtk );
    if ( !fCompact ) 
    {
        // write latch drivers
        Abc_NtkForEachLatch( pNtk, pLatch, i )
        {
            pObj = Abc_ObjFanin0(pLatch);
            pDriver = Abc_ObjFanin0(pObj);
            uLit = Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) );
            if ( Abc_LatchIsInit0(pLatch) )
                fprintfBz2Aig( &b, "%u\n", uLit );
            else if ( Abc_LatchIsInit1(pLatch) )
                fprintfBz2Aig( &b, "%u 1\n", uLit );
            else
            {
                // Both None and DC are written as 'uninitialized' e.g. a free boolean value
                assert( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) );
                fprintfBz2Aig( &b, "%u %u\n", uLit, Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanout0(pLatch)), 0 ) );
            }
        }
        // write PO drivers
        Abc_NtkForEachPo( pNtk, pObj, i )
        {
            pDriver = Abc_ObjFanin0(pObj);
            fprintfBz2Aig( &b, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
        }
    }
    else
    {
        Vec_Int_t * vLits = Io_WriteAigerLiterals( pNtk );
        Vec_Str_t * vBinary = Io_WriteEncodeLiterals( vLits );
        if ( !b.b )
            fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), b.f );
        else
        {
            BZ2_bzWrite( &bzError, b.b, Vec_StrArray(vBinary), Vec_StrSize(vBinary) );
            if (bzError == BZ_IO_ERROR) {
                fprintf( stdout, "Io_WriteAiger(): I/O error writing to compressed stream.\n" );
                fclose( b.f );
                ABC_FREE(b.buf);
                Vec_StrFree( vBinary );
                return;
            }
        }
        Vec_StrFree( vBinary );
        Vec_IntFree( vLits );
    }
    Abc_NtkInvertConstraints( pNtk );

    // write the nodes into the buffer
    Pos = 0;
    nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge
    pBuffer = ABC_ALLOC( unsigned char, nBufferSize );
    pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        uLit  = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 );
        uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) );
        uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) );
        if ( uLit0 > uLit1 )
        {
            unsigned Temp = uLit0;
            uLit0 = uLit1;
            uLit1 = Temp;
        }
        assert( uLit1 < uLit );
        Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit  - uLit1) );
        Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) );
        if ( Pos > nBufferSize - 10 )
        {
            printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
            fclose( b.f );
            ABC_FREE(b.buf);
            Extra_ProgressBarStop( pProgress );
            return;
        }
    }
    assert( Pos < nBufferSize );
    Extra_ProgressBarStop( pProgress );

    // write the buffer
    if ( !b.b )
        fwrite( pBuffer, 1, Pos, b.f );
    else
    {
        BZ2_bzWrite( &bzError, b.b, pBuffer, Pos );
        if (bzError == BZ_IO_ERROR) {
            fprintf( stdout, "Io_WriteAiger(): I/O error writing to compressed stream.\n" );
            fclose( b.f );
            ABC_FREE(b.buf);
            return;
        }
    }
    ABC_FREE( pBuffer );

    // write the symbol table
    if ( fWriteSymbols )
    {
        // write PIs
        Abc_NtkForEachPi( pNtk, pObj, i )
            fprintfBz2Aig( &b, "i%d %s\n", i, Abc_ObjName(pObj) );
        // write latches
        Abc_NtkForEachLatch( pNtk, pObj, i )
            fprintfBz2Aig( &b, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) );
        // write POs
        Abc_NtkForEachPo( pNtk, pObj, i )
            if ( !fExtended )
                fprintfBz2Aig( &b, "o%d %s\n", i, Abc_ObjName(pObj) );
            else if ( i < Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk) )
                fprintfBz2Aig( &b, "b%d %s\n", i, Abc_ObjName(pObj) );
            else
                fprintfBz2Aig( &b, "c%d %s\n", i - (Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk)), Abc_ObjName(pObj) );
    }

    // write the comment
    fprintfBz2Aig( &b, "c" );
    if ( !fUnique )
    {
        if ( pNtk->pName && strlen(pNtk->pName) > 0 )
            fprintfBz2Aig( &b, "\n%s%c", pNtk->pName, '\0' );
        fprintfBz2Aig( &b, "\nThis file was written by ABC on %s\n", Extra_TimeStamp() );
        fprintfBz2Aig( &b, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
    }

    // close the file
    if (b.b) {
        BZ2_bzWriteClose( &bzError, b.b, 0, NULL, NULL );
        if (bzError == BZ_IO_ERROR) {
            fprintf( stdout, "Io_WriteAiger(): I/O error closing compressed stream.\n" );
            fclose( b.f );
            ABC_FREE(b.buf);
            return;
        }
    }
    fclose( b.f );
    ABC_FREE(b.buf);
}

ABC_NAMESPACE_IMPL_END

#include "aig/gia/giaAig.h"
#include "aig/saig/saig.h"

ABC_NAMESPACE_IMPL_START

/**Function*************************************************************

  Synopsis    [Writes the AIG in the binary AIGER format.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteAigerCex( Abc_Cex_t * pCex, Abc_Ntk_t * pNtk, void * pG, char * pFileName )
{
    extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters );
    FILE * pFile;
    Aig_Man_t * pAig;
    Aig_Obj_t * pObj, * pObj2;
    Gia_Man_t * pGia = (Gia_Man_t *)pG;
    int k, f, b;
    assert( pCex != NULL );

    // derive AIG
    if ( pNtk != NULL && 
         Abc_NtkPiNum(pNtk)    == pCex->nPis && 
         Abc_NtkLatchNum(pNtk) == pCex->nRegs )
    {
        pAig = Abc_NtkToDar( pNtk, 0, 1 );
    }
    else if ( pGia != NULL && 
         Gia_ManPiNum(pGia)  == pCex->nPis && 
         Gia_ManRegNum(pGia) == pCex->nRegs )
    {
        pAig = Gia_ManToAigSimple( pGia );
    }
    else
    {
        printf( "AIG parameters do not match those of the CEX.\n" );
        return;
    }

    // create output file
    pFile = fopen( pFileName, "wb" );
    fprintf( pFile, "1\n" );
    b = pCex->nRegs;
    for ( k = 0; k < pCex->nRegs; k++ )
        fprintf( pFile, "0" );
    fprintf( pFile, " " );
    Aig_ManCleanMarkA( pAig );
    for ( f = 0; f <= pCex->iFrame; f++ )
    {
        for ( k = 0; k < pCex->nPis; k++ )
        {
            fprintf( pFile, "%d", Abc_InfoHasBit(pCex->pData, b) );
            Aig_ManCi( pAig, k )->fMarkA = Abc_InfoHasBit(pCex->pData, b++);
        }
        fprintf( pFile, " " );
        Aig_ManForEachNode( pAig, pObj, k )
            pObj->fMarkA = (Aig_ObjFanin0(pObj)->fMarkA ^ Aig_ObjFaninC0(pObj)) &
                           (Aig_ObjFanin1(pObj)->fMarkA ^ Aig_ObjFaninC1(pObj));
        Aig_ManForEachCo( pAig, pObj, k )
            pObj->fMarkA = (Aig_ObjFanin0(pObj)->fMarkA ^ Aig_ObjFaninC0(pObj));
        Saig_ManForEachPo( pAig, pObj, k )
            fprintf( pFile, "%d", pObj->fMarkA );
        fprintf( pFile, " " );
        Saig_ManForEachLi( pAig, pObj, k )
            fprintf( pFile, "%d", pObj->fMarkA );
        fprintf( pFile, "\n" );
        if ( f == pCex->iFrame )
            break;
        Saig_ManForEachLi( pAig, pObj, k )
            fprintf( pFile, "%d", pObj->fMarkA );
        fprintf( pFile, " " );
        Saig_ManForEachLiLo( pAig, pObj, pObj2, k )
            pObj2->fMarkA = pObj->fMarkA;
    }  
    assert( b == pCex->nBits );
    fclose( pFile );
    Aig_ManCleanMarkA( pAig );
    Aig_ManStop( pAig );
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END