1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/**CFile****************************************************************
FileName [abcSat.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Procedures to solve the miter using the internal SAT solver.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcSat.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static void Abc_NodeAddClauses( solver * pSat, char * pSop0, char * pSop1, Abc_Obj_t * pNode, Vec_Int_t * vVars );
static void Abc_NodeAddClausesTop( solver * pSat, Abc_Obj_t * pNode, Vec_Int_t * vVars );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Attempts to solve the miter using an internal SAT solver.]
Description [Returns -1 if timed out; 0 if SAT; 1 if UNSAT.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkMiterSat( Abc_Ntk_t * pNtk, int nSeconds, int fVerbose )
{
solver * pSat;
lbool status;
int RetValue, clk;
assert( Abc_NtkIsBddLogic(pNtk) );
assert( Abc_NtkLatchNum(pNtk) == 0 );
if ( Abc_NtkPoNum(pNtk) > 1 )
fprintf( stdout, "Warning: The miter has %d outputs. SAT will try to prove all of them.\n", Abc_NtkPoNum(pNtk) );
// load clauses into the solver
clk = clock();
pSat = Abc_NtkMiterSatCreate( pNtk );
// printf( "Created SAT problem with %d variable and %d clauses. ", solver_nvars(pSat), solver_nclauses(pSat) );
// PRT( "Time", clock() - clk );
// simplify the problem
clk = clock();
status = solver_simplify(pSat);
// printf( "Simplified the problem to %d variables and %d clauses. ", solver_nvars(pSat), solver_nclauses(pSat) );
// PRT( "Time", clock() - clk );
if ( status == 0 )
{
solver_delete( pSat );
// printf( "The problem is UNSATISFIABLE after simplification.\n" );
return -1;
}
// solve the miter
clk = clock();
if ( fVerbose )
pSat->verbosity = 1;
status = solver_solve( pSat, NULL, NULL, nSeconds );
if ( status == l_Undef )
{
// printf( "The problem timed out.\n" );
RetValue = -1;
}
else if ( status == l_True )
{
// printf( "The problem is SATISFIABLE.\n" );
RetValue = 0;
}
else if ( status == l_False )
{
// printf( "The problem is UNSATISFIABLE.\n" );
RetValue = 1;
}
else
assert( 0 );
// PRT( "SAT solver time", clock() - clk );
// if the problem is SAT, get the counterexample
if ( status == l_True )
{
Vec_Int_t * vCiIds = Abc_NtkGetCiIds( pNtk );
pNtk->pModel = solver_get_model( pSat, vCiIds->pArray, vCiIds->nSize );
Vec_IntFree( vCiIds );
}
// free the solver
solver_delete( pSat );
return RetValue;
}
/**Function*************************************************************
Synopsis [Sets up the SAT solver.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
solver * Abc_NtkMiterSatCreate( Abc_Ntk_t * pNtk )
{
solver * pSat;
Extra_MmFlex_t * pMmFlex;
Abc_Obj_t * pNode;
Vec_Str_t * vCube;
Vec_Int_t * vVars;
char * pSop0, * pSop1;
int i;
assert( Abc_NtkIsBddLogic(pNtk) );
// start the data structures
pSat = solver_new();
pMmFlex = Extra_MmFlexStart();
vCube = Vec_StrAlloc( 100 );
vVars = Vec_IntAlloc( 100 );
// add clauses for each internal nodes
Abc_NtkForEachNode( pNtk, pNode, i )
{
// derive SOPs for both phases of the node
Abc_NodeBddToCnf( pNode, pMmFlex, vCube, &pSop0, &pSop1 );
// add the clauses to the solver
Abc_NodeAddClauses( pSat, pSop0, pSop1, pNode, vVars );
}
// add clauses for each PO
// Abc_NtkForEachPo( pNtk, pNode, i )
// Abc_NodeAddClausesTop( pSat, pNode, vVars );
Abc_NodeAddClausesTop( pSat, Abc_NtkPo(pNtk, Abc_NtkPoNum(pNtk)-1), vVars );
// delete
Vec_StrFree( vCube );
Vec_IntFree( vVars );
Extra_MmFlexStop( pMmFlex, 0 );
return pSat;
}
/**Function*************************************************************
Synopsis [Adds clauses for the internal node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeAddClauses( solver * pSat, char * pSop0, char * pSop1, Abc_Obj_t * pNode, Vec_Int_t * vVars )
{
Abc_Obj_t * pFanin;
int i, c, nFanins;
char * pCube;
nFanins = Abc_ObjFaninNum( pNode );
assert( nFanins == Abc_SopGetVarNum( pSop0 ) );
// add clauses for the negative phase
for ( c = 0; ; c++ )
{
// get the cube
pCube = pSop0 + c * (nFanins + 3);
if ( *pCube == 0 )
break;
// add the clause
vVars->nSize = 0;
Abc_ObjForEachFanin( pNode, pFanin, i )
{
if ( pCube[i] == '0' )
Vec_IntPush( vVars, toLit(pFanin->Id) );
else if ( pCube[i] == '1' )
Vec_IntPush( vVars, neg(toLit(pFanin->Id)) );
}
Vec_IntPush( vVars, neg(toLit(pNode->Id)) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
// add clauses for the positive phase
for ( c = 0; ; c++ )
{
// get the cube
pCube = pSop1 + c * (nFanins + 3);
if ( *pCube == 0 )
break;
// add the clause
vVars->nSize = 0;
Abc_ObjForEachFanin( pNode, pFanin, i )
{
if ( pCube[i] == '0' )
Vec_IntPush( vVars, toLit(pFanin->Id) );
else if ( pCube[i] == '1' )
Vec_IntPush( vVars, neg(toLit(pFanin->Id)) );
}
Vec_IntPush( vVars, toLit(pNode->Id) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
}
/**Function*************************************************************
Synopsis [Adds clauses for the PO node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeAddClausesTop( solver * pSat, Abc_Obj_t * pNode, Vec_Int_t * vVars )
{
Abc_Obj_t * pFanin;
pFanin = Abc_ObjFanin0(pNode);
if ( Abc_ObjFaninC0(pNode) )
{
vVars->nSize = 0;
Vec_IntPush( vVars, toLit(pFanin->Id) );
Vec_IntPush( vVars, toLit(pNode->Id) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
vVars->nSize = 0;
Vec_IntPush( vVars, neg(toLit(pFanin->Id)) );
Vec_IntPush( vVars, neg(toLit(pNode->Id)) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
else
{
vVars->nSize = 0;
Vec_IntPush( vVars, neg(toLit(pFanin->Id)) );
Vec_IntPush( vVars, toLit(pNode->Id) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
vVars->nSize = 0;
Vec_IntPush( vVars, toLit(pFanin->Id) );
Vec_IntPush( vVars, neg(toLit(pNode->Id)) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
vVars->nSize = 0;
Vec_IntPush( vVars, toLit(pNode->Id) );
solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|