1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/**CFile****************************************************************
FileName [abcXsim.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Using X-valued simulation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcXsim.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
extern unsigned Gia_ManRandom( int fReset );
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define XVS0 ABC_INIT_ZERO
#define XVS1 ABC_INIT_ONE
#define XVSX ABC_INIT_DC
static inline void Abc_ObjSetXsim( Abc_Obj_t * pObj, int Value ) { pObj->pCopy = (void *)(ABC_PTRINT_T)Value; }
static inline int Abc_ObjGetXsim( Abc_Obj_t * pObj ) { return (int)(ABC_PTRINT_T)pObj->pCopy; }
static inline int Abc_XsimInv( int Value )
{
if ( Value == XVS0 )
return XVS1;
if ( Value == XVS1 )
return XVS0;
assert( Value == XVSX );
return XVSX;
}
static inline int Abc_XsimAnd( int Value0, int Value1 )
{
if ( Value0 == XVS0 || Value1 == XVS0 )
return XVS0;
if ( Value0 == XVSX || Value1 == XVSX )
return XVSX;
assert( Value0 == XVS1 && Value1 == XVS1 );
return XVS1;
}
static inline int Abc_XsimRand2()
{
// return (rand() & 1) ? XVS1 : XVS0;
return (Gia_ManRandom(0) & 1) ? XVS1 : XVS0;
}
static inline int Abc_XsimRand3()
{
int RetValue;
do {
// RetValue = rand() & 3;
RetValue = Gia_ManRandom(0) & 3;
} while ( RetValue == 0 );
return RetValue;
}
static inline int Abc_ObjGetXsimFanin0( Abc_Obj_t * pObj )
{
int RetValue;
RetValue = Abc_ObjGetXsim(Abc_ObjFanin0(pObj));
return Abc_ObjFaninC0(pObj)? Abc_XsimInv(RetValue) : RetValue;
}
static inline int Abc_ObjGetXsimFanin1( Abc_Obj_t * pObj )
{
int RetValue;
RetValue = Abc_ObjGetXsim(Abc_ObjFanin1(pObj));
return Abc_ObjFaninC1(pObj)? Abc_XsimInv(RetValue) : RetValue;
}
static inline void Abc_XsimPrint( FILE * pFile, int Value )
{
if ( Value == XVS0 )
{
fprintf( pFile, "0" );
return;
}
if ( Value == XVS1 )
{
fprintf( pFile, "1" );
return;
}
assert( Value == XVSX );
fprintf( pFile, "x" );
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Performs X-valued simulation of the sequential network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkXValueSimulate( Abc_Ntk_t * pNtk, int nFrames, int fXInputs, int fXState, int fVerbose )
{
Abc_Obj_t * pObj;
int i, f;
assert( Abc_NtkIsStrash(pNtk) );
// srand( 0x12341234 );
Gia_ManRandom( 1 );
// start simulation
Abc_ObjSetXsim( Abc_AigConst1(pNtk), XVS1 );
if ( fXInputs )
{
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, XVSX );
}
else
{
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, Abc_XsimRand2() );
}
if ( fXState )
{
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjSetXsim( Abc_ObjFanout0(pObj), XVSX );
}
else
{
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjSetXsim( Abc_ObjFanout0(pObj), Abc_LatchInit(pObj) );
}
// simulate and print the result
fprintf( stdout, "Frame : Inputs : Latches : Outputs\n" );
for ( f = 0; f < nFrames; f++ )
{
Abc_AigForEachAnd( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, Abc_XsimAnd(Abc_ObjGetXsimFanin0(pObj), Abc_ObjGetXsimFanin1(pObj)) );
Abc_NtkForEachCo( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, Abc_ObjGetXsimFanin0(pObj) );
// print out
fprintf( stdout, "%2d : ", f );
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_XsimPrint( stdout, Abc_ObjGetXsim(pObj) );
fprintf( stdout, " : " );
Abc_NtkForEachLatch( pNtk, pObj, i )
{
// if ( Abc_ObjGetXsim(Abc_ObjFanout0(pObj)) != XVSX )
// printf( " %s=", Abc_ObjName(pObj) );
Abc_XsimPrint( stdout, Abc_ObjGetXsim(Abc_ObjFanout0(pObj)) );
}
fprintf( stdout, " : " );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_XsimPrint( stdout, Abc_ObjGetXsim(pObj) );
if ( Abc_NtkAssertNum(pNtk) )
{
fprintf( stdout, " : " );
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_XsimPrint( stdout, Abc_ObjGetXsim(pObj) );
}
fprintf( stdout, "\n" );
// assign input values
if ( fXInputs )
{
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, XVSX );
}
else
{
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, Abc_XsimRand2() );
}
// transfer the latch values
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjSetXsim( Abc_ObjFanout0(pObj), Abc_ObjGetXsim(Abc_ObjFanin0(pObj)) );
}
}
/**Function*************************************************************
Synopsis [Cycles the circuit to create a new initial state.]
Description [Simulates the circuit with random (or ternary) input
for the given number of timeframes to get a better initial state.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkCycleInitState( Abc_Ntk_t * pNtk, int nFrames, int fUseXval, int fVerbose )
{
Abc_Obj_t * pObj;
int i, f;
assert( Abc_NtkIsStrash(pNtk) );
// srand( 0x12341234 );
Gia_ManRandom( 1 );
// initialize the values
Abc_ObjSetXsim( Abc_AigConst1(pNtk), XVS1 );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjSetXsim( Abc_ObjFanout0(pObj), Abc_LatchInit(pObj) );
// simulate for the given number of timeframes
for ( f = 0; f < nFrames; f++ )
{
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, fUseXval? ABC_INIT_DC : Abc_XsimRand2() );
// Abc_ObjSetXsim( pObj, ABC_INIT_ONE );
Abc_AigForEachAnd( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, Abc_XsimAnd(Abc_ObjGetXsimFanin0(pObj), Abc_ObjGetXsimFanin1(pObj)) );
Abc_NtkForEachCo( pNtk, pObj, i )
Abc_ObjSetXsim( pObj, Abc_ObjGetXsimFanin0(pObj) );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjSetXsim( Abc_ObjFanout0(pObj), Abc_ObjGetXsim(Abc_ObjFanin0(pObj)) );
}
// set the final values
Abc_NtkForEachLatch( pNtk, pObj, i )
{
pObj->pData = (void *)(ABC_PTRINT_T)Abc_ObjGetXsim(Abc_ObjFanout0(pObj));
// printf( "%d", Abc_LatchIsInit1(pObj) );
}
// printf( "\n" );
}
///////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|