1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
|
/**CFile****************************************************************
FileName [abcVanEijk.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Implementation of van Eijk's method for finding
signal correspondence: C. A. J. van Eijk. "Sequential equivalence
checking based on structural similarities", IEEE Trans. CAD,
vol. 19(7), July 2000, pp. 814-819.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - October 2, 2005.]
Revision [$Id: abcVanEijk.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "fraig.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static Vec_Ptr_t * Abc_NtkVanEijkClasses( Abc_Ntk_t * pNtk, int nFrames, int fVerbose );
static Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveBase( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames );
static Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveFirst( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame );
static int Abc_NtkVanEijkClassesRefine( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame, Vec_Ptr_t * vClasses );
static void Abc_NtkVanEijkClassesOrder( Vec_Ptr_t * vClasses );
static int Abc_NtkVanEijkClassesCountPairs( Vec_Ptr_t * vClasses );
static void Abc_NtkVanEijkClassesTest( Abc_Ntk_t * pNtkSingle, Vec_Ptr_t * vClasses );
extern Abc_Ntk_t * Abc_NtkVanEijkFrames( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames, int fAddLast, int fShortNames );
extern void Abc_NtkVanEijkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vCorresp, Vec_Ptr_t * vOrder, int fShortNames );
extern Fraig_Man_t * Abc_NtkVanEijkFraig( Abc_Ntk_t * pMulti, int fInit );
static Abc_Ntk_t * Abc_NtkVanEijkDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vClasses );
////////////////////////////////////////////////////////////////////////
/// INLINED FUNCTIONS ///
////////////////////////////////////////////////////////////////////////
// sets the correspondence of the node in the frame
static inline void Abc_NodeVanEijkWriteCorresp( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame, Abc_Obj_t * pEntry )
{
Vec_PtrWriteEntry( vCorresp, iFrame * Abc_NtkObjNumMax(pNode->pNtk) + pNode->Id, pEntry );
}
// returns the correspondence of the node in the frame
static inline Abc_Obj_t * Abc_NodeVanEijkReadCorresp( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame )
{
return Vec_PtrEntry( vCorresp, iFrame * Abc_NtkObjNumMax(pNode->pNtk) + pNode->Id );
}
// returns the hash value of the node in the frame
static inline Abc_Obj_t * Abc_NodeVanEijkHash( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame )
{
return Abc_ObjRegular( Abc_NodeVanEijkReadCorresp(pNode, vCorresp, iFrame)->pCopy );
}
// returns the representative node of the class to which the node belongs
static inline Abc_Obj_t * Abc_NodeVanEijkRepr( Abc_Obj_t * pNode )
{
if ( pNode->pNext == NULL )
return NULL;
while ( pNode->pNext )
pNode = pNode->pNext;
return pNode;
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Derives classes of sequentially equivalent nodes.]
Description [Performs sequential sweep by combining the equivalent
nodes. Adds EXDC network to the current network to record the subset
of unreachable states computed by identifying the equivalent nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanEijk( Abc_Ntk_t * pNtk, int nFrames, int fExdc, int fVerbose )
{
Fraig_Params_t Params;
Abc_Ntk_t * pNtkSingle;
Vec_Ptr_t * vClasses;
Abc_Ntk_t * pNtkNew;
assert( Abc_NtkIsStrash(pNtk) );
// FRAIG the network to get rid of combinational equivalences
Fraig_ParamsSetDefaultFull( &Params );
pNtkSingle = Abc_NtkFraig( pNtk, &Params, 0, 0 );
Abc_AigSetNodePhases( pNtkSingle );
Abc_NtkCleanNext(pNtkSingle);
// get the equivalence classes
vClasses = Abc_NtkVanEijkClasses( pNtkSingle, nFrames, fVerbose );
if ( Vec_PtrSize(vClasses) > 0 )
{
// transform the network by merging nodes in the equivalence classes
pNtkNew = Abc_NtkVanEijkFrames( pNtkSingle, NULL, 1, 0, 1 );
// pNtkNew = Abc_NtkDup( pNtkSingle );
// derive the EXDC network if asked
if ( fExdc )
pNtkNew->pExdc = Abc_NtkVanEijkDeriveExdc( pNtkSingle, vClasses );
}
else
pNtkNew = Abc_NtkDup( pNtkSingle );
Abc_NtkVanEijkClassesTest( pNtkSingle, vClasses );
Vec_PtrFree( vClasses );
Abc_NtkDelete( pNtkSingle );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Derives the classes of sequentially equivalent nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkClasses( Abc_Ntk_t * pNtkSingle, int nFrames, int fVerbose )
{
Fraig_Man_t * pFraig;
Abc_Ntk_t * pNtkMulti;
Vec_Ptr_t * vCorresp, * vClasses;
int nIter, RetValue;
int nAddFrames = 0;
if ( fVerbose )
printf( "The number of ANDs after FRAIGing = %d.\n", Abc_NtkNodeNum(pNtkSingle) );
// get the AIG of the base case
vCorresp = Vec_PtrAlloc( 100 );
pNtkMulti = Abc_NtkVanEijkFrames( pNtkSingle, vCorresp, nFrames + nAddFrames, 0, 0 );
if ( fVerbose )
printf( "The number of ANDs in %d timeframes = %d.\n", nFrames + nAddFrames, Abc_NtkNodeNum(pNtkMulti) );
// FRAIG the initialized frames (labels the nodes of pNtkMulti with FRAIG nodes to be used as hash keys)
pFraig = Abc_NtkVanEijkFraig( pNtkMulti, 1 );
Fraig_ManFree( pFraig );
// find initial equivalence classes
vClasses = Abc_NtkVanEijkClassesDeriveBase( pNtkSingle, vCorresp, nFrames + nAddFrames );
if ( fVerbose )
printf( "The number of classes in the base case = %5d. Pairs = %8d.\n", Vec_PtrSize(vClasses), Abc_NtkVanEijkClassesCountPairs(vClasses) );
Abc_NtkDelete( pNtkMulti );
// refine the classes using iterative FRAIGing
for ( nIter = 1; Vec_PtrSize(vClasses) > 0; nIter++ )
{
// derive the network with equivalence classes
Abc_NtkVanEijkClassesOrder( vClasses );
pNtkMulti = Abc_NtkVanEijkFrames( pNtkSingle, vCorresp, nFrames, 1, 0 );
// simulate with classes (TO DO)
// FRAIG the unitialized frames (labels the nodes of pNtkMulti with FRAIG nodes to be used as hash keys)
pFraig = Abc_NtkVanEijkFraig( pNtkMulti, 0 );
Fraig_ManFree( pFraig );
// refine the classes
RetValue = Abc_NtkVanEijkClassesRefine( pNtkSingle, vCorresp, nFrames, vClasses );
Abc_NtkDelete( pNtkMulti );
if ( fVerbose )
printf( "The number of classes after %2d iterations = %5d. Pairs = %8d.\n", nIter, Vec_PtrSize(vClasses), Abc_NtkVanEijkClassesCountPairs(vClasses) );
// quit if there is no change
if ( RetValue == 0 )
break;
}
Vec_PtrFree( vCorresp );
if ( fVerbose )
{
Abc_Obj_t * pObj, * pClass;
int i, Counter;
printf( "The classes are: " );
Vec_PtrForEachEntry( vClasses, pClass, i )
{
Counter = 0;
for ( pObj = pClass; pObj; pObj = pObj->pNext )
Counter++;
printf( " %d", Counter );
/*
printf( " = {" );
for ( pObj = pClass; pObj; pObj = pObj->pNext )
printf( " %d", pObj->Id );
printf( " } " );
*/
}
printf( "\n" );
}
return vClasses;
}
/**Function*************************************************************
Synopsis [Computes the equivalence classes of nodes using the base case.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveBase( Abc_Ntk_t * pNtkSingle, Vec_Ptr_t * vCorresp, int nFrames )
{
Vec_Ptr_t * vClasses;
int i, RetValue;
// derive the classes for the last frame
vClasses = Abc_NtkVanEijkClassesDeriveFirst( pNtkSingle, vCorresp, nFrames - 1 );
// refine the classes using other timeframes
for ( i = 0; i < nFrames - 1; i++ )
{
if ( Vec_PtrSize(vClasses) == 0 )
break;
RetValue = Abc_NtkVanEijkClassesRefine( pNtkSingle, vCorresp, i, vClasses );
// if ( RetValue )
// printf( " yes%s", (i==nFrames-2 ? "\n":"") );
// else
// printf( " no%s", (i==nFrames-2 ? "\n":"") );
}
return vClasses;
}
/**Function*************************************************************
Synopsis [Computes the equivalence classes of nodes.]
Description [Original network (pNtk) is mapped into the unfolded frames
using given array of nodes (vCorresp). Each node in the unfolded frames
is mapped into a FRAIG node (pNode->pCopy). This procedure uses next
pointers (pNode->pNext) to combine the nodes into equivalence classes.
Each class is represented by its representative node with the minimum level.
Only the last frame is considered.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveFirst( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame )
{
Abc_Obj_t * pNode, * pKey, ** ppSlot;
stmm_table * tTable;
stmm_generator * gen;
Vec_Ptr_t * vClasses;
int i;
// start the table hashing FRAIG nodes into classes of original network nodes
tTable = stmm_init_table( st_ptrcmp, st_ptrhash );
// create the table
Abc_NtkCleanNext( pNtk );
Abc_NtkForEachObj( pNtk, pNode, i )
{
if ( Abc_ObjIsPo(pNode) )
continue;
pKey = Abc_NodeVanEijkHash( pNode, vCorresp, iFrame );
if ( !stmm_find_or_add( tTable, (char *)pKey, (char ***)&ppSlot ) )
*ppSlot = NULL;
pNode->pNext = *ppSlot;
*ppSlot = pNode;
}
// collect only non-trivial classes
vClasses = Vec_PtrAlloc( 100 );
stmm_foreach_item( tTable, gen, (char **)&pKey, (char **)&pNode )
if ( pNode->pNext )
Vec_PtrPush( vClasses, pNode );
stmm_free_table( tTable );
return vClasses;
}
/**Function*************************************************************
Synopsis [Refines the classes using one frame.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkVanEijkClassesRefine( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame, Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pHeadSame, ** ppTailSame;
Abc_Obj_t * pHeadDiff, ** ppTailDiff;
Abc_Obj_t * pNode, * pClass, * pKey;
int i, k, fChange = 0;
Vec_PtrForEachEntry( vClasses, pClass, i )
{
// assert( pClass->pNext );
pKey = Abc_NodeVanEijkHash( pClass, vCorresp, iFrame );
for ( pNode = pClass->pNext; pNode; pNode = pNode->pNext )
if ( Abc_NodeVanEijkHash(pNode, vCorresp, iFrame) != pKey )
break;
if ( pNode == NULL )
continue;
fChange = 1;
// create two classes
pHeadSame = NULL; ppTailSame = &pHeadSame;
pHeadDiff = NULL; ppTailDiff = &pHeadDiff;
for ( pNode = pClass; pNode; pNode = pNode->pNext )
if ( Abc_NodeVanEijkHash(pNode, vCorresp, iFrame) != pKey )
*ppTailDiff = pNode, ppTailDiff = &pNode->pNext;
else
*ppTailSame = pNode, ppTailSame = &pNode->pNext;
*ppTailSame = NULL;
*ppTailDiff = NULL;
assert( pHeadSame && pHeadDiff );
// put the updated class back
Vec_PtrWriteEntry( vClasses, i, pHeadSame );
// append the new class to be processed later
Vec_PtrPush( vClasses, pHeadDiff );
}
// remove trivial classes
k = 0;
Vec_PtrForEachEntry( vClasses, pClass, i )
if ( pClass->pNext )
Vec_PtrWriteEntry( vClasses, k++, pClass );
Vec_PtrShrink( vClasses, k );
return fChange;
}
/**Function*************************************************************
Synopsis [Orders nodes in the equivalence classes.]
Description [Finds a min-level representative of each class and puts it last.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkClassesOrder( Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pClass, * pNode, * pPrev, * pNodeMin, * pPrevMin;
int i;
// go through the classes
Vec_PtrForEachEntry( vClasses, pClass, i )
{
assert( pClass->pNext );
pPrevMin = NULL;
pNodeMin = pClass;
for ( pPrev = pClass, pNode = pClass->pNext; pNode; pPrev = pNode, pNode = pNode->pNext )
if ( pNodeMin->Level >= pNode->Level )
{
pPrevMin = pPrev;
pNodeMin = pNode;
}
if ( pNodeMin->pNext == NULL ) // already last
continue;
// update the class
if ( pNodeMin == pClass )
Vec_PtrWriteEntry( vClasses, i, pNodeMin->pNext );
else
pPrevMin->pNext = pNodeMin->pNext;
// attach the min node
assert( pPrev->pNext == NULL );
pPrev->pNext = pNodeMin;
pNodeMin->pNext = NULL;
}
Vec_PtrForEachEntry( vClasses, pClass, i )
assert( pClass->pNext );
}
/**Function*************************************************************
Synopsis [Counts pairs of equivalent nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkVanEijkClassesCountPairs( Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pClass, * pNode;
int i, nPairs = 0;
Vec_PtrForEachEntry( vClasses, pClass, i )
{
assert( pClass->pNext );
for ( pNode = pClass->pNext; pNode; pNode = pNode->pNext )
nPairs++;
}
return nPairs;
}
/**Function*************************************************************
Synopsis [Sanity check for the class representation.]
Description [Checks that pNode->pNext is only used in the classes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkClassesTest( Abc_Ntk_t * pNtkSingle, Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pClass, * pObj;
int i;
Abc_NtkCleanCopy( pNtkSingle );
Vec_PtrForEachEntry( vClasses, pClass, i )
for ( pObj = pClass; pObj; pObj = pObj->pNext )
if ( pObj->pNext )
pObj->pCopy = (Abc_Obj_t *)1;
Abc_NtkForEachObj( pNtkSingle, pObj, i )
assert( (pObj->pCopy != NULL) == (pObj->pNext != NULL) );
Abc_NtkCleanCopy( pNtkSingle );
}
/**Function*************************************************************
Synopsis [Performs DFS for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkDfs_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes )
{
Abc_Obj_t * pRepr;
// skip CI and const
if ( Abc_ObjFaninNum(pNode) < 2 )
return;
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
// mark the node as visited
Abc_NodeSetTravIdCurrent( pNode );
assert( Abc_ObjIsNode( pNode ) );
// check if the node belongs to the class
if ( pRepr = Abc_NodeVanEijkRepr(pNode) )
Abc_NtkVanEijkDfs_rec( pRepr, vNodes );
else
{
Abc_NtkVanEijkDfs_rec( Abc_ObjFanin0(pNode), vNodes );
Abc_NtkVanEijkDfs_rec( Abc_ObjFanin1(pNode), vNodes );
}
// add the node after the fanins have been added
Vec_PtrPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Finds DFS ordering of nodes using equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkDfs( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pObj;
int i;
vNodes = Vec_PtrAlloc( 100 );
Abc_NtkIncrementTravId( pNtk );
Abc_NtkForEachCo( pNtk, pObj, i )
Abc_NtkVanEijkDfs_rec( Abc_ObjFanin0(pObj), vNodes );
return vNodes;
}
/**Function*************************************************************
Synopsis [Derives the timeframes of the network.]
Description [Returns mapping of the orig nodes into the frame nodes (vCorresp).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanEijkFrames( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames, int fAddLast, int fShortNames )
{
char Buffer[100];
Abc_Ntk_t * pNtkFrames;
Abc_Obj_t * pLatch, * pLatchNew;
Vec_Ptr_t * vOrder;
int i;
assert( nFrames > 0 );
assert( Abc_NtkIsStrash(pNtk) );
assert( Abc_NtkIsDfsOrdered(pNtk) );
// clean the array of connections
if ( vCorresp )
Vec_PtrFill( vCorresp, (nFrames + fAddLast)*Abc_NtkObjNumMax(pNtk), NULL );
// start the new network
pNtkFrames = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG );
if ( fShortNames )
{
pNtkFrames->pName = Extra_UtilStrsav(pNtk->pName);
pNtkFrames->pSpec = Extra_UtilStrsav(pNtk->pSpec);
}
else
{
sprintf( Buffer, "%s_%d_frames", pNtk->pName, nFrames + fAddLast );
pNtkFrames->pName = Extra_UtilStrsav(Buffer);
}
// map the constant nodes
Abc_NtkConst1(pNtk)->pCopy = Abc_NtkConst1(pNtkFrames);
// create new latches and remember them in the new latches
Abc_NtkForEachLatch( pNtk, pLatch, i )
Abc_NtkDupObj( pNtkFrames, pLatch );
// collect nodes in such a way each class representative goes first
vOrder = Abc_NtkVanEijkDfs( pNtk );
// create the timeframes
for ( i = 0; i < nFrames; i++ )
Abc_NtkVanEijkAddFrame( pNtkFrames, pNtk, i, vCorresp, vOrder, fShortNames );
Vec_PtrFree( vOrder );
// add one more timeframe without class info
if ( fAddLast )
Abc_NtkVanEijkAddFrame( pNtkFrames, pNtk, nFrames, vCorresp, NULL, fShortNames );
// connect the new latches to the outputs of the last frame
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pLatchNew = Abc_NtkLatch(pNtkFrames, i);
Abc_ObjAddFanin( pLatchNew, pLatch->pCopy );
Vec_PtrPush( pNtkFrames->vCis, pLatchNew );
Vec_PtrPush( pNtkFrames->vCos, pLatchNew );
Abc_NtkLogicStoreName( pLatchNew, Abc_ObjName(pLatch) );
pLatch->pNext = NULL;
}
// remove dangling nodes
// Abc_AigCleanup( pNtkFrames->pManFunc );
// otherwise some external nodes may have dandling pointers
// make sure that everything is okay
if ( !Abc_NtkCheck( pNtkFrames ) )
printf( "Abc_NtkVanEijkFrames: The network check has failed.\n" );
return pNtkFrames;
}
/**Function*************************************************************
Synopsis [Adds one time frame to the new network.]
Description [If the ordering of nodes is given, uses it. Otherwise,
uses the DSF order of the nodes in the network.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vCorresp, Vec_Ptr_t * vOrder, int fShortNames )
{
char Buffer[10];
Abc_Obj_t * pNode, * pLatch, * pRepr;
Vec_Ptr_t * vTemp;
int i;
// create the prefix to be added to the node names
sprintf( Buffer, "_%02d", iFrame );
// add the new PI nodes
Abc_NtkForEachPi( pNtk, pNode, i )
{
pNode->pCopy = Abc_NtkCreatePi(pNtkFrames);
if ( fShortNames )
Abc_NtkLogicStoreName( pNode->pCopy, Abc_ObjName(pNode) );
else
Abc_NtkLogicStoreNamePlus( pNode->pCopy, Abc_ObjName(pNode), Buffer );
}
// remember the CI mapping
if ( vCorresp )
{
pNode = Abc_NtkConst1(pNtk);
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
Abc_NtkForEachCi( pNtk, pNode, i )
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
}
// go through the nodes in the given order or in the natural order
if ( vOrder )
{
// add the internal nodes
Vec_PtrForEachEntry( vOrder, pNode, i )
{
if ( pRepr = Abc_NodeVanEijkRepr(pNode) )
pNode->pCopy = Abc_ObjNotCond( pRepr->pCopy, pNode->fPhase ^ pRepr->fPhase );
else
pNode->pCopy = Abc_AigAnd( pNtkFrames->pManFunc, Abc_ObjChild0Copy(pNode), Abc_ObjChild1Copy(pNode) );
assert( Abc_ObjRegular(pNode->pCopy) != NULL );
if ( vCorresp )
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
}
}
else
{
// add the internal nodes
Abc_AigForEachAnd( pNtk, pNode, i )
{
pNode->pCopy = Abc_AigAnd( pNtkFrames->pManFunc, Abc_ObjChild0Copy(pNode), Abc_ObjChild1Copy(pNode) );
assert( Abc_ObjRegular(pNode->pCopy) != NULL );
if ( vCorresp )
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
}
}
// add the new POs
Abc_NtkForEachPo( pNtk, pNode, i )
{
pNode->pCopy = Abc_NtkCreatePo(pNtkFrames);
Abc_ObjAddFanin( pNode->pCopy, Abc_ObjChild0Copy(pNode) );
if ( fShortNames )
Abc_NtkLogicStoreName( pNode->pCopy, Abc_ObjName(pNode) );
else
Abc_NtkLogicStoreNamePlus( pNode->pCopy, Abc_ObjName(pNode), Buffer );
}
// transfer the implementation of the latch drivers to the latches
vTemp = Vec_PtrAlloc( 100 );
Abc_NtkForEachLatch( pNtk, pLatch, i )
Vec_PtrPush( vTemp, Abc_ObjChild0Copy(pLatch) );
Abc_NtkForEachLatch( pNtk, pLatch, i )
pLatch->pCopy = Vec_PtrEntry( vTemp, i );
Vec_PtrFree( vTemp );
Abc_AigForEachAnd( pNtk, pNode, i )
pNode->pCopy = NULL;
}
/**Function*************************************************************
Synopsis [Fraigs the network with or without initialization.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fraig_Man_t * Abc_NtkVanEijkFraig( Abc_Ntk_t * pMulti, int fInit )
{
Fraig_Man_t * pMan;
Fraig_Params_t Params;
ProgressBar * pProgress;
Abc_Obj_t * pNode;
int i;
assert( Abc_NtkIsStrash(pMulti) );
// create the FRAIG manager
Fraig_ParamsSetDefaultFull( &Params );
pMan = Fraig_ManCreate( &Params );
// clean the copy fields in the old network
Abc_NtkCleanCopy( pMulti );
// map the constant nodes
Abc_NtkConst1(pMulti)->pCopy = (Abc_Obj_t *)Fraig_ManReadConst1(pMan);
if ( fInit )
{
// map the PI nodes
Abc_NtkForEachPi( pMulti, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Fraig_ManReadIthVar(pMan, i);
// map the latches
Abc_NtkForEachLatch( pMulti, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Fraig_NotCond( Fraig_ManReadConst1(pMan), !Abc_LatchIsInit1(pNode) );
}
else
{
// map the CI nodes
Abc_NtkForEachCi( pMulti, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Fraig_ManReadIthVar(pMan, i);
}
// perform fraiging
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pMulti) );
Abc_AigForEachAnd( pMulti, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
pNode->pCopy = (Abc_Obj_t *)Fraig_NodeAnd( pMan,
Fraig_NotCond( Abc_ObjFanin0(pNode)->pCopy, Abc_ObjFaninC0(pNode) ),
Fraig_NotCond( Abc_ObjFanin1(pNode)->pCopy, Abc_ObjFaninC1(pNode) ) );
}
Extra_ProgressBarStop( pProgress );
return pMan;
}
/**Function*************************************************************
Synopsis [Create EXDC from the equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanEijkDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vClasses )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pClass, * pNode, * pRepr, * pObj;//, *pObjNew;
Abc_Obj_t * pMiter, * pTotal;
Vec_Ptr_t * vCone;
int i, k;
assert( Abc_NtkIsStrash(pNtk) );
// start the network
pNtkNew = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc );
pNtkNew->pName = Extra_UtilStrsav("exdc");
pNtkNew->pSpec = NULL;
// map the constant nodes
Abc_NtkConst1(pNtk)->pCopy = Abc_NtkConst1(pNtkNew);
// for each CI, create PI
Abc_NtkForEachCi( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePi(pNtkNew), Abc_ObjName(pObj) );
// cannot add latches here because pLatch->pCopy pointers are used
// create the cones for each pair of nodes in an equivalence class
pTotal = Abc_ObjNot( Abc_NtkConst1(pNtkNew) );
Vec_PtrForEachEntry( vClasses, pClass, i )
{
assert( pClass->pNext );
// get the cone for the representative node
pRepr = Abc_NodeVanEijkRepr( pClass );
if ( Abc_ObjFaninNum(pRepr) == 2 )
{
vCone = Abc_NtkDfsNodes( pNtk, &pRepr, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pRepr );
}
// go through the node pairs (representative is last in the list)
for ( pNode = pClass; pNode != pRepr; pNode = pNode->pNext )
{
// get the cone for the node
assert( Abc_ObjFaninNum(pNode) == 2 );
vCone = Abc_NtkDfsNodes( pNtk, &pNode, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pNode );
// complement if there is phase difference
pNode->pCopy = Abc_ObjNotCond( pNode->pCopy, pNode->fPhase ^ pRepr->fPhase );
// add the miter
pMiter = Abc_AigXor( pNtkNew->pManFunc, pRepr->pCopy, pNode->pCopy );
}
// add the miter to the final
pTotal = Abc_AigOr( pNtkNew->pManFunc, pTotal, pMiter );
}
/*
// create the only PO
pObjNew = Abc_NtkCreatePo( pNtkNew );
// add the PO name
Abc_NtkLogicStoreName( pObjNew, "DC" );
// add the PO
Abc_ObjAddFanin( pObjNew, pTotal );
// quontify the PIs existentially
pNtkNew = Abc_NtkMiterQuantifyPis( pNtkNew );
// get the new PO
pObjNew = Abc_NtkPo( pNtkNew, 0 );
// remember the miter output
pTotal = Abc_ObjChild0( pObjNew );
// remove the PO
Abc_NtkDeleteObj( pObjNew );
// make the old network point to the new things
Abc_NtkConst1(pNtk)->pCopy = Abc_NtkConst1(pNtkNew);
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = Abc_NtkPi( pNtkNew, i );
*/
// for each CO, create PO (skip POs equal to CIs because of name conflict)
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjName(pObj) );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjNameSuffix( pObj, "_in") );
// link to the POs of the network
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
Abc_ObjAddFanin( pObj->pCopy, pTotal );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjAddFanin( pObj->pCopy, pTotal );
// remove the extra nodes
Abc_AigCleanup( pNtkNew->pManFunc );
// check the result
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkVanEijkDeriveExdc: The network check has failed.\n" );
Abc_NtkDelete( pNtkNew );
return NULL;
}
return pNtkNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|