1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
/**CFile****************************************************************
FileName [abcNpn.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Procedures for testing and comparing semi-canonical forms.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcNpn.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "misc/extra/extra.h"
#include "misc/vec/vec.h"
#include "bool/kit/kit.h"
#include "bool/lucky/lucky.h"
#include "opt/dau/dau.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// semi-canonical form types
// 0 - none
// 1 - based on counting 1s in cofactors
// 2 - based on minimum truth table value
// 3 - exact NPN
// data-structure to store a bunch of truth tables
typedef struct Abc_TtStore_t_ Abc_TtStore_t;
struct Abc_TtStore_t_
{
int nVars;
int nWords;
int nFuncs;
word ** pFuncs;
};
extern Abc_TtStore_t * Abc_TtStoreLoad( char * pFileName, int nVarNum );
extern void Abc_TtStoreFree( Abc_TtStore_t * p, int nVarNum );
extern void Abc_TtStoreWrite( char * pFileName, Abc_TtStore_t * p, int fBinary );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Counts the number of unique truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
// returns hash key of the truth table
static inline int Abc_TruthHashKey( word * pFunc, int nWords, int nTableSize )
{
static unsigned s_BigPrimes[7] = {12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457};
int w;
word Key = 0;
for ( w = 0; w < nWords; w++ )
Key += pFunc[w] * s_BigPrimes[w % 7];
return (int)(Key % nTableSize);
}
// returns 1 if the entry with this truth table exits
static inline int Abc_TruthHashLookup( word ** pFuncs, int iThis, int nWords, int * pTable, int * pNexts, int Key )
{
int iThat;
for ( iThat = pTable[Key]; iThat != -1; iThat = pNexts[iThat] )
if ( !memcmp( pFuncs[iThat], pFuncs[iThis], sizeof(word) * nWords ) )
return 1;
return 0;
}
// hashes truth tables and collects unique ones
int Abc_TruthNpnCountUnique( Abc_TtStore_t * p )
{
// allocate hash table
int nTableSize = Abc_PrimeCudd(p->nFuncs);
int * pTable = ABC_FALLOC( int, nTableSize );
int * pNexts = ABC_FALLOC( int, nTableSize );
// hash functions
int i, k, Key;
for ( i = 0; i < p->nFuncs; i++ )
{
Key = Abc_TruthHashKey( p->pFuncs[i], p->nWords, nTableSize );
if ( Abc_TruthHashLookup( p->pFuncs, i, p->nWords, pTable, pNexts, Key ) ) // found equal
p->pFuncs[i] = NULL;
else // there is no equal (the first time this one occurs so far)
pNexts[i] = pTable[Key], pTable[Key] = i;
}
ABC_FREE( pTable );
ABC_FREE( pNexts );
// count the number of unqiue functions
assert( p->pFuncs[0] != NULL );
for ( i = k = 1; i < p->nFuncs; i++ )
if ( p->pFuncs[i] != NULL )
p->pFuncs[k++] = p->pFuncs[i];
return (p->nFuncs = k);
}
/**Function*************************************************************
Synopsis [Counts the number of unique truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int nWords = 0; // unfortunate global variable
int Abc_TruthCompare( word ** p1, word ** p2 ) { return memcmp(*p1, *p2, sizeof(word) * nWords); }
int Abc_TruthNpnCountUniqueSort( Abc_TtStore_t * p )
{
int i, k;
// sort them by value
nWords = p->nWords;
assert( nWords > 0 );
qsort( (void *)p->pFuncs, (size_t)p->nFuncs, sizeof(word *), (int(*)(const void *,const void *))Abc_TruthCompare );
// count the number of unqiue functions
for ( i = k = 1; i < p->nFuncs; i++ )
if ( memcmp( p->pFuncs[i-1], p->pFuncs[i], sizeof(word) * nWords ) )
p->pFuncs[k++] = p->pFuncs[i];
return (p->nFuncs = k);
}
/**Function*************************************************************
Synopsis [Prints out one NPN transform.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthNpnPrint( char * pCanonPermInit, unsigned uCanonPhase, int nVars )
{
char pCanonPerm[16]; int i;
assert( nVars <= 16 );
for ( i = 0; i < nVars; i++ )
pCanonPerm[i] = pCanonPermInit ? pCanonPermInit[i] : 'a' + i;
printf( " %c = ( ", Abc_InfoHasBit(&uCanonPhase, nVars) ? 'Z':'z' );
for ( i = 0; i < nVars; i++ )
printf( "%c%s", pCanonPerm[i] + ('A'-'a') * Abc_InfoHasBit(&uCanonPhase, pCanonPerm[i]-'a'), i == nVars-1 ? "":"," );
printf( " ) " );
}
/**Function*************************************************************
Synopsis [Apply decomposition to the truth table.]
Description [Returns the number of AIG nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthNpnPerform( Abc_TtStore_t * p, int NpnType, int fVerbose )
{
unsigned pAux[2048];
word pAuxWord[1024], pAuxWord1[1024];
char pCanonPerm[16];
unsigned uCanonPhase=0;
abctime clk = Abc_Clock();
int i;
char * pAlgoName = NULL;
if ( NpnType == 0 )
pAlgoName = "uniqifying ";
else if ( NpnType == 1 )
pAlgoName = "exact NPN ";
else if ( NpnType == 2 )
pAlgoName = "counting 1s ";
else if ( NpnType == 3 )
pAlgoName = "Jake's hybrid fast ";
else if ( NpnType == 4 )
pAlgoName = "Jake's hybrid good ";
else if ( NpnType == 5 )
pAlgoName = "new hybrid fast ";
else if ( NpnType == 6 )
pAlgoName = "new phase flipping ";
else if ( NpnType == 7 )
pAlgoName = "new hier. matching ";
else if ( NpnType == 8 )
pAlgoName = "new adap. matching ";
else if ( NpnType == 9 )
pAlgoName = "adjustable algorithm (heuristic) ";
else if ( NpnType == 10 )
pAlgoName = "adjustable algorithm (exact) ";
else if ( NpnType == 11 )
pAlgoName = "new cost-aware exact algorithm ";
else if ( NpnType == 12 )
pAlgoName = "new hybrid fast (P) ";
assert( p->nVars <= 16 );
if ( pAlgoName )
printf( "Applying %-20s to %8d func%s of %2d vars... ",
pAlgoName, p->nFuncs, (p->nFuncs == 1 ? "":"s"), p->nVars );
if ( fVerbose )
printf( "\n" );
if ( NpnType == 0 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), printf( "\n" );
}
}
else if ( NpnType == 1 )
{
permInfo* pi;
Abc_TruthNpnCountUnique(p);
pi = setPermInfoPtr(p->nVars);
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
simpleMinimal(p->pFuncs[i], pAuxWord, pAuxWord1, pi, p->nVars);
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
freePermInfoPtr(pi);
}
else if ( NpnType == 2 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
resetPCanonPermArray(pCanonPerm, p->nVars);
uCanonPhase = Kit_TruthSemiCanonicize( (unsigned *)p->pFuncs[i], pAux, p->nVars, pCanonPerm );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
}
else if ( NpnType == 3 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
resetPCanonPermArray(pCanonPerm, p->nVars);
uCanonPhase = luckyCanonicizer_final_fast( p->pFuncs[i], p->nVars, pCanonPerm );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
}
else if ( NpnType == 4 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
resetPCanonPermArray(pCanonPerm, p->nVars);
uCanonPhase = luckyCanonicizer_final_fast1( p->pFuncs[i], p->nVars, pCanonPerm );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
}
else if ( NpnType == 5 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
uCanonPhase = Abc_TtCanonicize( p->pFuncs[i], p->nVars, pCanonPerm );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
}
else if ( NpnType == 6 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
uCanonPhase = Abc_TtCanonicizePhase( p->pFuncs[i], p->nVars );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(NULL, uCanonPhase, p->nVars), printf( "\n" );
}
}
else if ( NpnType == 7 )
{
int fExact = 0;
Abc_TtHieMan_t * pMan = Abc_TtHieManStart( p->nVars, 5 );
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
uCanonPhase = Abc_TtCanonicizeHie( pMan, p->pFuncs[i], p->nVars, pCanonPerm, fExact );
if ( fVerbose )
// Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(NULL, uCanonPhase, p->nVars), printf( "\n" );
printf( "\n" );
}
// nClasses = Abc_TtManNumClasses( pMan );
Abc_TtHieManStop( pMan );
}
else if ( NpnType == 8 )
{
// typedef unsigned(*TtCanonicizeFunc)(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeWrap(TtCanonicizeFunc func, Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeAda(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int iThres);
int fHigh = 1, iEnumThres = 25;
Abc_TtHieMan_t * pMan = Abc_TtHieManStart(p->nVars, 5);
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
uCanonPhase = Abc_TtCanonicizeWrap(Abc_TtCanonicizeAda, pMan, p->pFuncs[i], p->nVars, pCanonPerm, fHigh*100 + iEnumThres);
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
Abc_TtHieManStop(pMan);
}
else if ( NpnType == 9 || NpnType == 10 || NpnType == 11 )
{
// typedef unsigned(*TtCanonicizeFunc)(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeWrap(TtCanonicizeFunc func, Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeAda(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int iThres);
unsigned Abc_TtCanonicizeCA(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int iThres);
Abc_TtHieMan_t * pMan = Abc_TtHieManStart(p->nVars, 5);
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
if ( NpnType == 9 )
uCanonPhase = Abc_TtCanonicizeWrap(Abc_TtCanonicizeAda, pMan, p->pFuncs[i], p->nVars, pCanonPerm, 125); // -A 8, adjustable algorithm (heuristic)
else if ( NpnType == 10 )
uCanonPhase = Abc_TtCanonicizeWrap(Abc_TtCanonicizeAda, pMan, p->pFuncs[i], p->nVars, pCanonPerm, 1199); // -A 9, adjustable algorithm (exact)
else if ( NpnType == 11 )
uCanonPhase = Abc_TtCanonicizeWrap(Abc_TtCanonicizeCA, pMan, p->pFuncs[i], p->nVars, pCanonPerm, 1); // -A 10, new cost-aware exact algorithm
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
Abc_TtHieManStop(pMan);
}
else if ( NpnType == 12 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
uCanonPhase = Abc_TtCanonicizePerm( p->pFuncs[i], p->nVars, pCanonPerm );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
}
else assert( 0 );
clk = Abc_Clock() - clk;
printf( "Classes =%9d ", Abc_TruthNpnCountUnique(p) );
Abc_PrintTime( 1, "Time", clk );
}
/**Function*************************************************************
Synopsis [Apply decomposition to truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthNpnTest( char * pFileName, int NpnType, int nVarNum, int fDumpRes, int fBinary, int fVerbose )
{
Abc_TtStore_t * p;
char * pFileNameOut;
// read info from file
p = Abc_TtStoreLoad( pFileName, nVarNum );
if ( p == NULL )
return;
// consider functions from the file
Abc_TruthNpnPerform( p, NpnType, fVerbose );
// write the result
if ( fDumpRes )
{
if ( fBinary )
pFileNameOut = Extra_FileNameGenericAppend( pFileName, "_out.tt" );
else
pFileNameOut = Extra_FileNameGenericAppend( pFileName, "_out.txt" );
Abc_TtStoreWrite( pFileNameOut, p, fBinary );
if ( fVerbose )
printf( "The resulting functions are written into file \"%s\".\n", pFileNameOut );
}
// delete data-structure
Abc_TtStoreFree( p, nVarNum );
// printf( "Finished computing canonical forms for functions from file \"%s\".\n", pFileName );
}
/**Function*************************************************************
Synopsis [Testbench for decomposition algorithms.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NpnTest( char * pFileName, int NpnType, int nVarNum, int fDumpRes, int fBinary, int fVerbose )
{
if ( fVerbose )
printf( "Using truth tables from file \"%s\"...\n", pFileName );
if ( NpnType >= 0 && NpnType <= 12 )
Abc_TruthNpnTest( pFileName, NpnType, nVarNum, fDumpRes, fBinary, fVerbose );
else
printf( "Unknown canonical form value (%d).\n", NpnType );
fflush( stdout );
return 0;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|