1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
/**CFile****************************************************************
FileName [abcDsdRes.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis []
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcDsdRes.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define LUT_SIZE_MAX 16 // the largest size of the function
#define LUT_CUTS_MAX 128 // the largest number of cuts considered
typedef struct Lut_Man_t_ Lut_Man_t;
typedef struct Lut_Cut_t_ Lut_Cut_t;
struct Lut_Cut_t_
{
unsigned nLeaves : 6; // (L) the number of leaves
unsigned nNodes : 6; // (M) the number of nodes
unsigned nNodesMarked : 6; // (Q) nodes outside of MFFC
unsigned nNodesMax : 6; // the max number of nodes
unsigned nLeavesMax : 6; // the max number of leaves
unsigned fHasDsd : 1; // set to 1 if the cut has structural DSD (and so cannot be used)
unsigned fMark : 1; // multipurpose mark
// unsigned uSign[2]; // the signature
float Weight; // the weight of the cut: (M - Q)/N(V) (the larger the better)
int pLeaves[LUT_SIZE_MAX]; // the leaves of the cut
int pNodes[LUT_SIZE_MAX]; // the nodes of the cut
};
struct Lut_Man_t_
{
// parameters
Lut_Par_t * pPars; // the set of parameters
// current representation
Abc_Ntk_t * pNtk; // the network
Abc_Obj_t * pObj; // the node to resynthesize
// cut representation
int nCuts; // the total number of cuts
int nCutsMax; // the largest possible number of cuts
int nEvals; // the number of good cuts
Lut_Cut_t pCuts[LUT_CUTS_MAX]; // the storage for cuts
int pEvals[LUT_SIZE_MAX]; // the good cuts
// temporary variables
int pRefs[LUT_SIZE_MAX]; // fanin reference counters
int pCands[LUT_SIZE_MAX]; // internal nodes pointing only to the leaves
// truth table representation
Vec_Ptr_t * vTtElems; // elementary truth tables
Vec_Ptr_t * vTtNodes; // storage for temporary truth tables of the nodes
};
static int Abc_LutResynthesizeNode( Lut_Man_t * p );
#define Abc_LutCutForEachLeaf( pNtk, pCut, pObj, i ) \
for ( i = 0; (i < (int)(pCut)->nLeaves) && (((pObj) = Abc_NtkObj(pNtk, (pCut)->pLeaves[i])), 1); i++ )
#define Abc_LutCutForEachNode( pNtk, pCut, pObj, i ) \
for ( i = 0; (i < (int)(pCut)->nNodes) && (((pObj) = Abc_NtkObj(pNtk, (pCut)->pNodes[i])), 1); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Lut_Man_t * Abc_LutManStart( Lut_Par_t * pPars )
{
Lut_Man_t * p;
int i;
assert( pPars->nLutsMax <= 16 );
p = ALLOC( Lut_Man_t, 1 );
memset( p, 0, sizeof(Lut_Man_t) );
p->pPars = pPars;
p->nCutsMax = LUT_CUTS_MAX;
for ( i = 0; i < p->nCuts; i++ )
p->pCuts[i].nLeavesMax = p->pCuts[i].nNodesMax = LUT_SIZE_MAX;
p->vTtElems = Vec_PtrAllocTruthTables( pPars->nLutsMax );
p->vTtNodes = Vec_PtrAllocSimInfo( 256, Abc_TruthWordNum(pPars->nLutsMax) );
return p;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_LutManStop( Lut_Man_t * p )
{
Vec_PtrFree( p->vTtElems );
Vec_PtrFree( p->vTtNodes );
free( p );
}
/**Function*************************************************************
Synopsis [Performs resynthesis for one network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_LutResynthesize( Abc_Ntk_t * pNtk, Lut_Par_t * pPars )
{
Lut_Man_t * p;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkIsLogic(pNtk) );
// convert logic to AIGs
Abc_NtkToAig( pNtk );
// compute the levels
Abc_NtkLevel( pNtk );
// start the manager
p = Abc_LutManStart( pPars );
p->pNtk = pNtk;
// get the number of inputs
p->pPars->nLutSize = Abc_NtkGetFaninMax( pNtk );
p->pPars->nVarsMax = p->pPars->nLutsMax * (p->pPars->nLutSize - 1) + 1; // V = N * (K-1) + 1
printf( "Resynthesis for %d %d-LUTs with %d non-MFFC LUTs, %d crossbars, and %d-input cuts.\n",
p->pPars->nLutsMax, p->pPars->nLutSize, p->pPars->nLutsOver, p->pPars->nVarsShared, p->pPars->nVarsMax );
// consider all nodes
Abc_NtkForEachNode( pNtk, pObj, i )
{
p->pObj = pObj;
Abc_LutResynthesizeNode( p );
}
Abc_LutManStop( p );
// check the resulting network
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_LutResynthesize: The network check has failed.\n" );
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Returns 1 if the cut has structural DSD.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_LutNodeCutsCheckDsd( Lut_Man_t * p, Lut_Cut_t * pCut )
{
Abc_Obj_t * pObj, * pFanin;
int i, k, nCands, fLeavesOnly, RetValue;
assert( pCut->nLeaves > 0 );
// clear ref counters
memset( p->pRefs, 0, sizeof(int) * pCut->nLeaves );
// mark cut leaves
Abc_LutCutForEachLeaf( p->pNtk, pCut, pObj, i )
{
assert( pObj->fMarkA == 0 );
pObj->fMarkA = 1;
pObj->pCopy = (void *)i;
}
// ref leaves pointed from the internal nodes
nCands = 0;
Abc_LutCutForEachNode( p->pNtk, pCut, pObj, i )
{
fLeavesOnly = 1;
Abc_ObjForEachFanin( pObj, pFanin, k )
if ( pFanin->fMarkA )
p->pRefs[(int)pFanin->pCopy]++;
else
fLeavesOnly = 0;
if ( fLeavesOnly )
p->pCands[nCands++] = pObj->Id;
}
// look at the nodes that only point to the leaves
RetValue = 0;
for ( i = 0; i < nCands; i++ )
{
pObj = Abc_NtkObj( p->pNtk, p->pCands[i] );
Abc_ObjForEachFanin( pObj, pFanin, k )
{
assert( pFanin->fMarkA == 1 );
if ( p->pRefs[(int)pFanin->pCopy] > 1 )
break;
}
if ( k == Abc_ObjFaninNum(pFanin) )
{
RetValue = 1;
break;
}
}
// unmark cut leaves
Abc_LutCutForEachLeaf( p->pNtk, pCut, pObj, i )
pObj->fMarkA = 0;
return RetValue;
}
/**Function*************************************************************
Synopsis [Returns 1 if pDom is contained in pCut.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_LutNodeCutsOneDominance( Lut_Cut_t * pDom, Lut_Cut_t * pCut )
{
int i, k;
for ( i = 0; i < (int)pDom->nLeaves; i++ )
{
for ( k = 0; k < (int)pCut->nLeaves; k++ )
if ( pDom->pLeaves[i] == pCut->pLeaves[k] )
break;
if ( k == (int)pCut->nLeaves ) // node i in pDom is not contained in pCut
return 0;
}
// every node in pDom is contained in pCut
return 1;
}
/**Function*************************************************************
Synopsis [Check if the cut exists.]
Description [Returns 1 if the cut exists.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_LutNodeCutsOneFilter( Lut_Cut_t * pCuts, int nCuts, Lut_Cut_t * pCutNew )
{
Lut_Cut_t * pCut;
int i, k;
// assert( pCutNew->uHash );
// try to find the cut
for ( i = 0; i < nCuts; i++ )
{
pCut = pCuts + i;
if ( pCut->nLeaves == 0 )
continue;
if ( pCut->nLeaves == pCutNew->nLeaves )
{
// if ( pCut->uHash[0] == pCutNew->uHash[0] && pCut->uHash[1] == pCutNew->uHash[1] )
{
for ( k = 0; k < (int)pCutNew->nLeaves; k++ )
if ( pCut->pLeaves[k] != pCutNew->pLeaves[k] )
break;
if ( k == (int)pCutNew->nLeaves )
return 1;
}
continue;
}
if ( pCut->nLeaves < pCutNew->nLeaves )
{
// skip the non-contained cuts
// if ( (pCut->uHash[0] & pCutNew->uHash[0]) != pCut->uHash[0] )
// continue;
// if ( (pCut->uHash[1] & pCutNew->uHash[1]) != pCut->uHash[1] )
// continue;
// check containment seriously
if ( Abc_LutNodeCutsOneDominance( pCut, pCutNew ) )
return 1;
continue;
}
// check potential containment of other cut
// skip the non-contained cuts
// if ( (pCut->uHash[0] & pCutNew->uHash[0]) != pCutNew->uHash[0] )
// continue;
// if ( (pCut->uHash[1] & pCutNew->uHash[1]) != pCutNew->uHash[1] )
// continue;
// check containment seriously
if ( Abc_LutNodeCutsOneDominance( pCutNew, pCut ) )
pCut->nLeaves = 0; // removed
}
return 0;
}
/**Function*************************************************************
Synopsis [Computes the set of all cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_LutNodeCutsOne( Lut_Man_t * p, Lut_Cut_t * pCut, int Node )
{
Lut_Cut_t * pCutNew;
Abc_Obj_t * pObj, * pFanin;
int i, k, j;
// check if the cut can stand adding one more internal node
if ( pCut->nNodes == LUT_SIZE_MAX )
return;
// if the node is not in the MFFC, check the limit
pObj = Abc_NtkObj( p->pNtk, Node );
if ( !Abc_NodeIsTravIdCurrent(pObj) )
{
if ( (int)pCut->nNodesMarked == p->pPars->nLutsOver )
return;
assert( (int)pCut->nNodesMarked < p->pPars->nLutsOver );
}
// create the new set of leaves
pCutNew = p->pCuts + p->nCuts;
pCutNew->nLeaves = 0;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
if ( pCut->pLeaves[i] != Node )
pCutNew->pLeaves[pCutNew->nLeaves++] = pCut->pLeaves[i];
// add new nodes
Abc_ObjForEachFanin( pObj, pFanin, i )
{
// find the place where this node belongs
for ( k = 0; k < (int)pCutNew->nLeaves; k++ )
if ( pCutNew->pLeaves[k] >= pFanin->Id )
break;
if ( pCutNew->pLeaves[k] == pFanin->Id )
continue;
// check if there is room
if ( (int)pCutNew->nLeaves == p->pPars->nVarsMax )
return;
// move all the nodes
for ( j = pCutNew->nLeaves; j > k; j-- )
pCutNew->pLeaves[j] = pCutNew->pLeaves[j-1];
pCutNew->pLeaves[k] = pFanin->Id;
pCutNew->nLeaves++;
assert( pCutNew->nLeaves <= LUT_SIZE_MAX );
}
// skip the contained cuts
if ( Abc_LutNodeCutsOneFilter( p->pCuts, p->nCuts, pCutNew ) )
return;
// update the set of internal nodes
assert( pCut->nNodes < LUT_SIZE_MAX );
memcpy( pCutNew->pNodes, pCutNew->pNodes, pCut->nNodes * sizeof(int) );
pCutNew->pNodes[ pCut->nNodes++ ] = Node;
// add the marked node
pCutNew->nNodesMarked = pCut->nNodesMarked + !Abc_NodeIsTravIdCurrent(pObj);
// add the cut to storage
assert( p->nCuts < LUT_CUTS_MAX );
p->nCuts++;
}
/**Function*************************************************************
Synopsis [Computes the set of all cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_LutNodeCuts( Lut_Man_t * p )
{
Abc_Obj_t * pFanin;
Lut_Cut_t * pCut, * pCut2;
int i, k, Temp, nMffc, fChanges;
// mark the MFFC of the node with the current trav ID
nMffc = Abc_NodeMffcLabel( p->pObj );
assert( nMffc > 0 );
if ( nMffc == 1 )
return 0;
// initialize the first cut
pCut = p->pCuts;
// assign internal nodes
pCut->nNodes = 1;
pCut->pNodes[0] = p->pObj->Id;
pCut->nNodesMarked = 0;
// assign the leaves
pCut->nLeaves = Abc_ObjFaninNum( p->pObj );
Abc_ObjForEachFanin( p->pObj, pFanin, i )
pCut->pLeaves[i] = pFanin->Id;
// sort the leaves
do {
fChanges = 0;
for ( i = 0; i < (int)pCut->nLeaves - 1; i++ )
{
if ( pCut->pLeaves[i] <= pCut->pLeaves[i+1] )
continue;
Temp = pCut->pLeaves[i];
pCut->pLeaves[i] = pCut->pLeaves[i+1];
pCut->pLeaves[i+1] = Temp;
fChanges = 1;
}
} while ( fChanges );
// perform the cut computation
for ( i = 0; i < p->nCuts; i++ )
{
pCut = p->pCuts + p->pEvals[i];
if ( pCut->nLeaves == 0 )
continue;
// try to expand each fanin of each cut
for ( k = 0; k < (int)pCut->nLeaves; k++ )
{
Abc_LutNodeCutsOne( p, pCut, pCut->pLeaves[k] );
if ( p->nCuts == LUT_CUTS_MAX )
break;
}
if ( p->nCuts == LUT_CUTS_MAX )
break;
}
// compress the cuts by removing empty ones, decomposable ones, and those with negative Weight
p->nEvals = 0;
for ( i = 0; i < p->nCuts; i++ )
{
pCut = p->pCuts + p->pEvals[i];
pCut->Weight = (float)1.0 * (pCut->nNodes - pCut->nNodesMarked) / p->pPars->nLutsMax;
pCut->fHasDsd = Abc_LutNodeCutsCheckDsd( p, pCut );
if ( pCut->nLeaves == 0 || pCut->Weight <= 1.0 || pCut->fHasDsd )
continue;
p->pEvals[p->nEvals++] = i;
}
if ( p->nEvals == 0 )
return 0;
// sort the cuts by Weight
do {
fChanges = 0;
for ( i = 0; i < p->nEvals - 1; i++ )
{
pCut = p->pCuts + p->pEvals[i];
pCut2 = p->pCuts + p->pEvals[i+1];
if ( pCut->Weight >= pCut2->Weight )
continue;
Temp = p->pEvals[i];
p->pEvals[i] = p->pEvals[i+1];
p->pEvals[i+1] = Temp;
fChanges = 1;
}
} while ( fChanges );
return 1;
}
/**Function*************************************************************
Synopsis [Computes the truth able of one cut.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Abc_LutCutTruth( Lut_Man_t * p, Lut_Cut_t * pCut )
{
unsigned * pTruth = NULL;
return pTruth;
}
/**Function*************************************************************
Synopsis [Implements the given DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_LutCutUpdate( Lut_Man_t * p, Lut_Cut_t * pCut, void * pDsd )
{
return 1;
}
/**Function*************************************************************
Synopsis [Performs resynthesis for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_LutResynthesizeNode( Lut_Man_t * p )
{
Lut_Cut_t * pCut;
unsigned * pTruth;
void * pDsd;
int i;
// compute the cuts
if ( !Abc_LutNodeCuts( p ) )
return 0;
// try the good cuts
for ( i = 0; i < p->nEvals; i++ )
{
// get the cut
pCut = p->pCuts + p->pEvals[i];
// compute the truth table
pTruth = Abc_LutCutTruth( p, pCut );
// check decomposition
pDsd = /***/ NULL;
// if it is not DSD decomposable, return
if ( pDsd == NULL )
continue;
// update the network
Abc_LutCutUpdate( p, pCut, pDsd );
}
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|