summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcSweep.c
blob: 1ae8745b7fe0181782e663cb8cf9324735c718df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
/**CFile****************************************************************

  FileName    [abcDsd.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Technology dependent sweep.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcDsd.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abc.h"
#include "fraig.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static void           Abc_NtkFraigSweepUsingExdc( Fraig_Man_t * pMan, Abc_Ntk_t * pNtk );
static stmm_table *   Abc_NtkFraigEquiv( Abc_Ntk_t * pNtk, int fUseInv, int fVerbose, int fVeryVerbose );
static void           Abc_NtkFraigTransform( Abc_Ntk_t * pNtk, stmm_table * tEquiv, int fUseInv, bool fVerbose );
static void           Abc_NtkFraigMergeClassMapped( Abc_Ntk_t * pNtk, Abc_Obj_t * pChain, int fUseInv, int fVerbose );
static void           Abc_NtkFraigMergeClass( Abc_Ntk_t * pNtk, Abc_Obj_t * pChain, int fUseInv, int fVerbose );
static int            Abc_NodeDroppingCost( Abc_Obj_t * pNode );

static int            Abc_NtkReduceNodes( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodes );
static void           Abc_NodeSweep( Abc_Obj_t * pNode, int fVerbose );
static void           Abc_NodeConstantInput( Abc_Obj_t * pNode, Abc_Obj_t * pFanin, bool fConst0 );
static void           Abc_NodeComplementInput( Abc_Obj_t * pNode, Abc_Obj_t * pFanin );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Sweping functionally equivalence nodes.]

  Description [Removes gates with equivalent functionality. Works for 
  both technology-independent and mapped networks. If the flag is set, 
  allows adding inverters at the gate outputs.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
bool Abc_NtkFraigSweep( Abc_Ntk_t * pNtk, int fUseInv, int fExdc, int fVerbose, int fVeryVerbose )
{
    Fraig_Params_t Params;
    Abc_Ntk_t * pNtkAig;
    Fraig_Man_t * pMan;
    stmm_table * tEquiv;
    Abc_Obj_t * pObj;
    int i, fUseTrick;

    assert( !Abc_NtkIsStrash(pNtk) );

    // save gate assignments
    fUseTrick = 0;
    if ( Abc_NtkIsMappedLogic(pNtk) )
    {
        fUseTrick = 1;
        Abc_NtkForEachNode( pNtk, pObj, i )
            pObj->pNext = pObj->pData;
    }
    // derive the AIG
    pNtkAig = Abc_NtkStrash( pNtk, 0, 1, 0 );
    // reconstruct gate assignments
    if ( fUseTrick )
    {
        extern void * Abc_FrameReadLibGen(); 
        Hop_ManStop( pNtk->pManFunc );
        pNtk->pManFunc = Abc_FrameReadLibGen();
        pNtk->ntkFunc = ABC_FUNC_MAP;
        Abc_NtkForEachNode( pNtk, pObj, i )
            pObj->pData = pObj->pNext, pObj->pNext = NULL;
    }

    // perform fraiging of the AIG
    Fraig_ParamsSetDefault( &Params );
    pMan = Abc_NtkToFraig( pNtkAig, &Params, 0, 0 );   
    // cannot use EXDC with FRAIG because it can create classes of equivalent FRAIG nodes
    // with representative nodes that do not correspond to the nodes with the current network

    // update FRAIG using EXDC
    if ( fExdc )
    {
        if ( pNtk->pExdc == NULL )
            printf( "Warning: Networks has no EXDC.\n" );
        else
            Abc_NtkFraigSweepUsingExdc( pMan, pNtk );
    }
    // assign levels to the nodes of the network
    Abc_NtkLevel( pNtk );

    // collect the classes of equivalent nets
    tEquiv = Abc_NtkFraigEquiv( pNtk, fUseInv, fVerbose, fVeryVerbose );

    // transform the network into the equivalent one
    Abc_NtkFraigTransform( pNtk, tEquiv, fUseInv, fVerbose );
    stmm_free_table( tEquiv );

    // free the manager
    Fraig_ManFree( pMan );
    Abc_NtkDelete( pNtkAig );

    // cleanup the dangling nodes
    if ( Abc_NtkHasMapping(pNtk) )
        Abc_NtkCleanup( pNtk, fVerbose );
    else
        Abc_NtkSweep( pNtk, fVerbose );

    // check
    if ( !Abc_NtkCheck( pNtk ) )
    {
        printf( "Abc_NtkFraigSweep: The network check has failed.\n" );
        return 0;
    }
    return 1;
}

/**Function*************************************************************

  Synopsis    [Sweep the network using EXDC.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFraigSweepUsingExdc( Fraig_Man_t * pMan, Abc_Ntk_t * pNtk )
{
    Fraig_Node_t * gNodeExdc, * gNode, * gNodeRes;
    Abc_Obj_t * pNode, * pNodeAig;
    int i;
    extern Fraig_Node_t * Abc_NtkToFraigExdc( Fraig_Man_t * pMan, Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkExdc );

    assert( pNtk->pExdc );
    // derive FRAIG node representing don't-cares in the EXDC network
    gNodeExdc = Abc_NtkToFraigExdc( pMan, pNtk, pNtk->pExdc );
    // update the node pointers
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        // skip the constant input nodes
        if ( Abc_ObjFaninNum(pNode) == 0 )
            continue;
        // get the strashed node
        pNodeAig = pNode->pCopy;
        // skip the dangling nodes
        if ( pNodeAig == NULL )
            continue;
        // get the FRAIG node
        gNode = Fraig_NotCond( Abc_ObjRegular(pNodeAig)->pCopy, Abc_ObjIsComplement(pNodeAig) );
        // perform ANDing with EXDC
        gNodeRes = Fraig_NodeAnd( pMan, gNode, Fraig_Not(gNodeExdc) );
        // write the node back
        Abc_ObjRegular(pNodeAig)->pCopy = (Abc_Obj_t *)Fraig_NotCond( gNodeRes, Abc_ObjIsComplement(pNodeAig) );
    }
}

/**Function*************************************************************

  Synopsis    [Collects equivalence classses of node in the network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
stmm_table * Abc_NtkFraigEquiv( Abc_Ntk_t * pNtk, int fUseInv, int fVerbose, int fVeryVerbose )
{
    Abc_Obj_t * pList, * pNode, * pNodeAig;
    Fraig_Node_t * gNode;
    Abc_Obj_t ** ppSlot;
    stmm_table * tStrash2Net;
    stmm_table * tResult;
    stmm_generator * gen;
    int c, Counter;

    // create mapping of strashed nodes into the corresponding network nodes
    tStrash2Net = stmm_init_table(stmm_ptrcmp,stmm_ptrhash);
    Abc_NtkForEachNode( pNtk, pNode, c )
    {
        // skip the constant input nodes
        if ( Abc_ObjFaninNum(pNode) == 0 )
            continue;
        // get the strashed node
        pNodeAig = pNode->pCopy;
        // skip the dangling nodes
        if ( pNodeAig == NULL )
            continue;
        // skip the nodes that fanout into COs
        if ( Abc_NodeFindCoFanout(pNode) )
            continue;
        // get the FRAIG node
        gNode = Fraig_NotCond( Abc_ObjRegular(pNodeAig)->pCopy, Abc_ObjIsComplement(pNodeAig) );
        if ( !stmm_find_or_add( tStrash2Net, (char *)Fraig_Regular(gNode), (char ***)&ppSlot ) )
            *ppSlot = NULL;
        // add the node to the list
        pNode->pNext = *ppSlot;
        *ppSlot = pNode;
        // mark the node if it is complemented
        pNode->fPhase = Fraig_IsComplement(gNode);
    }

    // print the classes
    c = 0;
    Counter = 0;
    tResult = stmm_init_table(stmm_ptrcmp,stmm_ptrhash);
    stmm_foreach_item( tStrash2Net, gen, (char **)&gNode, (char **)&pList )
    {
        // skip the trival classes
        if ( pList == NULL || pList->pNext == NULL )
            continue;
        // add the non-trival class
        stmm_insert( tResult, (char *)pList, NULL );
        // count nodes in the non-trival classes
        for ( pNode = pList; pNode; pNode = pNode->pNext )
            Counter++;

        if ( fVeryVerbose )
        {
            printf( "Class %2d : {", c );
            for ( pNode = pList; pNode; pNode = pNode->pNext )
            {
                pNode->pCopy = NULL;
                printf( " %s", Abc_ObjName(pNode) );
                printf( "(%c)", pNode->fPhase? '-' : '+' );
                printf( "(%d)", pNode->Level );
            }
            printf( " }\n" );
            c++;
        }
    }
    if ( fVerbose || fVeryVerbose )
    {
        printf( "Sweeping stats for network \"%s\":\n", pNtk->pName );
        printf( "Internal nodes = %d. Different functions (up to compl) = %d.\n", Abc_NtkNodeNum(pNtk), stmm_count(tStrash2Net) );
        printf( "Non-trivial classes = %d. Nodes in non-trivial classes = %d.\n", stmm_count(tResult), Counter );
    }
    stmm_free_table( tStrash2Net );
    return tResult;
}


/**Function*************************************************************

  Synopsis    [Transforms the network using the equivalence relation on nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFraigTransform( Abc_Ntk_t * pNtk, stmm_table * tEquiv, int fUseInv, bool fVerbose )
{
    stmm_generator * gen;
    Abc_Obj_t * pList;
    if ( stmm_count(tEquiv) == 0 )
        return;
    // merge nodes in the classes
    if ( Abc_NtkHasMapping( pNtk ) )
    {
        Abc_NtkDelayTrace( pNtk );
        stmm_foreach_item( tEquiv, gen, (char **)&pList, NULL )
            Abc_NtkFraigMergeClassMapped( pNtk, pList, fUseInv, fVerbose );
    }
    else 
    {
        stmm_foreach_item( tEquiv, gen, (char **)&pList, NULL )
            Abc_NtkFraigMergeClass( pNtk, pList, fUseInv, fVerbose );
    }
}


/**Function*************************************************************

  Synopsis    [Transforms the list of one-phase equivalent nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFraigMergeClassMapped( Abc_Ntk_t * pNtk, Abc_Obj_t * pChain, int fUseInv, int fVerbose )
{
    Abc_Obj_t * pListDir, * pListInv;
    Abc_Obj_t * pNodeMin, * pNode, * pNext;
    float Arrival1, Arrival2;

    assert( pChain );
    assert( pChain->pNext );

    // divide the nodes into two parts: 
    // those that need the invertor and those that don't need
    pListDir = pListInv = NULL;
    for ( pNode = pChain, pNext = pChain->pNext; 
          pNode; 
          pNode = pNext, pNext = pNode? pNode->pNext : NULL )
    {
        // check to which class the node belongs
        if ( pNode->fPhase == 1 )
        {
            pNode->pNext = pListDir;
            pListDir = pNode;
        }
        else
        {
            pNode->pNext = pListInv;
            pListInv = pNode;
        }
    }

    // find the node with the smallest number of logic levels
    pNodeMin = pListDir;
    for ( pNode = pListDir; pNode; pNode = pNode->pNext )
    {
        Arrival1 = Abc_NodeReadArrival(pNodeMin)->Worst;
        Arrival2 = Abc_NodeReadArrival(pNode   )->Worst;
//        assert( Abc_ObjIsCi(pNodeMin) || Arrival1 > 0 );
//        assert( Abc_ObjIsCi(pNode)    || Arrival2 > 0 );
        if (  Arrival1 > Arrival2 ||
              Arrival1 == Arrival2 && pNodeMin->Level >  pNode->Level || 
              Arrival1 == Arrival2 && pNodeMin->Level == pNode->Level && 
              Abc_NodeDroppingCost(pNodeMin) < Abc_NodeDroppingCost(pNode)  )
            pNodeMin = pNode;
    }

    // move the fanouts of the direct nodes
    for ( pNode = pListDir; pNode; pNode = pNode->pNext )
        if ( pNode != pNodeMin )
            Abc_ObjTransferFanout( pNode, pNodeMin );

    // find the node with the smallest number of logic levels
    pNodeMin = pListInv;
    for ( pNode = pListInv; pNode; pNode = pNode->pNext )
    {
        Arrival1 = Abc_NodeReadArrival(pNodeMin)->Worst;
        Arrival2 = Abc_NodeReadArrival(pNode   )->Worst;
//        assert( Abc_ObjIsCi(pNodeMin) || Arrival1 > 0 );
//        assert( Abc_ObjIsCi(pNode)    || Arrival2 > 0 );
        if (  Arrival1 > Arrival2 ||
              Arrival1 == Arrival2 && pNodeMin->Level >  pNode->Level || 
              Arrival1 == Arrival2 && pNodeMin->Level == pNode->Level && 
              Abc_NodeDroppingCost(pNodeMin) < Abc_NodeDroppingCost(pNode)  )
            pNodeMin = pNode;
    }

    // move the fanouts of the direct nodes
    for ( pNode = pListInv; pNode; pNode = pNode->pNext )
        if ( pNode != pNodeMin )
            Abc_ObjTransferFanout( pNode, pNodeMin );
}

/**Function*************************************************************

  Synopsis    [Process one equivalence class of nodes.]

  Description [This function does not remove the nodes. It only switches 
  around the connections.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFraigMergeClass( Abc_Ntk_t * pNtk, Abc_Obj_t * pChain, int fUseInv, int fVerbose )
{
    Abc_Obj_t * pListDir, * pListInv;
    Abc_Obj_t * pNodeMin, * pNodeMinInv;
    Abc_Obj_t * pNode, * pNext;

    assert( pChain );
    assert( pChain->pNext );

    // find the node with the smallest number of logic levels
    pNodeMin = pChain;
    for ( pNode = pChain->pNext; pNode; pNode = pNode->pNext )
        if (  pNodeMin->Level >  pNode->Level || 
            ( pNodeMin->Level == pNode->Level && 
              Abc_NodeDroppingCost(pNodeMin) < Abc_NodeDroppingCost(pNode) ) )
            pNodeMin = pNode;

    // divide the nodes into two parts: 
    // those that need the invertor and those that don't need
    pListDir = pListInv = NULL;
    for ( pNode = pChain, pNext = pChain->pNext; 
          pNode; 
          pNode = pNext, pNext = pNode? pNode->pNext : NULL )
    {
        if ( pNode == pNodeMin )
            continue;
        // check to which class the node belongs
        if ( pNodeMin->fPhase == pNode->fPhase )
        {
            pNode->pNext = pListDir;
            pListDir = pNode;
        }
        else
        {
            pNode->pNext = pListInv;
            pListInv = pNode;
        }
    }

    // move the fanouts of the direct nodes
    for ( pNode = pListDir; pNode; pNode = pNode->pNext )
        Abc_ObjTransferFanout( pNode, pNodeMin );

    // skip if there are no inverted nodes
    if ( pListInv == NULL )
        return;

    // add the invertor
    pNodeMinInv = Abc_NtkCreateNodeInv( pNtk, pNodeMin );
   
    // move the fanouts of the inverted nodes
    for ( pNode = pListInv; pNode; pNode = pNode->pNext )
        Abc_ObjTransferFanout( pNode, pNodeMinInv );
}


/**Function*************************************************************

  Synopsis    [Returns the number of literals saved if this node becomes useless.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NodeDroppingCost( Abc_Obj_t * pNode )
{ 
    return 1;
}





/**Function*************************************************************

  Synopsis    [Removes dangling nodes.]

  Description [Returns the number of nodes removed.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkCleanup( Abc_Ntk_t * pNtk, int fVerbose )
{
    Vec_Ptr_t * vNodes;
    int Counter;
    assert( Abc_NtkIsLogic(pNtk) );
    // mark the nodes reachable from the POs
    vNodes = Abc_NtkDfs( pNtk, 0 );
    Counter = Abc_NtkReduceNodes( pNtk, vNodes );
    if ( fVerbose )
        printf( "Cleanup removed %d dangling nodes.\n", Counter );
    Vec_PtrFree( vNodes );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Preserves the nodes collected in the array.]

  Description [Returns the number of nodes removed.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkReduceNodes( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodes )
{
    Abc_Obj_t * pNode;
    int i, Counter;
    assert( Abc_NtkIsLogic(pNtk) );
    // mark the nodes reachable from the POs
    Vec_PtrForEachEntry( vNodes, pNode, i )
        pNode->fMarkA = 1;
    // remove the non-marked nodes
    Counter = 0;
    Abc_NtkForEachNode( pNtk, pNode, i )
        if ( pNode->fMarkA == 0 )
        {
            Abc_NtkDeleteObj( pNode );
            Counter++;
        }
    // unmark the remaining nodes
    Vec_PtrForEachEntry( vNodes, pNode, i )
        pNode->fMarkA = 0;
    // check
    if ( !Abc_NtkCheck( pNtk ) )
        printf( "Abc_NtkCleanup: The network check has failed.\n" );
    return Counter;
}




/**Function*************************************************************

  Synopsis    [Tranditional sweep of the network.]

  Description [Propagates constant and single-input node, removes dangling nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkSweep( Abc_Ntk_t * pNtk, int fVerbose )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pNode, * pFanout, * pDriver;
    int i, nNodesOld;
    assert( Abc_NtkIsLogic(pNtk) ); 
    // convert network to BDD representation
    if ( !Abc_NtkToBdd(pNtk) )
    {
        fprintf( stdout, "Converting to BDD has failed.\n" );
        return 1;
    }
    // perform cleanup
    nNodesOld = Abc_NtkNodeNum(pNtk);
    Abc_NtkCleanup( pNtk, 0 );
    // prepare nodes for sweeping
    Abc_NtkRemoveDupFanins(pNtk);
    Abc_NtkMinimumBase(pNtk);
    // collect sweepable nodes
    vNodes = Vec_PtrAlloc( 100 );
    Abc_NtkForEachNode( pNtk, pNode, i )
        if ( Abc_ObjFaninNum(pNode) < 2 )
            Vec_PtrPush( vNodes, pNode );
    // sweep the nodes
    while ( Vec_PtrSize(vNodes) > 0 )
    {
        // get any sweepable node
        pNode = Vec_PtrPop(vNodes);
        if ( !Abc_ObjIsNode(pNode) )
            continue;
        // get any non-CO fanout of this node
        pFanout = Abc_NodeFindNonCoFanout(pNode);
        if ( pFanout == NULL )
            continue;
        assert( Abc_ObjIsNode(pFanout) );
        // transform the function of the fanout
        if ( Abc_ObjFaninNum(pNode) == 0 )
            Abc_NodeConstantInput( pFanout, pNode, Abc_NodeIsConst0(pNode) );
        else 
        {
            assert( Abc_ObjFaninNum(pNode) == 1 );
            pDriver = Abc_ObjFanin0(pNode);
            if ( Abc_NodeIsInv(pNode) )
                Abc_NodeComplementInput( pFanout, pNode );
            Abc_ObjPatchFanin( pFanout, pNode, pDriver );
        }
        Abc_NodeRemoveDupFanins( pFanout );
        Abc_NodeMinimumBase( pFanout );
        // check if the fanout should be added
        if ( Abc_ObjFaninNum(pFanout) < 2 )
            Vec_PtrPush( vNodes, pFanout );
        // check if the node has other fanouts
        if ( Abc_ObjFanoutNum(pNode) > 0 )
            Vec_PtrPush( vNodes, pNode );
        else
            Abc_NtkDeleteObj_rec( pNode, 1 );
    }
    Vec_PtrFree( vNodes );
    // sweep a node into its CO fanout if all of this is true:
    // (a) this node is a single-input node
    // (b) the driver of the node has only one fanout (this node)
    // (c) the driver is a node
    Abc_NtkForEachCo( pNtk, pFanout, i )
    {
        pNode = Abc_ObjFanin0(pFanout);
        if ( Abc_ObjFaninNum(pNode) != 1 )
            continue;
        pDriver = Abc_ObjFanin0(pNode);
        if ( !(Abc_ObjFanoutNum(pDriver) == 1 && Abc_ObjIsNode(pDriver)) )
            continue;
        // trasform this CO
        if ( Abc_NodeIsInv(pNode) )
            pDriver->pData = Cudd_Not(pDriver->pData);
        Abc_ObjPatchFanin( pFanout, pNode, pDriver );
    }
    // perform cleanup
    Abc_NtkCleanup( pNtk, 0 );
    // report
    if ( fVerbose )
        printf( "Sweep removed %d nodes.\n", nNodesOld - Abc_NtkNodeNum(pNtk) );
    return nNodesOld - Abc_NtkNodeNum(pNtk);
}


/**Function*************************************************************

  Synopsis    [Replaces the local function by its cofactor.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NodeConstantInput( Abc_Obj_t * pNode, Abc_Obj_t * pFanin, bool fConst0 )
{
    DdManager * dd = pNode->pNtk->pManFunc;
    DdNode * bVar, * bTemp;
    int iFanin;
    assert( Abc_NtkIsBddLogic(pNode->pNtk) ); 
    if ( (iFanin = Vec_IntFind( &pNode->vFanins, pFanin->Id )) == -1 )
    {
        printf( "Node %s should be among", Abc_ObjName(pFanin) );
        printf( " the fanins of node %s...\n", Abc_ObjName(pNode) );
        return;
    }
    bVar = Cudd_NotCond( Cudd_bddIthVar(dd, iFanin), fConst0 );
    pNode->pData = Cudd_Cofactor( dd, bTemp = pNode->pData, bVar );   Cudd_Ref( pNode->pData );
    Cudd_RecursiveDeref( dd, bTemp );
}

/**Function*************************************************************

  Synopsis    [Changes the polarity of one fanin.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NodeComplementInput( Abc_Obj_t * pNode, Abc_Obj_t * pFanin )
{
    DdManager * dd = pNode->pNtk->pManFunc;
    DdNode * bVar, * bCof0, * bCof1;
    int iFanin;
    assert( Abc_NtkIsBddLogic(pNode->pNtk) ); 
    if ( (iFanin = Vec_IntFind( &pNode->vFanins, pFanin->Id )) == -1 )
    {
        printf( "Node %s should be among", Abc_ObjName(pFanin) );
        printf( " the fanins of node %s...\n", Abc_ObjName(pNode) );
        return;
    }
    bVar = Cudd_bddIthVar( dd, iFanin );
    bCof0 = Cudd_Cofactor( dd, pNode->pData, Cudd_Not(bVar) );   Cudd_Ref( bCof0 );
    bCof1 = Cudd_Cofactor( dd, pNode->pData, bVar );             Cudd_Ref( bCof1 );
    Cudd_RecursiveDeref( dd, pNode->pData );
    pNode->pData = Cudd_bddIte( dd, bVar, bCof0, bCof1 );        Cudd_Ref( pNode->pData );
    Cudd_RecursiveDeref( dd, bCof0 );
    Cudd_RecursiveDeref( dd, bCof1 );
}



/**Function*************************************************************

  Synopsis    [Removes all objects whose trav ID is not current.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NodeRemoveNonCurrentObjects( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj;
    int Counter, i;
    int fVerbose = 0;

    // report on the nodes to be deleted
    if ( fVerbose )
    {
        printf( "These nodes will be deleted: \n" );
        Abc_NtkForEachObj( pNtk, pObj, i )
            if ( !Abc_NodeIsTravIdCurrent( pObj ) )
            {
                printf( "    " );
                Abc_ObjPrint( stdout, pObj );
            }
    }
    
    // delete the nodes    
    Counter = 0;
    Abc_NtkForEachObj( pNtk, pObj, i )
        if ( !Abc_NodeIsTravIdCurrent( pObj ) )
        {
            Abc_NtkDeleteObj( pObj );
            Counter++;
        }
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Check if the fanin of this latch is a constant.]

  Description [Returns 0/1 if constant; -1 if not a constant.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkSetTravId_rec( Abc_Obj_t * pObj )
{
    Abc_NodeSetTravIdCurrent(pObj);
    if ( Abc_ObjFaninNum(pObj) == 0 )
        return;
    assert( Abc_ObjFaninNum(pObj) == 1 );
    Abc_NtkSetTravId_rec( Abc_ObjFanin0(pObj) );    
}

/**Function*************************************************************

  Synopsis    [Check if the fanin of this latch is a constant.]

  Description [Returns 0/1 if constant; -1 if not a constant.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkCheckConstant_rec( Abc_Obj_t * pObj )
{
    if ( Abc_ObjFaninNum(pObj) == 0 )
    {
        if ( !Abc_ObjIsNode(pObj) )
            return -1;
        if ( Abc_NodeIsConst0(pObj) )
            return 0;
        if ( Abc_NodeIsConst1(pObj) )
            return 1;
        assert( 0 );
        return -1;
    }
    if ( Abc_ObjIsLatch(pObj) || Abc_ObjFaninNum(pObj) > 1 )
        return -1;
    if ( !Abc_ObjIsNode(pObj) || Abc_NodeIsBuf(pObj) )
        return Abc_NtkCheckConstant_rec( Abc_ObjFanin0(pObj) );
    if ( Abc_NodeIsInv(pObj) )
    {
        int RetValue = Abc_NtkCheckConstant_rec( Abc_ObjFanin0(pObj) );
        if ( RetValue == 0 )
            return 1;
        if ( RetValue == 1 )
            return 0;
        return RetValue;
    }
    assert( 0 );
    return -1;
}

/**Function*************************************************************

  Synopsis    [Removes redundant latches.]

  Description [The redundant latches are of two types:
  - Latches fed by a constant which matches the init value of the latch.
  - Latches fed by a constant which does not match the init value of the latch
  can be all replaced by one latch.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkLatchSweep( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pFanin, * pLatch, * pLatchPivot = NULL;
    int Counter, RetValue, i;
    Counter = 0;
    // go through the latches
    Abc_NtkForEachLatch( pNtk, pLatch, i )
    {
        // check if the latch has constant input
        RetValue = Abc_NtkCheckConstant_rec( Abc_ObjFanin0(pLatch) );
        if ( RetValue == -1 )
            continue;
        // found a latch with constant fanin
        if ( (RetValue == 1 && Abc_LatchIsInit0(pLatch)) ||
             (RetValue == 0 && Abc_LatchIsInit1(pLatch)) )
        {
            // fanin constant differs from the latch init value
            if ( pLatchPivot == NULL )
            {
                pLatchPivot = pLatch;
                continue;
            }
            if ( Abc_LatchInit(pLatch) != Abc_LatchInit(pLatchPivot) ) // add inverter
                pFanin = Abc_NtkCreateNodeInv( pNtk, Abc_ObjFanout0(pLatchPivot) );
            else
                pFanin = Abc_ObjFanout0(pLatchPivot);
        }
        else
            pFanin = Abc_ObjFanin0(Abc_ObjFanin0(pLatch));
        // replace latch
        Abc_ObjTransferFanout( Abc_ObjFanout0(pLatch), pFanin );
        // delete the extra nodes
        Abc_NtkDeleteObj_rec( Abc_ObjFanout0(pLatch), 0 );
        Counter++;
    }
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Replaces autonumnous logic by free inputs.]

  Description [Assumes that non-autonomous logic is marked with
  the current ID.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkReplaceAutonomousLogic( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pNode, * pFanin;
    Vec_Ptr_t * vNodes;
    int i, k, Counter;
    // collect the nodes that feed into the reachable logic
    vNodes = Vec_PtrAlloc( 100 );
    Abc_NtkForEachObj( pNtk, pNode, i )
    {
        // skip non-visited fanins
        if ( !Abc_NodeIsTravIdCurrent(pNode) )
            continue;
        // look for non-visited fanins
        Abc_ObjForEachFanin( pNode, pFanin, k )
        {
            // skip visited fanins
            if ( Abc_NodeIsTravIdCurrent(pFanin) )
                continue;
            // skip constants and latches fed by constants
            if ( Abc_NtkCheckConstant_rec(pFanin) != -1 ||
                 (Abc_ObjIsBo(pFanin) && Abc_NtkCheckConstant_rec(Abc_ObjFanin0(Abc_ObjFanin0(pFanin))) != -1) )
            {
                Abc_NtkSetTravId_rec( pFanin );
                continue;
            }
            assert( !Abc_ObjIsLatch(pFanin) );
            Vec_PtrPush( vNodes, pFanin );
        }
    }
    Vec_PtrUniqify( vNodes, Abc_ObjPointerCompare );
    // replace these nodes by the PIs
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
        pFanin = Abc_NtkCreatePi(pNtk);
        Abc_ObjAssignName( pFanin, Abc_ObjName(pFanin), NULL );
        Abc_NodeSetTravIdCurrent( pFanin );
        Abc_ObjTransferFanout( pNode, pFanin );
    }
    Counter = Vec_PtrSize(vNodes);
    Vec_PtrFree( vNodes );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Sequential cleanup.]

  Description [Performs three tasks:
  - Removes logic that does not feed into POs.
  - Removes latches driven by constant values equal to the initial state.
  - Replaces the autonomous components by additional PI variables.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkCleanupSeq( Abc_Ntk_t * pNtk, int fLatchSweep, int fAutoSweep, int fVerbose )
{
    Vec_Ptr_t * vNodes;
    int Counter;
    assert( Abc_NtkIsLogic(pNtk) );
    // mark the nodes reachable from the POs
    vNodes = Abc_NtkDfsSeq( pNtk );
    Vec_PtrFree( vNodes );
    // remove the non-marked nodes
    Counter = Abc_NodeRemoveNonCurrentObjects( pNtk );
    if ( fVerbose )
        printf( "Cleanup removed %4d dangling objects.\n", Counter );
    // check if some of the latches can be removed
    if ( fLatchSweep )
    {
        Counter = Abc_NtkLatchSweep( pNtk );
        if ( fVerbose )
            printf( "Cleanup removed %4d redundant latches.\n", Counter );
    }
    // detect the autonomous components
    if ( fAutoSweep )
    {
        vNodes = Abc_NtkDfsSeqReverse( pNtk );
        Vec_PtrFree( vNodes );
        // replace them by PIs
        Counter = Abc_NtkReplaceAutonomousLogic( pNtk );
        if ( fVerbose )
            printf( "Cleanup added   %4d additional PIs.\n", Counter );
        // remove the non-marked nodes
        Counter = Abc_NodeRemoveNonCurrentObjects( pNtk );
        if ( fVerbose )
            printf( "Cleanup removed %4d autonomous objects.\n", Counter );
    }
    // check
    if ( !Abc_NtkCheck( pNtk ) )
        printf( "Abc_NtkCleanupSeq: The network check has failed.\n" );
    return 1;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////