summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcVerify.c
blob: c6782b071c53b05b22c0ab34d666ef7cd4bec571 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/**CFile****************************************************************

  FileName    [abcVerify.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Combinational and sequential verification for two networks.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcVerify.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abc.h"
#include "fraig.h"
#include "sim.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////
 
static void  Abc_NtkVerifyReportError( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int * pModel );
static void  Abc_NtkVerifyReportErrorSeq( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int * pModel, int nFrames );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Verifies combinational equivalence by brute-force SAT.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkCecSat( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nConfLimit, int nInsLimit )
{
    Abc_Ntk_t * pMiter;
    Abc_Ntk_t * pCnf;
    int RetValue;

    // get the miter of the two networks
    pMiter = Abc_NtkMiter( pNtk1, pNtk2, 1 );
    if ( pMiter == NULL )
    {
        printf( "Miter computation has failed.\n" );
        return;
    }
    RetValue = Abc_NtkMiterIsConstant( pMiter );
    if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT after structural hashing.\n" );
        // report the error
        pMiter->pModel = Abc_NtkVerifyGetCleanModel( pMiter, 1 );
        Abc_NtkVerifyReportError( pNtk1, pNtk2, pMiter->pModel );
        FREE( pMiter->pModel );
        Abc_NtkDelete( pMiter );
        return;
    }
    if ( RetValue == 1 )
    {
        Abc_NtkDelete( pMiter );
        printf( "Networks are equivalent after structural hashing.\n" );
        return;
    }

    // convert the miter into a CNF
    pCnf = Abc_NtkRenode( pMiter, 0, 100, 1, 0, 0, 0 );
    Abc_NtkDelete( pMiter );
    if ( pCnf == NULL )
    {
        printf( "Renoding for CNF has failed.\n" );
        return;
    }

    // solve the CNF using the SAT solver
    RetValue = Abc_NtkMiterSat( pCnf, (sint64)nConfLimit, (sint64)nInsLimit, 0, 0, NULL, NULL );
    if ( RetValue == -1 )
        printf( "Networks are undecided (SAT solver timed out).\n" );
    else if ( RetValue == 0 )
        printf( "Networks are NOT EQUIVALENT after SAT.\n" );
    else
        printf( "Networks are equivalent after SAT.\n" );
    if ( pCnf->pModel )
        Abc_NtkVerifyReportError( pNtk1, pNtk2, pCnf->pModel );
    FREE( pCnf->pModel );
    Abc_NtkDelete( pCnf );
}


/**Function*************************************************************

  Synopsis    [Verifies sequential equivalence by fraiging followed by SAT.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkCecFraig( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, int fVerbose )
{
    Prove_Params_t Params, * pParams = &Params;
//    Fraig_Params_t Params;
//    Fraig_Man_t * pMan;
    Abc_Ntk_t * pMiter;
    int RetValue;

    // get the miter of the two networks
    pMiter = Abc_NtkMiter( pNtk1, pNtk2, 1 );
    if ( pMiter == NULL )
    {
        printf( "Miter computation has failed.\n" );
        return;
    }
    RetValue = Abc_NtkMiterIsConstant( pMiter );
    if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT after structural hashing.\n" );
        // report the error
        pMiter->pModel = Abc_NtkVerifyGetCleanModel( pMiter, 1 );
        Abc_NtkVerifyReportError( pNtk1, pNtk2, pMiter->pModel );
        FREE( pMiter->pModel );
        Abc_NtkDelete( pMiter );
        return;
    }
    if ( RetValue == 1 )
    {
        printf( "Networks are equivalent after structural hashing.\n" );
        Abc_NtkDelete( pMiter );
        return;
    }
/*
    // convert the miter into a FRAIG
    Fraig_ParamsSetDefault( &Params );
    Params.fVerbose = fVerbose;
    Params.nSeconds = nSeconds;
//    Params.fFuncRed = 0;
//    Params.nPatsRand = 0;
//    Params.nPatsDyna = 0;
    pMan = Abc_NtkToFraig( pMiter, &Params, 0, 0 ); 
    Fraig_ManProveMiter( pMan );

    // analyze the result
    RetValue = Fraig_ManCheckMiter( pMan );
    // report the result
    if ( RetValue == -1 )
        printf( "Networks are undecided (SAT solver timed out on the final miter).\n" );
    else if ( RetValue == 1 )
        printf( "Networks are equivalent after fraiging.\n" );
    else if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT after fraiging.\n" );
        Abc_NtkVerifyReportError( pNtk1, pNtk2, Fraig_ManReadModel(pMan) );
    }
    else assert( 0 );
    // delete the fraig manager
    Fraig_ManFree( pMan );
    // delete the miter
    Abc_NtkDelete( pMiter );
*/
    // solve the CNF using the SAT solver
    Prove_ParamsSetDefault( pParams );
    pParams->nItersMax = 5;
    RetValue = Abc_NtkMiterProve( &pMiter, pParams );
    if ( RetValue == -1 )
        printf( "Networks are undecided (resource limits is reached).\n" );
    else if ( RetValue == 0 )
    {
        int * pSimInfo = Abc_NtkVerifySimulatePattern( pMiter, pMiter->pModel );
        if ( pSimInfo[0] != 1 )
            printf( "ERROR in Abc_NtkMiterProve(): Generated counter-example is invalid.\n" );
        else
            printf( "Networks are NOT EQUIVALENT.\n" );
        free( pSimInfo );
    }
    else
        printf( "Networks are equivalent.\n" );
    if ( pMiter->pModel )
        Abc_NtkVerifyReportError( pNtk1, pNtk2, pMiter->pModel );
    Abc_NtkDelete( pMiter );
}

/**Function*************************************************************

  Synopsis    [Verifies sequential equivalence by brute-force SAT.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkSecSat( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nConfLimit, int nInsLimit, int nFrames )
{
    Abc_Ntk_t * pMiter;
    Abc_Ntk_t * pFrames;
    Abc_Ntk_t * pCnf;
    int RetValue;

    // get the miter of the two networks
    pMiter = Abc_NtkMiter( pNtk1, pNtk2, 0 );
    if ( pMiter == NULL )
    {
        printf( "Miter computation has failed.\n" );
        return;
    }
    RetValue = Abc_NtkMiterIsConstant( pMiter );
    if ( RetValue == 0 )
    {
        Abc_NtkDelete( pMiter );
        printf( "Networks are NOT EQUIVALENT after structural hashing.\n" );
        return;
    }
    if ( RetValue == 1 )
    {
        Abc_NtkDelete( pMiter );
        printf( "Networks are equivalent after structural hashing.\n" );
        return;
    }

    // create the timeframes
    pFrames = Abc_NtkFrames( pMiter, nFrames, 1 );
    Abc_NtkDelete( pMiter );
    if ( pFrames == NULL )
    {
        printf( "Frames computation has failed.\n" );
        return;
    }
    RetValue = Abc_NtkMiterIsConstant( pFrames );
    if ( RetValue == 0 )
    {
        Abc_NtkDelete( pFrames );
        printf( "Networks are NOT EQUIVALENT after framing.\n" );
        return;
    }
    if ( RetValue == 1 )
    {
        Abc_NtkDelete( pFrames );
        printf( "Networks are equivalent after framing.\n" );
        return;
    }

    // convert the miter into a CNF
    pCnf = Abc_NtkRenode( pFrames, 0, 100, 1, 0, 0, 0 );
    Abc_NtkDelete( pFrames );
    if ( pCnf == NULL )
    {
        printf( "Renoding for CNF has failed.\n" );
        return;
    }

    // solve the CNF using the SAT solver
    RetValue = Abc_NtkMiterSat( pCnf, (sint64)nConfLimit, (sint64)nInsLimit, 0, 0, NULL, NULL );
    if ( RetValue == -1 )
        printf( "Networks are undecided (SAT solver timed out).\n" );
    else if ( RetValue == 0 )
        printf( "Networks are NOT EQUIVALENT after SAT.\n" );
    else
        printf( "Networks are equivalent after SAT.\n" );
    Abc_NtkDelete( pCnf );
}

/**Function*************************************************************

  Synopsis    [Verifies combinational equivalence by fraiging followed by SAT]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkSecFraig( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, int nFrames, int fVerbose )
{
    Fraig_Params_t Params;
    Fraig_Man_t * pMan;
    Abc_Ntk_t * pMiter;
    Abc_Ntk_t * pFrames;
    int RetValue;

    // get the miter of the two networks
    pMiter = Abc_NtkMiter( pNtk1, pNtk2, 0 );
    if ( pMiter == NULL )
    {
        printf( "Miter computation has failed.\n" );
        return;
    }
    RetValue = Abc_NtkMiterIsConstant( pMiter );
    if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT after structural hashing.\n" );
        // report the error
        pMiter->pModel = Abc_NtkVerifyGetCleanModel( pMiter, nFrames );
        Abc_NtkVerifyReportErrorSeq( pNtk1, pNtk2, pMiter->pModel, nFrames );
        FREE( pMiter->pModel );
        Abc_NtkDelete( pMiter );
        return;
    }
    if ( RetValue == 1 )
    {
        Abc_NtkDelete( pMiter );
        printf( "Networks are equivalent after structural hashing.\n" );
        return;
    }

    // create the timeframes
    pFrames = Abc_NtkFrames( pMiter, nFrames, 1 );
    Abc_NtkDelete( pMiter );
    if ( pFrames == NULL )
    {
        printf( "Frames computation has failed.\n" );
        return;
    }
    RetValue = Abc_NtkMiterIsConstant( pFrames );
    if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT after framing.\n" );
        // report the error
        pFrames->pModel = Abc_NtkVerifyGetCleanModel( pFrames, 1 );
        Abc_NtkVerifyReportErrorSeq( pNtk1, pNtk2, pFrames->pModel, nFrames );
        FREE( pFrames->pModel );
        Abc_NtkDelete( pFrames );
        return;
    }
    if ( RetValue == 1 )
    {
        Abc_NtkDelete( pFrames );
        printf( "Networks are equivalent after framing.\n" );
        return;
    }

    // convert the miter into a FRAIG
    Fraig_ParamsSetDefault( &Params );
    Params.fVerbose = fVerbose;
    Params.nSeconds = nSeconds;
//    Params.fFuncRed = 0;
//    Params.nPatsRand = 0;
//    Params.nPatsDyna = 0;
    pMan = Abc_NtkToFraig( pFrames, &Params, 0, 0 ); 
    Fraig_ManProveMiter( pMan );

    // analyze the result
    RetValue = Fraig_ManCheckMiter( pMan );
    // report the result
    if ( RetValue == -1 )
        printf( "Networks are undecided (SAT solver timed out on the final miter).\n" );
    else if ( RetValue == 1 )
        printf( "Networks are equivalent after fraiging.\n" );
    else if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT after fraiging.\n" );
        Abc_NtkVerifyReportErrorSeq( pNtk1, pNtk2, Fraig_ManReadModel(pMan), nFrames );
    }
    else assert( 0 );
    // delete the fraig manager
    Fraig_ManFree( pMan );
    // delete the miter
    Abc_NtkDelete( pFrames );
}

/**Function*************************************************************

  Synopsis    [Returns a dummy pattern full of zeros.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int * Abc_NtkVerifyGetCleanModel( Abc_Ntk_t * pNtk, int nFrames )
{
    int * pModel = ALLOC( int, Abc_NtkCiNum(pNtk) * nFrames );
    memset( pModel, 0, sizeof(int) * Abc_NtkCiNum(pNtk) * nFrames );
    return pModel;
}

/**Function*************************************************************

  Synopsis    [Returns the PO values under the given input pattern.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int * Abc_NtkVerifySimulatePattern( Abc_Ntk_t * pNtk, int * pModel )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pNode;
    int * pValues, Value0, Value1, i;
    int fStrashed = 0;
    if ( !Abc_NtkIsStrash(pNtk) )
    {
        pNtk = Abc_NtkStrash(pNtk, 0, 0);
        fStrashed = 1;
    }
    // increment the trav ID
    Abc_NtkIncrementTravId( pNtk );
    // set the CI values
    Abc_NtkForEachCi( pNtk, pNode, i )
        pNode->pCopy = (void *)pModel[i];
    // simulate in the topological order
    vNodes = Abc_NtkDfs( pNtk, 1 );
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
//        if ( Abc_NodeIsConst(pNode) )
//            pNode->pCopy = NULL;
//        else
        {
            Value0 = ((int)Abc_ObjFanin0(pNode)->pCopy) ^ Abc_ObjFaninC0(pNode);
            Value1 = ((int)Abc_ObjFanin1(pNode)->pCopy) ^ Abc_ObjFaninC1(pNode);
            pNode->pCopy = (void *)(Value0 & Value1);
        }
    }
    Vec_PtrFree( vNodes );
    // fill the output values
    pValues = ALLOC( int, Abc_NtkCoNum(pNtk) );
    Abc_NtkForEachCo( pNtk, pNode, i )
        pValues[i] = ((int)Abc_ObjFanin0(pNode)->pCopy) ^ Abc_ObjFaninC0(pNode);
    if ( fStrashed )
        Abc_NtkDelete( pNtk );
    return pValues;
}


/**Function*************************************************************

  Synopsis    [Reports mismatch between the two networks.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVerifyReportError( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int * pModel )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pNode;
    int * pValues1, * pValues2;
    int nErrors, nPrinted, i, iNode = -1;

    assert( Abc_NtkCiNum(pNtk1) == Abc_NtkCiNum(pNtk2) );
    assert( Abc_NtkCoNum(pNtk1) == Abc_NtkCoNum(pNtk2) );
    // get the CO values under this model
    pValues1 = Abc_NtkVerifySimulatePattern( pNtk1, pModel );
    pValues2 = Abc_NtkVerifySimulatePattern( pNtk2, pModel );
    // count the mismatches
    nErrors = 0;
    for ( i = 0; i < Abc_NtkCoNum(pNtk1); i++ )
        nErrors += (int)( pValues1[i] != pValues2[i] );
    printf( "Verification failed for %d outputs: ", nErrors );
    // print the first 3 outputs
    nPrinted = 0;
    for ( i = 0; i < Abc_NtkCoNum(pNtk1); i++ )
        if ( pValues1[i] != pValues2[i] )
        {
            if ( iNode == -1 )
                iNode = i;
            printf( " %s", Abc_ObjName(Abc_NtkCo(pNtk1,i)) );
            if ( ++nPrinted == 3 )
                break;
        }
    if ( nPrinted != nErrors )
        printf( " ..." );
    printf( "\n" );
    // report mismatch for the first output
    if ( iNode >= 0 )
    {
        printf( "Output %s: Value in Network1 = %d. Value in Network2 = %d.\n", 
            Abc_ObjName(Abc_NtkCo(pNtk1,iNode)), pValues1[iNode], pValues2[iNode] );
        printf( "Input pattern: " );
        // collect PIs in the cone
        pNode = Abc_NtkCo(pNtk1,iNode);
        vNodes = Abc_NtkNodeSupport( pNtk1, &pNode, 1 );
        // set the PI numbers
        Abc_NtkForEachCi( pNtk1, pNode, i )
            pNode->pCopy = (void*)i;
        // print the model
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            assert( Abc_ObjIsCi(pNode) );
            printf( " %s=%d", Abc_ObjName(pNode), pModel[(int)pNode->pCopy] );
        }
        printf( "\n" );
        Vec_PtrFree( vNodes );
    }
    free( pValues1 );
    free( pValues2 );
}


/**Function*************************************************************

  Synopsis    [Computes the COs in the support of the PO in the given frame.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkGetSeqPoSupp( Abc_Ntk_t * pNtk, int iFrame, int iNumPo )
{
    Abc_Ntk_t * pFrames;
    Abc_Obj_t * pObj, * pNodePo;
    Vec_Ptr_t * vSupp;
    int i, k;
    // get the timeframes of the network
    pFrames = Abc_NtkFrames( pNtk, iFrame + 1, 0 );
//Abc_NtkShowAig( pFrames );

    // get the PO of the timeframes
    pNodePo = Abc_NtkPo( pFrames, iFrame * Abc_NtkPoNum(pNtk) + iNumPo );
    // set the support
    vSupp   = Abc_NtkNodeSupport( pFrames, &pNodePo, 1 );
    // mark the support of the frames
    Abc_NtkForEachCi( pFrames, pObj, i )
        pObj->pCopy = NULL;
    Vec_PtrForEachEntry( vSupp, pObj, i )
        pObj->pCopy = (void *)1;
    // mark the support of the network if the support of the timeframes is marked
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->pCopy = NULL;
    Abc_NtkForEachLatch( pNtk, pObj, i )
        if ( Abc_NtkLatch(pFrames, i)->pCopy )
            pObj->pCopy = (void *)1;
    Abc_NtkForEachPi( pNtk, pObj, i )
        for ( k = 0; k <= iFrame; k++ )
            if ( Abc_NtkPi(pFrames, k*Abc_NtkPiNum(pNtk) + i)->pCopy )
                pObj->pCopy = (void *)1;
    // free stuff
    Vec_PtrFree( vSupp );
    Abc_NtkDelete( pFrames );
}

/**Function*************************************************************

  Synopsis    [Reports mismatch between the two sequential networks.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVerifyReportErrorSeq( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int * pModel, int nFrames )
{
    Vec_Ptr_t * vInfo1, * vInfo2;
    Abc_Obj_t * pObj, * pObjError, * pObj1, * pObj2;
    int ValueError1, ValueError2;
    unsigned * pPats1, * pPats2;
    int i, o, k, nErrors, iFrameError, iNodePo, nPrinted;
    int fRemove1 = 0, fRemove2 = 0;

    if ( !Abc_NtkIsStrash(pNtk1) )
        fRemove1 = 1, pNtk1 = Abc_NtkStrash( pNtk1, 0, 0 );
    if ( !Abc_NtkIsStrash(pNtk2) )
        fRemove2 = 1, pNtk2 = Abc_NtkStrash( pNtk2, 0, 0 );

    // simulate sequential circuits
    vInfo1 = Sim_SimulateSeqModel( pNtk1, nFrames, pModel );
    vInfo2 = Sim_SimulateSeqModel( pNtk2, nFrames, pModel );

    // look for a discrepancy in the PO values
    nErrors = 0;
    pObjError = NULL;
    for ( i = 0; i < nFrames; i++ )
    {
        if ( pObjError )
            break;
        Abc_NtkForEachPo( pNtk1, pObj1, o )
        {
            pObj2  = Abc_NtkPo( pNtk2, o );
            pPats1 = Sim_SimInfoGet(vInfo1, pObj1);
            pPats2 = Sim_SimInfoGet(vInfo2, pObj2);
            if ( pPats1[i] == pPats2[i] )
                continue;
            nErrors++;
            if ( pObjError == NULL )
            {
                pObjError   = pObj1;
                iFrameError = i;
                iNodePo     = o;
                ValueError1 = (pPats1[i] > 0);
                ValueError2 = (pPats2[i] > 0);
            }
        }
    }

    if ( pObjError == NULL )
    {
        printf( "No output mismatches detected.\n" );
        Sim_UtilInfoFree( vInfo1 );
        Sim_UtilInfoFree( vInfo2 );
        if ( fRemove1 ) Abc_NtkDelete( pNtk1 );
        if ( fRemove2 ) Abc_NtkDelete( pNtk2 );
        return;
    }

    printf( "Verification failed for %d output%s of frame %d: ", nErrors, (nErrors>1? "s":""), iFrameError+1 );
    // print the first 3 outputs
    nPrinted = 0;
    Abc_NtkForEachPo( pNtk1, pObj1, o )
    {
        pObj2 = Abc_NtkPo( pNtk2, o );
        pPats1 = Sim_SimInfoGet(vInfo1, pObj1);
        pPats2 = Sim_SimInfoGet(vInfo2, pObj2);
        if ( pPats1[iFrameError] == pPats2[iFrameError] )
            continue;
        printf( " %s", Abc_ObjName(pObj1) );
        if ( ++nPrinted == 3 )
            break;
    }
    if ( nPrinted != nErrors )
        printf( " ..." );
    printf( "\n" );

    // mark CIs of the networks in the cone of influence of this output
    Abc_NtkGetSeqPoSupp( pNtk1, iFrameError, iNodePo );
    Abc_NtkGetSeqPoSupp( pNtk2, iFrameError, iNodePo );

    // report mismatch for the first output
    printf( "Output %s: Value in Network1 = %d. Value in Network2 = %d.\n", 
        Abc_ObjName(pObjError), ValueError1, ValueError2 );

    printf( "The cone of influence of output %s in Network1:\n", Abc_ObjName(pObjError) );
    printf( "PIs: " );
    Abc_NtkForEachPi( pNtk1, pObj, i )
        if ( pObj->pCopy )
            printf( "%s ", Abc_ObjName(pObj) );
    printf( "\n" );
    printf( "Latches: " );
    Abc_NtkForEachLatch( pNtk1, pObj, i )
        if ( pObj->pCopy )
            printf( "%s ", Abc_ObjName(pObj) );
    printf( "\n" );

    printf( "The cone of influence of output %s in Network2:\n", Abc_ObjName(pObjError) );
    printf( "PIs: " );
    Abc_NtkForEachPi( pNtk2, pObj, i )
        if ( pObj->pCopy )
            printf( "%s ", Abc_ObjName(pObj) );
    printf( "\n" );
    printf( "Latches: " );
    Abc_NtkForEachLatch( pNtk2, pObj, i )
        if ( pObj->pCopy )
            printf( "%s ", Abc_ObjName(pObj) );
    printf( "\n" );

    // print the patterns
    for ( i = 0; i <= iFrameError; i++ )
    {
        printf( "Frame %d:  ", i+1 );

        printf( "PI(1):" );
        Abc_NtkForEachPi( pNtk1, pObj, k )
            if ( pObj->pCopy )
                printf( "%d", Sim_SimInfoGet(vInfo1, pObj)[i] > 0 );
        printf( " " );
        printf( "L(1):" );
        Abc_NtkForEachLatch( pNtk1, pObj, k )
            if ( pObj->pCopy )
                printf( "%d", Sim_SimInfoGet(vInfo1, pObj)[i] > 0 );
        printf( " " );
        printf( "%s(1):", Abc_ObjName(pObjError) );
        printf( "%d", Sim_SimInfoGet(vInfo1, pObjError)[i] > 0 );

        printf( "  " );

        printf( "PI(2):" );
        Abc_NtkForEachPi( pNtk2, pObj, k )
            if ( pObj->pCopy )
                printf( "%d", Sim_SimInfoGet(vInfo2, pObj)[i] > 0 );
        printf( " " );
        printf( "L(2):" );
        Abc_NtkForEachLatch( pNtk2, pObj, k )
            if ( pObj->pCopy )
                printf( "%d", Sim_SimInfoGet(vInfo2, pObj)[i] > 0 );
        printf( " " );
        printf( "%s(2):", Abc_ObjName(pObjError) );
        printf( "%d", Sim_SimInfoGet(vInfo2, pObjError)[i] > 0 );

        printf( "\n" );
    }
    Abc_NtkForEachCi( pNtk1, pObj, i )
        pObj->pCopy = NULL;
    Abc_NtkForEachCi( pNtk2, pObj, i )
        pObj->pCopy = NULL;

    Sim_UtilInfoFree( vInfo1 );
    Sim_UtilInfoFree( vInfo2 );
    if ( fRemove1 ) Abc_NtkDelete( pNtk1 );
    if ( fRemove2 ) Abc_NtkDelete( pNtk2 );
}

/**Function*************************************************************

  Synopsis    [Simulates buggy miter emailed by Mike.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkSimulteBuggyMiter( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj;
    int i;
    int * pModel1, * pModel2, * pResult1, * pResult2;
    char * vPiValues1 = "01001011100000000011010110101000000";
    char * vPiValues2 = "11001101011101011111110100100010001";

    assert( strlen(vPiValues1) == (unsigned)Abc_NtkPiNum(pNtk) );
    assert( 1 == Abc_NtkPoNum(pNtk) );

    pModel1 = ALLOC( int, Abc_NtkCiNum(pNtk) );
    Abc_NtkForEachPi( pNtk, pObj, i )
        pModel1[i] = vPiValues1[i] - '0';
    Abc_NtkForEachLatch( pNtk, pObj, i )
        pModel1[Abc_NtkPiNum(pNtk)+i] = ((int)pObj->pData) - 1;

    pResult1 = Abc_NtkVerifySimulatePattern( pNtk, pModel1 );
    printf( "Value = %d\n", pResult1[0] );

    pModel2 = ALLOC( int, Abc_NtkCiNum(pNtk) );
    Abc_NtkForEachPi( pNtk, pObj, i )
        pModel2[i] = vPiValues2[i] - '0';
    Abc_NtkForEachLatch( pNtk, pObj, i )
        pModel2[Abc_NtkPiNum(pNtk)+i] = pResult1[Abc_NtkPoNum(pNtk)+i];

    pResult2 = Abc_NtkVerifySimulatePattern( pNtk, pModel2 );
    printf( "Value = %d\n", pResult2[0] );

    free( pModel1 );
    free( pModel2 );
    free( pResult1 );
    free( pResult2 );
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////