1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
/**CFile****************************************************************
FileName [abcRewrite.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Technology-independent resynthesis of the AIG based on DAG aware rewriting.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcRewrite.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "rwr.h"
#include "dec.h"
/*
The ideas realized in this package are inspired by the paper:
Per Bjesse, Arne Boralv, "DAG-aware circuit compression for
formal verification", Proc. ICCAD 2004, pp. 42-49.
*/
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static Cut_Man_t * Abc_NtkStartCutManForRewrite( Abc_Ntk_t * pNtk );
static void Abc_NodePrintCuts( Abc_Obj_t * pNode );
static void Abc_ManShowCutCone( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves );
extern void Abc_PlaceBegin( Abc_Ntk_t * pNtk );
extern void Abc_PlaceEnd( Abc_Ntk_t * pNtk );
extern void Abc_PlaceUpdate( Vec_Ptr_t * vAddedCells, Vec_Ptr_t * vUpdatedNets );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Performs incremental rewriting of the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRewrite( Abc_Ntk_t * pNtk, int fUpdateLevel, int fUseZeros, int fVerbose, int fVeryVerbose, int fPlaceEnable )
{
extern void Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, bool fUpdateLevel, int nGain );
ProgressBar * pProgress;
Cut_Man_t * pManCut;
Rwr_Man_t * pManRwr;
Abc_Obj_t * pNode;
Vec_Ptr_t * vAddedCells = NULL, * vUpdatedNets = NULL;
Dec_Graph_t * pGraph;
int i, nNodes, nGain, fCompl;
int clk, clkStart = clock();
assert( Abc_NtkIsStrash(pNtk) );
// cleanup the AIG
Abc_AigCleanup(pNtk->pManFunc);
/*
{
Vec_Vec_t * vParts;
vParts = Abc_NtkPartitionSmart( pNtk, 50, 1 );
Vec_VecFree( vParts );
}
*/
// start placement package
// if ( fPlaceEnable )
// {
// Abc_PlaceBegin( pNtk );
// vAddedCells = Abc_AigUpdateStart( pNtk->pManFunc, &vUpdatedNets );
// }
// start the rewriting manager
pManRwr = Rwr_ManStart( 0 );
if ( pManRwr == NULL )
return 0;
// compute the reverse levels if level update is requested
if ( fUpdateLevel )
Abc_NtkStartReverseLevels( pNtk, 0 );
// start the cut manager
clk = clock();
pManCut = Abc_NtkStartCutManForRewrite( pNtk );
Rwr_ManAddTimeCuts( pManRwr, clock() - clk );
pNtk->pManCut = pManCut;
if ( fVeryVerbose )
Rwr_ScoresClean( pManRwr );
// resynthesize each node once
pManRwr->nNodesBeg = Abc_NtkNodeNum(pNtk);
nNodes = Abc_NtkObjNumMax(pNtk);
pProgress = Extra_ProgressBarStart( stdout, nNodes );
Abc_NtkForEachNode( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// stop if all nodes have been tried once
if ( i >= nNodes )
break;
// skip persistant nodes
if ( Abc_NodeIsPersistant(pNode) )
continue;
// skip the nodes with many fanouts
if ( Abc_ObjFanoutNum(pNode) > 1000 )
continue;
// for each cut, try to resynthesize it
nGain = Rwr_NodeRewrite( pManRwr, pManCut, pNode, fUpdateLevel, fUseZeros, fPlaceEnable );
if ( !(nGain > 0 || nGain == 0 && fUseZeros) )
continue;
// if we end up here, a rewriting step is accepted
// get hold of the new subgraph to be added to the AIG
pGraph = Rwr_ManReadDecs(pManRwr);
fCompl = Rwr_ManReadCompl(pManRwr);
// reset the array of the changed nodes
if ( fPlaceEnable )
Abc_AigUpdateReset( pNtk->pManFunc );
// complement the FF if needed
if ( fCompl ) Dec_GraphComplement( pGraph );
clk = clock();
Dec_GraphUpdateNetwork( pNode, pGraph, fUpdateLevel, nGain );
Rwr_ManAddTimeUpdate( pManRwr, clock() - clk );
if ( fCompl ) Dec_GraphComplement( pGraph );
// use the array of changed nodes to update placement
// if ( fPlaceEnable )
// Abc_PlaceUpdate( vAddedCells, vUpdatedNets );
}
Extra_ProgressBarStop( pProgress );
Rwr_ManAddTimeTotal( pManRwr, clock() - clkStart );
// print stats
pManRwr->nNodesEnd = Abc_NtkNodeNum(pNtk);
if ( fVerbose )
Rwr_ManPrintStats( pManRwr );
// Rwr_ManPrintStatsFile( pManRwr );
if ( fVeryVerbose )
Rwr_ScoresReport( pManRwr );
// delete the managers
Rwr_ManStop( pManRwr );
Cut_ManStop( pManCut );
pNtk->pManCut = NULL;
// start placement package
// if ( fPlaceEnable )
// {
// Abc_PlaceEnd( pNtk );
// Abc_AigUpdateStop( pNtk->pManFunc );
// }
// put the nodes into the DFS order and reassign their IDs
{
// int clk = clock();
Abc_NtkReassignIds( pNtk );
// PRT( "time", clock() - clk );
}
// Abc_AigCheckFaninOrder( pNtk->pManFunc );
// fix the levels
if ( fUpdateLevel )
Abc_NtkStopReverseLevels( pNtk );
else
Abc_NtkLevel( pNtk );
// check
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_NtkRewrite: The network check has failed.\n" );
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Starts the cut manager for rewriting.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Cut_Man_t * Abc_NtkStartCutManForRewrite( Abc_Ntk_t * pNtk )
{
static Cut_Params_t Params, * pParams = &Params;
Cut_Man_t * pManCut;
Abc_Obj_t * pObj;
int i;
// start the cut manager
memset( pParams, 0, sizeof(Cut_Params_t) );
pParams->nVarsMax = 4; // the max cut size ("k" of the k-feasible cuts)
pParams->nKeepMax = 250; // the max number of cuts kept at a node
pParams->fTruth = 1; // compute truth tables
pParams->fFilter = 1; // filter dominated cuts
pParams->fSeq = 0; // compute sequential cuts
pParams->fDrop = 0; // drop cuts on the fly
pParams->fVerbose = 0; // the verbosiness flag
pParams->nIdsMax = Abc_NtkObjNumMax( pNtk );
pManCut = Cut_ManStart( pParams );
if ( pParams->fDrop )
Cut_ManSetFanoutCounts( pManCut, Abc_NtkFanoutCounts(pNtk) );
// set cuts for PIs
Abc_NtkForEachCi( pNtk, pObj, i )
if ( Abc_ObjFanoutNum(pObj) > 0 )
Cut_NodeSetTriv( pManCut, pObj->Id );
return pManCut;
}
/**Function*************************************************************
Synopsis [Prints the cuts at the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodePrintCuts( Abc_Obj_t * pNode )
{
Vec_Ptr_t * vCuts;
Cut_Cut_t * pCut;
int k;
printf( "\nNode %s\n", Abc_ObjName(pNode) );
vCuts = (Vec_Ptr_t *)pNode->pCopy;
Vec_PtrForEachEntry( vCuts, pCut, k )
{
Extra_PrintBinary( stdout, (unsigned *)&pCut->uSign, 16 );
printf( " " );
Cut_CutPrint( pCut, 0 );
printf( "\n" );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_ManRewritePrintDivs( Vec_Ptr_t * vDivs, int nLeaves )
{
Abc_Obj_t * pFanin, * pNode, * pRoot;
int i, k;
pRoot = Vec_PtrEntryLast(vDivs);
// print the nodes
Vec_PtrForEachEntry( vDivs, pNode, i )
{
if ( i < nLeaves )
{
printf( "%6d : %c\n", pNode->Id, 'a'+i );
continue;
}
printf( "%6d : %2d = ", pNode->Id, i );
// find the first fanin
Vec_PtrForEachEntry( vDivs, pFanin, k )
if ( Abc_ObjFanin0(pNode) == pFanin )
break;
if ( k < nLeaves )
printf( "%c", 'a' + k );
else
printf( "%d", k );
printf( "%s ", Abc_ObjFaninC0(pNode)? "\'" : "" );
// find the second fanin
Vec_PtrForEachEntry( vDivs, pFanin, k )
if ( Abc_ObjFanin1(pNode) == pFanin )
break;
if ( k < nLeaves )
printf( "%c", 'a' + k );
else
printf( "%d", k );
printf( "%s ", Abc_ObjFaninC1(pNode)? "\'" : "" );
if ( pNode == pRoot )
printf( " root" );
printf( "\n" );
}
printf( "\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_ManShowCutCone_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vDivs )
{
if ( Abc_NodeIsTravIdCurrent(pNode) )
return;
Abc_NodeSetTravIdCurrent(pNode);
Abc_ManShowCutCone_rec( Abc_ObjFanin0(pNode), vDivs );
Abc_ManShowCutCone_rec( Abc_ObjFanin1(pNode), vDivs );
Vec_PtrPush( vDivs, pNode );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_ManShowCutCone( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves )
{
Abc_Ntk_t * pNtk = pNode->pNtk;
Abc_Obj_t * pObj;
Vec_Ptr_t * vDivs;
int i;
vDivs = Vec_PtrAlloc( 100 );
Abc_NtkIncrementTravId( pNtk );
Vec_PtrForEachEntry( vLeaves, pObj, i )
{
Abc_NodeSetTravIdCurrent( Abc_ObjRegular(pObj) );
Vec_PtrPush( vDivs, Abc_ObjRegular(pObj) );
}
Abc_ManShowCutCone_rec( pNode, vDivs );
Abc_ManRewritePrintDivs( vDivs, Vec_PtrSize(vLeaves) );
Vec_PtrFree( vDivs );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_RwrExpWithCut_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, int fUseA )
{
if ( Vec_PtrFind(vLeaves, pNode) >= 0 || Vec_PtrFind(vLeaves, Abc_ObjNot(pNode)) >= 0 )
{
if ( fUseA )
Abc_ObjRegular(pNode)->fMarkA = 1;
else
Abc_ObjRegular(pNode)->fMarkB = 1;
return;
}
assert( Abc_ObjIsNode(pNode) );
Abc_RwrExpWithCut_rec( Abc_ObjFanin0(pNode), vLeaves, fUseA );
Abc_RwrExpWithCut_rec( Abc_ObjFanin1(pNode), vLeaves, fUseA );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_RwrExpWithCut( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves )
{
Abc_Obj_t * pObj;
int i, CountA, CountB;
Abc_RwrExpWithCut_rec( Abc_ObjFanin0(pNode), vLeaves, 1 );
Abc_RwrExpWithCut_rec( Abc_ObjFanin1(pNode), vLeaves, 0 );
CountA = CountB = 0;
Vec_PtrForEachEntry( vLeaves, pObj, i )
{
CountA += Abc_ObjRegular(pObj)->fMarkA;
CountB += Abc_ObjRegular(pObj)->fMarkB;
Abc_ObjRegular(pObj)->fMarkA = 0;
Abc_ObjRegular(pObj)->fMarkB = 0;
}
printf( "(%d,%d:%d) ", CountA, CountB, CountA+CountB-Vec_PtrSize(vLeaves) );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|