summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcVanImp.c
blob: 693d0af7e2d5ccd8fb4e3968726f4c4bb74a87be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/**CFile****************************************************************

  FileName    [abcVanImp.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Implementation of van Eijk's method for implications.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - October 2, 2005.]

  Revision    [$Id: abcVanImp.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abc.h"
#include "fraig.h"
#include "sim.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Van_Man_t_ Van_Man_t;
struct Van_Man_t_
{
    // single frame representation
    Abc_Ntk_t *      pNtkSingle;    // single frame
    Vec_Int_t *      vCounters;     // the counters of 1s in the simulation info
    Vec_Ptr_t *      vZeros;        // the set of constant 0 candidates
    Vec_Int_t *      vImps;         // the set of all implications
    Vec_Int_t *      vImpsMis;      // the minimum independent set of implications
    // multiple frame representation
    Abc_Ntk_t *      pNtkMulti;     // multiple frame
    Vec_Ptr_t *      vCorresp;      // the correspondence between single frame and multiple frames
    // parameters
    int              nFrames;       // the number of timeframes
    int              nWords;        // the number of simulation words
    int              nIdMax;        // the maximum ID in the single frame
    int              fVerbose;      // the verbosiness flag
    // statistics
    int              nPairsAll;
    int              nImpsAll;
    int              nEquals;
    int              nZeros;
    // runtime
    int              timeAll;
    int              timeSim;
    int              timeAdd;
    int              timeCheck;
    int              timeInfo;
    int              timeMis;
};

static void           Abc_NtkVanImpCompute( Van_Man_t * p );
static Vec_Ptr_t *    Abc_NtkVanImpSortByOnes( Van_Man_t * p );
static void           Abc_NtkVanImpComputeAll( Van_Man_t * p );
static Vec_Int_t *    Abc_NtkVanImpComputeMis( Van_Man_t * p );
static void           Abc_NtkVanImpManFree( Van_Man_t * p );
static void           Abc_NtkVanImpFilter( Van_Man_t * p, Fraig_Man_t * pFraig, Vec_Ptr_t * vZeros, Vec_Int_t * vImps );
static int            Abc_NtkVanImpCountEqual( Van_Man_t * p );

static Abc_Ntk_t *    Abc_NtkVanImpDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vZeros, Vec_Int_t * vImps );

extern Abc_Ntk_t *    Abc_NtkVanEijkFrames( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames, int fAddLast, int fShortNames );
extern void           Abc_NtkVanEijkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vCorresp, Vec_Ptr_t * vOrder, int fShortNames );
extern Fraig_Man_t *  Abc_NtkVanEijkFraig( Abc_Ntk_t * pMulti, int fInit );

////////////////////////////////////////////////////////////////////////
///                     INLINED FUNCTIONS                            ///
////////////////////////////////////////////////////////////////////////

// returns the correspondence of the node in the frame
static inline Abc_Obj_t * Abc_NodeVanImpReadCorresp( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame ) 
{
    return Vec_PtrEntry( vCorresp, iFrame * Abc_NtkObjNumMax(pNode->pNtk) + pNode->Id ); 
}
// returns the left node of the implication
static inline Abc_Obj_t * Abc_NodeVanGetLeft( Abc_Ntk_t * pNtk, unsigned Imp ) 
{
    return Abc_NtkObj( pNtk, Imp >> 16 );
}
// returns the right node of the implication
static inline Abc_Obj_t * Abc_NodeVanGetRight( Abc_Ntk_t * pNtk, unsigned Imp ) 
{
    return Abc_NtkObj( pNtk, Imp & 0xFFFF );
}
// returns the implication
static inline unsigned Abc_NodeVanGetImp( Abc_Obj_t * pLeft, Abc_Obj_t * pRight ) 
{
    return (pLeft->Id << 16) | pRight->Id;
}
// returns the right node of the implication
static inline void Abc_NodeVanPrintImp( unsigned Imp ) 
{
    printf( "%d -> %d  ", Imp >> 16, Imp & 0xFFFF );
}

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Derives implications that hold sequentially.]

  Description [Adds EXDC network to the current network to record the 
  set of computed sequentially equivalence implications, representing
  a subset of unreachable states.]
               
  SideEffects []
 
  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkVanImp( Abc_Ntk_t * pNtk, int nFrames, int fExdc, int fVerbose )
{
    Fraig_Params_t Params;
    Abc_Ntk_t * pNtkNew;
    Van_Man_t * p;

    assert( Abc_NtkIsStrash(pNtk) );

    // start the manager
    p = ALLOC( Van_Man_t, 1 );
    memset( p, 0, sizeof(Van_Man_t) );
    p->nFrames  = nFrames;
    p->fVerbose = fVerbose;
    p->vCorresp = Vec_PtrAlloc( 100 );

    // FRAIG the network to get rid of combinational equivalences
    Fraig_ParamsSetDefaultFull( &Params );
    p->pNtkSingle = Abc_NtkFraig( pNtk, &Params, 0, 0 );
    p->nIdMax     = Abc_NtkObjNumMax( p->pNtkSingle );
    Abc_AigSetNodePhases( p->pNtkSingle );
    Abc_NtkCleanNext( p->pNtkSingle );
//    if ( fVerbose )
//        printf( "The number of ANDs in 1 timeframe  = %d.\n", Abc_NtkNodeNum(p->pNtkSingle) );

    // derive multiple time-frames and node correspondence (to be used in the inductive case)
    p->pNtkMulti = Abc_NtkVanEijkFrames( p->pNtkSingle, p->vCorresp, nFrames, 1, 0 );
//    if ( fVerbose )
//        printf( "The number of ANDs in %d timeframes = %d.\n", nFrames + 1, Abc_NtkNodeNum(p->pNtkMulti) );

    // get the implications
    Abc_NtkVanImpCompute( p );

    // create the new network with EXDC correspondingn to the computed implications
    if ( fExdc && (Vec_PtrSize(p->vZeros) > 0 || Vec_IntSize(p->vImpsMis) > 0) )
    {
        if ( p->pNtkSingle->pExdc )
        {
            printf( "The old EXDC network is thrown away.\n" );
            Abc_NtkDelete( p->pNtkSingle->pExdc );
            p->pNtkSingle->pExdc = NULL;
        }
        pNtkNew = Abc_NtkDup( p->pNtkSingle );  
        pNtkNew->pExdc = Abc_NtkVanImpDeriveExdc( p->pNtkSingle, p->vZeros, p->vImpsMis );
    }
    else
        pNtkNew = Abc_NtkDup( p->pNtkSingle );  

    // free stuff
    Abc_NtkVanImpManFree( p );
    return pNtkNew;
}

/**Function*************************************************************

  Synopsis    [Frees the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVanImpManFree( Van_Man_t * p )
{
    Abc_NtkDelete( p->pNtkMulti );
    Abc_NtkDelete( p->pNtkSingle );
    Vec_PtrFree( p->vCorresp );
    Vec_PtrFree( p->vZeros );
    Vec_IntFree( p->vCounters );
    Vec_IntFree( p->vImpsMis );
    Vec_IntFree( p->vImps );
    free( p );
}

/**Function*************************************************************

  Synopsis    [Derives the minimum independent set of sequential implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVanImpCompute( Van_Man_t * p )
{
    Fraig_Man_t * pFraig;
    Vec_Ptr_t * vZeros;
    Vec_Int_t * vImps, * vImpsTemp;
    int nIters, clk;

    // compute all implications and count 1s in the simulation info
clk = clock();
    Abc_NtkVanImpComputeAll( p );
p->timeAll += clock() - clk;

    // compute the MIS
clk = clock();
    p->vImpsMis = Abc_NtkVanImpComputeMis( p );
p->timeMis += clock() - clk;

    if ( p->fVerbose )
    {
        printf( "Pairs = %8d. Imps = %8d. Seq = %7d. MIS = %7d. Equ = %5d. Const = %5d.\n", 
            p->nPairsAll, p->nImpsAll, Vec_IntSize(p->vImps), Vec_IntSize(p->vImpsMis), p->nEquals, p->nZeros );
        PRT( "Visiting all nodes pairs while preparing for the inductive case", p->timeAll );
        printf( "Start    :  Seq = %7d.  MIS = %7d.  Const = %5d.\n", Vec_IntSize(p->vImps), Vec_IntSize(p->vImpsMis), Vec_PtrSize(p->vZeros) );
    }

    // iterate to perform the iterative filtering of implications
    for ( nIters = 1; Vec_PtrSize(p->vZeros) > 0 || Vec_IntSize(p->vImps) > 0; nIters++ )
    {
        // FRAIG the ununitialized frames
        pFraig = Abc_NtkVanEijkFraig( p->pNtkMulti, 0 );

        // assuming that zeros and imps hold in the first k-1 frames 
        // check if they hold in the k-th frame
        vZeros = Vec_PtrAlloc( 100 );
        vImps = Vec_IntAlloc( 100 );
        Abc_NtkVanImpFilter( p, pFraig, vZeros, vImps );
        Fraig_ManFree( pFraig );

clk = clock();
        vImpsTemp = p->vImps;
        p->vImps = vImps;
        Vec_IntFree( p->vImpsMis );
        p->vImpsMis = Abc_NtkVanImpComputeMis( p );
        p->vImps = vImpsTemp;
p->timeMis += clock() - clk;

        // report the results
        if ( p->fVerbose )
            printf( "Iter = %2d:  Seq = %7d.  MIS = %7d.  Const = %5d.\n", nIters, Vec_IntSize(vImps), Vec_IntSize(p->vImpsMis), Vec_PtrSize(vZeros) );

        // if the fixed point is reaches, quit the loop
        if ( Vec_PtrSize(vZeros) == Vec_PtrSize(p->vZeros) && Vec_IntSize(vImps) == Vec_IntSize(p->vImps) )
        { // no change
            Vec_PtrFree(vZeros);
            Vec_IntFree(vImps);
            break;
        }

        // update the sets
        Vec_PtrFree( p->vZeros );  p->vZeros = vZeros;
        Vec_IntFree( p->vImps );   p->vImps  = vImps;
    }

    // compute the MIS
clk = clock();
    Vec_IntFree( p->vImpsMis );
    p->vImpsMis = Abc_NtkVanImpComputeMis( p );
//    p->vImpsMis = Vec_IntDup( p->vImps );
p->timeMis += clock() - clk;
    if ( p->fVerbose )
        printf( "Final    :  Seq = %7d.  MIS = %7d.  Const = %5d.\n", Vec_IntSize(p->vImps), Vec_IntSize(p->vImpsMis), Vec_PtrSize(p->vZeros) );


/*
    if ( p->fVerbose )
    {
        PRT( "All   ", p->timeAll   );
        PRT( "Sim   ", p->timeSim   );
        PRT( "Add   ", p->timeAdd   );
        PRT( "Check ", p->timeCheck );
        PRT( "Mis   ", p->timeMis   );
    }
*/

/*
    // print the implications in the MIS
    if ( p->fVerbose )
    {
        Abc_Obj_t * pNode, * pNode1, * pNode2;
        unsigned Imp;
        int i;
        if ( Vec_PtrSize(p->vZeros) )
        {
            printf( "The const nodes are: " );
            Vec_PtrForEachEntry( p->vZeros, pNode, i )
                printf( "%d(%d) ", pNode->Id, pNode->fPhase );
            printf( "\n" );
        }
        if ( Vec_IntSize(p->vImpsMis) )
        {
            printf( "The implications are: " );
            Vec_IntForEachEntry( p->vImpsMis, Imp, i )
            {
                pNode1  = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
                pNode2  = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
                printf( "%d(%d)=>%d(%d) ", pNode1->Id, pNode1->fPhase, pNode2->Id, pNode2->fPhase );
            }
            printf( "\n" );
        }
    }
*/
}

/**Function*************************************************************

  Synopsis    [Filters zeros and implications by performing one inductive step.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVanImpFilter( Van_Man_t * p, Fraig_Man_t * pFraig, Vec_Ptr_t * vZeros, Vec_Int_t * vImps )
{
    ProgressBar * pProgress;
    Abc_Obj_t * pNode, * pNodeM1, * pNodeM2, * pNode1, * pNode2, * pObj;
    Fraig_Node_t * pFNode1, * pFNode2;
    Fraig_Node_t * ppFNodes[2];
    unsigned Imp;
    int i, f, k, clk;

clk = clock();
    for ( f = 0; f < p->nFrames; f++ )
    {
        // add new clauses for zeros
        Vec_PtrForEachEntry( p->vZeros, pNode, i )
        {
            pNodeM1 = Abc_NodeVanImpReadCorresp( pNode, p->vCorresp, f );
            pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
            pFNode1 = Fraig_NotCond( pFNode1, !pNode->fPhase );
            Fraig_ManAddClause( pFraig, &pFNode1, 1 );
        }
        // add new clauses for imps
        Vec_IntForEachEntry( p->vImps, Imp, i )
        {
            pNode1  = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
            pNode2  = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
            pNodeM1 = Abc_NodeVanImpReadCorresp( pNode1, p->vCorresp, f );
            pNodeM2 = Abc_NodeVanImpReadCorresp( pNode2, p->vCorresp, f );
            pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
            pFNode2 = Fraig_NotCond( Abc_ObjRegular(pNodeM2)->pCopy, Abc_ObjIsComplement(pNodeM2) );
            ppFNodes[0] = Fraig_NotCond( pFNode1, !pNode1->fPhase );
            ppFNodes[1] = Fraig_NotCond( pFNode2,  pNode2->fPhase );
//            assert( Fraig_Regular(ppFNodes[0]) != Fraig_Regular(ppFNodes[1]) );
            Fraig_ManAddClause( pFraig, ppFNodes, 2 );
        }
    }
p->timeAdd += clock() - clk;

    // check the zero nodes
clk = clock();
    Vec_PtrClear( vZeros );
    Vec_PtrForEachEntry( p->vZeros, pNode, i )
    {
        pNodeM1 = Abc_NodeVanImpReadCorresp( pNode, p->vCorresp, p->nFrames );
        pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
        pFNode1 = Fraig_Regular(pFNode1);
        pFNode2 = Fraig_ManReadConst1(pFraig);
        if ( pFNode1 == pFNode2 || Fraig_NodeIsEquivalent( pFraig, pFNode1, pFNode2, -1, 100 ) )
            Vec_PtrPush( vZeros, pNode );
        else
        {
            // since we disproved this zero, we should add all possible implications to p->vImps
            // these implications will be checked below and only correct ones will remain
            Abc_NtkForEachObj( p->pNtkSingle, pObj, k )
            {
                if ( Abc_ObjIsPo(pObj) )
                    continue;
                if ( Vec_IntEntry( p->vCounters, pObj->Id ) > 0 )
                    Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode, pObj) );
            }
        }
    }

    // check implications
    pProgress = Extra_ProgressBarStart( stdout, p->vImps->nSize );
    Vec_IntClear( vImps );
    Vec_IntForEachEntry( p->vImps, Imp, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        pNode1  = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
        pNode2  = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
        pNodeM1 = Abc_NodeVanImpReadCorresp( pNode1, p->vCorresp, p->nFrames );
        pNodeM2 = Abc_NodeVanImpReadCorresp( pNode2, p->vCorresp, p->nFrames );
        pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
        pFNode2 = Fraig_NotCond( Abc_ObjRegular(pNodeM2)->pCopy, Abc_ObjIsComplement(pNodeM2) );
        pFNode1 = Fraig_NotCond( pFNode1, !pNode1->fPhase );
        pFNode2 = Fraig_NotCond( pFNode2,  pNode2->fPhase );
        if ( pFNode1 == Fraig_Not(pFNode2) )
        {
            Vec_IntPush( vImps, Imp );
            continue;
        }
        if ( pFNode1 == pFNode2 )
        {
            if ( pFNode1 == Fraig_Not( Fraig_ManReadConst1(pFraig) ) )
                continue;
            if ( pFNode1 == Fraig_ManReadConst1(pFraig) )
            {
                Vec_IntPush( vImps, Imp );
                continue;
            }
            pFNode1 = Fraig_Regular(pFNode1);
            pFNode2 = Fraig_ManReadConst1(pFraig);
            if ( Fraig_NodeIsEquivalent( pFraig, pFNode1, pFNode2, -1, 100 ) )
                Vec_IntPush( vImps, Imp );
            continue;
        }
            
        if ( Fraig_ManCheckClauseUsingSat( pFraig, pFNode1, pFNode2, -1 ) )
            Vec_IntPush( vImps, Imp );
    }
    Extra_ProgressBarStop( pProgress );
p->timeCheck += clock() - clk;
}

/**Function*************************************************************

  Synopsis    [Computes all implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVanImpComputeAll( Van_Man_t * p )
{
    ProgressBar * pProgress;
    Fraig_Man_t * pManSingle;
    Vec_Ptr_t * vInfo;
    Abc_Obj_t * pObj, * pNode1, * pNode2, * pConst1;
    Fraig_Node_t * pFNode1, * pFNode2;
    unsigned * pPats1, * pPats2;
    int nFrames, nUnsigned, RetValue;
    int clk, i, k, Count1, Count2;

    // decide how many frames to simulate
    nFrames   = 32;
    nUnsigned = 32;
    p->nWords = nFrames * nUnsigned;

    // simulate randomly the initialized frames
clk = clock();
    vInfo = Sim_SimulateSeqRandom( p->pNtkSingle, nFrames, nUnsigned );

    // complement the info for those nodes whose phase is 1
    Abc_NtkForEachObj( p->pNtkSingle, pObj, i )
        if ( pObj->fPhase )
            Sim_UtilSetCompl( Sim_SimInfoGet(vInfo, pObj), p->nWords );

    // compute the number of ones for each node
    p->vCounters = Sim_UtilCountOnesArray( vInfo, p->nWords );
p->timeSim += clock() - clk;

    // FRAIG the uninitialized frame
    pManSingle = Abc_NtkVanEijkFraig( p->pNtkSingle, 0 );
    // now pNode->pCopy are assigned the pointers to the corresponding FRAIG nodes

/*
Abc_NtkForEachPi( p->pNtkSingle, pNode1, i )
printf( "PI = %d\n", pNode1->Id );
Abc_NtkForEachLatch( p->pNtkSingle, pNode1, i )
printf( "Latch = %d\n", pNode1->Id );
Abc_NtkForEachPo( p->pNtkSingle, pNode1, i )
printf( "PO = %d\n", pNode1->Id );
*/

    // go through the pairs of signals in the frames
    pProgress = Extra_ProgressBarStart( stdout, p->nIdMax );
    pConst1 = Abc_NtkConst1( p->pNtkSingle );
    p->vImps = Vec_IntAlloc( 100 );
    p->vZeros = Vec_PtrAlloc( 100 );
    Abc_NtkForEachObj( p->pNtkSingle, pNode1, i )
    {
        if ( Abc_ObjIsPo(pNode1) )
            continue;
        if ( pNode1 == pConst1 )
            continue;
        Extra_ProgressBarUpdate( pProgress, i, NULL );

        // get the number of zeros of this node
        Count1 = Vec_IntEntry( p->vCounters, pNode1->Id );
        if ( Count1 == 0 )
        {
            Vec_PtrPush( p->vZeros, pNode1 );
            p->nZeros++;
            continue;
        }
        pPats1 = Sim_SimInfoGet(vInfo, pNode1);

        Abc_NtkForEachObj( p->pNtkSingle, pNode2, k )
        {
            if ( k >= i )
                break;
            if ( Abc_ObjIsPo(pNode2) )
                continue;
            if ( pNode2 == pConst1 )
                continue;
            p->nPairsAll++;

            // here we have a pair of nodes (pNode1 and pNode2) 
            // such that Id(pNode1) < Id(pNode2)
            assert( pNode2->Id < pNode1->Id );

            // get the number of zeros of this node
            Count2 = Vec_IntEntry( p->vCounters, pNode2->Id );
            if ( Count2 == 0 )
                continue;
            pPats2 = Sim_SimInfoGet(vInfo, pNode2);

            // check for implications
            if ( Count1 < Count2 )
            { 
//clk = clock();
                RetValue = Sim_UtilInfoIsImp( pPats1, pPats2, p->nWords );
//p->timeInfo += clock() - clk;
                if ( !RetValue )
                    continue;
                p->nImpsAll++;
                // pPats1 => pPats2  or  pPats1' v pPats2
                pFNode1 = Fraig_NotCond( pNode1->pCopy, !pNode1->fPhase );
                pFNode2 = Fraig_NotCond( pNode2->pCopy,  pNode2->fPhase );
                // check if this implication is combinational
                if ( Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, pFNode2 ) )
                    continue;
                // otherwise record it
                Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode1, pNode2) );
            }
            else if ( Count2 < Count1 )
            { 
//clk = clock();
                RetValue = Sim_UtilInfoIsImp( pPats2, pPats1, p->nWords );
//p->timeInfo += clock() - clk;
                if ( !RetValue )
                    continue;
                p->nImpsAll++;
                // pPats2 => pPats2  or  pPats2' v pPats1
                pFNode2 = Fraig_NotCond( pNode2->pCopy, !pNode2->fPhase );
                pFNode1 = Fraig_NotCond( pNode1->pCopy,  pNode1->fPhase );
                // check if this implication is combinational
                if ( Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, pFNode2 ) )
                    continue;
                // otherwise record it
                Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode2, pNode1) );
            }
            else
            {
//clk = clock();
                RetValue = Sim_UtilInfoIsEqual(pPats1, pPats2, p->nWords);
//p->timeInfo += clock() - clk;
                if ( !RetValue )
                    continue;
                p->nEquals++;
                // get the FRAIG nodes
                pFNode1 = Fraig_NotCond( pNode1->pCopy, pNode1->fPhase );
                pFNode2 = Fraig_NotCond( pNode2->pCopy, pNode2->fPhase );

                // check if this implication is combinational
                if ( Fraig_ManCheckClauseUsingSimInfo( pManSingle, Fraig_Not(pFNode1), pFNode2 ) )
                {
                    if ( !Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, Fraig_Not(pFNode2) ) )
                        Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode2, pNode1) );
                    else
                        assert( 0 ); // impossible for FRAIG
                }
                else
                {
                    Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode1, pNode2) );
                    if ( !Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, Fraig_Not(pFNode2) ) )
                        Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode2, pNode1) );
                }
            }
//            printf( "Implication %d %d -> %d %d \n", pNode1->Id, pNode1->fPhase, pNode2->Id, pNode2->fPhase );
        }
    }
    Fraig_ManFree( pManSingle );
    Sim_UtilInfoFree( vInfo );
    Extra_ProgressBarStop( pProgress );
}


/**Function*************************************************************

  Synopsis    [Sorts the nodes.]

  Description [Sorts the nodes appearing in the left-hand sides of the 
  implications by the number of 1s in their simulation info.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NtkVanImpSortByOnes( Van_Man_t * p )
{
    Abc_Obj_t * pNode, * pList;
    Vec_Ptr_t * vSorted;
    unsigned Imp;
    int i, nOnes;

    // start the sorted array
    vSorted = Vec_PtrStart( p->nWords * 32 );
    // go through the implications
    Abc_NtkIncrementTravId( p->pNtkSingle );
    Vec_IntForEachEntry( p->vImps, Imp, i )
    {
        pNode = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
        assert( !Abc_ObjIsPo(pNode) );
        // if this node is already visited, skip
        if ( Abc_NodeIsTravIdCurrent( pNode ) )
            continue;
        // mark the node as visited
        Abc_NodeSetTravIdCurrent( pNode );

        // add the node to the list
        nOnes = Vec_IntEntry( p->vCounters, pNode->Id );
        pList = Vec_PtrEntry( vSorted, nOnes );
        pNode->pNext = pList;
        Vec_PtrWriteEntry( vSorted, nOnes, pNode );
    }
    return vSorted;
}

/**Function*************************************************************

  Synopsis    [Computes the array of beginnings.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Abc_NtkVanImpComputeBegs( Van_Man_t * p )
{
    Vec_Int_t * vBegins;
    unsigned Imp;
    int i, ItemLast, ItemCur;

    // sort the implications (by the number of the left-hand-side node)
    Vec_IntSort( p->vImps, 0 );

    // start the array of beginnings
    vBegins = Vec_IntStart( p->nIdMax + 1 );

    // mark the begining of each node's implications
    ItemLast = 0;
    Vec_IntForEachEntry( p->vImps, Imp, i )
    {
        ItemCur = (Imp >> 16);
        if ( ItemCur == ItemLast )
            continue;
        Vec_IntWriteEntry( vBegins, ItemCur, i );
        ItemLast = ItemCur;
    }
    // fill in the empty spaces
    ItemLast = Vec_IntSize(p->vImps);
    Vec_IntWriteEntry( vBegins, p->nIdMax, ItemLast );
    Vec_IntForEachEntryReverse( vBegins, ItemCur, i )
    {
        if ( ItemCur == 0 )
            Vec_IntWriteEntry( vBegins, i, ItemLast );
        else 
            ItemLast = ItemCur;
    }

    Imp = Vec_IntEntry( p->vImps, 0 );
    ItemCur = (Imp >> 16);
    for ( i = 0; i <= ItemCur; i++ )
        Vec_IntWriteEntry( vBegins, i, 0 );
    return vBegins;
}

/**Function*************************************************************

  Synopsis    [Derives the minimum subset of implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkVanImpMark_rec( Abc_Obj_t * pNode, Vec_Vec_t * vImpsMis )
{
    Vec_Int_t * vNexts;
    int i, Next;
    // if this node is already visited, skip
    if ( Abc_NodeIsTravIdCurrent( pNode ) )
        return;
    // mark the node as visited
    Abc_NodeSetTravIdCurrent( pNode );
    // mark the children
    vNexts = Vec_VecEntry( vImpsMis, pNode->Id );
    Vec_IntForEachEntry( vNexts, Next, i )
        Abc_NtkVanImpMark_rec( Abc_NtkObj(pNode->pNtk, Next), vImpsMis );
}

/**Function*************************************************************

  Synopsis    [Derives the minimum subset of implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Abc_NtkVanImpComputeMis( Van_Man_t * p )
{
    Abc_Obj_t * pNode, * pNext, * pList;
    Vec_Vec_t * vMatrix;
    Vec_Ptr_t * vSorted;
    Vec_Int_t * vBegins;
    Vec_Int_t * vImpsMis;
    int i, k, iStart, iStop;
    void * pEntry;
    unsigned Imp;

    if ( Vec_IntSize(p->vImps) == 0 )
        return Vec_IntAlloc(0);

    // compute the sorted list of nodes by the number of 1s
    Abc_NtkCleanNext( p->pNtkSingle );
    vSorted = Abc_NtkVanImpSortByOnes( p );

    // compute the array of beginnings
    vBegins = Abc_NtkVanImpComputeBegs( p );

/*
Vec_IntForEachEntry( p->vImps, Imp, i )
{
    printf( "%d: ", i );
    Abc_NodeVanPrintImp( Imp );
}
printf( "\n\n" );
Vec_IntForEachEntry( vBegins, Imp, i )
    printf( "%d=%d ", i, Imp );
printf( "\n\n" );
*/

    // compute the MIS by considering nodes in the reverse order of ones
    vMatrix = Vec_VecStart( p->nIdMax );
    Vec_PtrForEachEntryReverse( vSorted, pList, i )
    {
        for ( pNode = pList; pNode; pNode = pNode->pNext )
        {
            // get the starting and stopping implication of this node
            iStart = Vec_IntEntry( vBegins, pNode->Id );
            iStop  = Vec_IntEntry( vBegins, pNode->Id + 1 );
            if ( iStart == iStop )
                continue;
            assert( iStart < iStop );
            // go through all the implications of this node
            Abc_NtkIncrementTravId( p->pNtkSingle );
            Abc_NodeIsTravIdCurrent( pNode );
            Vec_IntForEachEntryStartStop( p->vImps, Imp, k, iStart, iStop )
            {
                assert( pNode == Abc_NodeVanGetLeft(p->pNtkSingle, Imp) );
                pNext = Abc_NodeVanGetRight(p->pNtkSingle, Imp);
                // if this node is already visited, skip
                if ( Abc_NodeIsTravIdCurrent( pNext ) )
                    continue;
                assert( pNode->Id != pNext->Id );
                // add implication
                Vec_VecPush( vMatrix, pNode->Id, (void *)pNext->Id );
                // recursively mark dependent nodes
                Abc_NtkVanImpMark_rec( pNext, vMatrix );
            }
        }
    }
    Vec_IntFree( vBegins );
    Vec_PtrFree( vSorted );

    // transfer the MIS into the normal array
    vImpsMis = Vec_IntAlloc( 100 );
    Vec_VecForEachEntry( vMatrix, pEntry, i, k )
    {
        assert( (i << 16) != ((int)pEntry) );
        Vec_IntPush( vImpsMis, (i << 16) | ((int)pEntry) );
    }
    Vec_VecFree( vMatrix );
    return vImpsMis;
}


/**Function*************************************************************

  Synopsis    [Count equal pairs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkVanImpCountEqual( Van_Man_t * p )
{
    Abc_Obj_t * pNode1, * pNode2, * pNode3;
    Vec_Int_t * vBegins;
    int iStart, iStop;
    unsigned Imp, ImpR;
    int i, k, Counter;

    // compute the array of beginnings
    vBegins = Abc_NtkVanImpComputeBegs( p );

    // go through each node and out
    Counter = 0;
    Vec_IntForEachEntry( p->vImps, Imp, i )
    {
        pNode1 = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
        pNode2 = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
        if ( pNode1->Id > pNode2->Id )
            continue;
        iStart = Vec_IntEntry( vBegins, pNode2->Id );
        iStop  = Vec_IntEntry( vBegins, pNode2->Id + 1 );
        Vec_IntForEachEntryStartStop( p->vImps, ImpR, k, iStart, iStop )
        {
            assert( pNode2 == Abc_NodeVanGetLeft(p->pNtkSingle, ImpR) );
            pNode3 = Abc_NodeVanGetRight(p->pNtkSingle, ImpR);
            if ( pNode1 == pNode3 )
            {
                Counter++;
                break;
            }
        }
    }
    Vec_IntFree( vBegins );
    return Counter;
}


/**Function*************************************************************

  Synopsis    [Create EXDC from the equivalence classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkVanImpDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vZeros, Vec_Int_t * vImps )
{
    Abc_Ntk_t * pNtkNew; 
    Vec_Ptr_t * vCone;
    Abc_Obj_t * pObj, * pMiter, * pTotal, * pNode, * pNode1, * pNode2;
    unsigned Imp;
    int i, k;

    assert( Abc_NtkIsStrash(pNtk) );

    // start the network
    pNtkNew = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc );
    pNtkNew->pName = util_strsav( "exdc" );
    pNtkNew->pSpec = NULL;

    // map the constant nodes
    Abc_NtkConst1(pNtk)->pCopy = Abc_NtkConst1(pNtkNew);
    // for each CI, create PI
    Abc_NtkForEachCi( pNtk, pObj, i )
        Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePi(pNtkNew), Abc_ObjName(pObj) );
    // cannot add latches here because pLatch->pCopy pointers are used

    // build logic cone for zero nodes
    pTotal = Abc_ObjNot( Abc_NtkConst1(pNtkNew) );
    Vec_PtrForEachEntry( vZeros, pNode, i )
    {
        // build the logic cone for the node
        if ( Abc_ObjFaninNum(pNode) == 2 )
        {
            vCone = Abc_NtkDfsNodes( pNtk, &pNode, 1 );
            Vec_PtrForEachEntry( vCone, pObj, k )
                pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
            Vec_PtrFree( vCone );
            assert( pObj == pNode );
        }
        // complement if there is phase difference
        pNode->pCopy = Abc_ObjNotCond( pNode->pCopy, pNode->fPhase );

        // add it to the EXDC
        pTotal = Abc_AigOr( pNtkNew->pManFunc, pTotal, pNode->pCopy );
    }

    // create logic cones for the implications
    Vec_IntForEachEntry( vImps, Imp, i )
    {
        pNode1 = Abc_NtkObj(pNtk, Imp >> 16);
        pNode2 = Abc_NtkObj(pNtk, Imp & 0xFFFF);

        // build the logic cone for the first node
        if ( Abc_ObjFaninNum(pNode1) == 2 )
        {
            vCone = Abc_NtkDfsNodes( pNtk, &pNode1, 1 );
            Vec_PtrForEachEntry( vCone, pObj, k )
                pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
            Vec_PtrFree( vCone );
            assert( pObj == pNode1 );
        }
        // complement if there is phase difference
        pNode1->pCopy = Abc_ObjNotCond( pNode1->pCopy, pNode1->fPhase );

        // build the logic cone for the second node
        if ( Abc_ObjFaninNum(pNode2) == 2 )
        {
            vCone = Abc_NtkDfsNodes( pNtk, &pNode2, 1 );
            Vec_PtrForEachEntry( vCone, pObj, k )
                pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
            Vec_PtrFree( vCone );
            assert( pObj == pNode2 );
        }
        // complement if there is phase difference
        pNode2->pCopy = Abc_ObjNotCond( pNode2->pCopy, pNode2->fPhase );

        // build the implication and add it to the EXDC
        pMiter = Abc_AigAnd( pNtkNew->pManFunc, pNode1->pCopy, Abc_ObjNot(pNode2->pCopy) );
        pTotal = Abc_AigOr( pNtkNew->pManFunc, pTotal, pMiter );
    }

    // for each CO, create PO (skip POs equal to CIs because of name conflict)
    Abc_NtkForEachPo( pNtk, pObj, i )
        if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
            Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjName(pObj) );
    Abc_NtkForEachLatch( pNtk, pObj, i )
        Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjNameSuffix(pObj, "_in") );

    // link to the POs of the network
    Abc_NtkForEachPo( pNtk, pObj, i )
        if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
            Abc_ObjAddFanin( pObj->pCopy, pTotal );
    Abc_NtkForEachLatch( pNtk, pObj, i )
        Abc_ObjAddFanin( pObj->pCopy, pTotal );

    // remove the extra nodes
    Abc_AigCleanup( pNtkNew->pManFunc );

    // check the result
    if ( !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkVanImpDeriveExdc: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}



////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////