summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcBalance.c
blob: 26b6db997a0d9f8482bbd39c739332b7719dfa26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/**CFile****************************************************************

  FileName    [abcBalance.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Performs global balancing of the AIG by the number of levels.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcBalance.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abc.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////
 
static void        Abc_NtkBalancePerform( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkAig, bool fDuplicate, bool fSelective, bool fUpdateLevel );
static Abc_Obj_t * Abc_NodeBalance_rec( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, Vec_Vec_t * vStorage, int Level, bool fDuplicate, bool fSelective, bool fUpdateLevel );
static Vec_Ptr_t * Abc_NodeBalanceCone( Abc_Obj_t * pNode, Vec_Vec_t * vSuper, int Level, int fDuplicate, bool fSelective );
static int         Abc_NodeBalanceCone_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, bool fFirst, bool fDuplicate, bool fSelective );
static void        Abc_NtkMarkCriticalNodes( Abc_Ntk_t * pNtk );
static Vec_Ptr_t * Abc_NodeBalanceConeExor( Abc_Obj_t * pNode );


////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Balances the AIG network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkBalance( Abc_Ntk_t * pNtk, bool fDuplicate, bool fSelective, bool fUpdateLevel )
{
    extern void Abc_NtkHaigTranfer( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkNew );
    Abc_Ntk_t * pNtkAig;
    assert( Abc_NtkIsStrash(pNtk) );
    // compute the required times
    if ( fSelective )
    {
        Abc_NtkStartReverseLevels( pNtk, 0 );
        Abc_NtkMarkCriticalNodes( pNtk );
    }
    // perform balancing
    pNtkAig = Abc_NtkStartFrom( pNtk, ABC_NTK_STRASH, ABC_FUNC_AIG );
    // transfer HAIG
    Abc_NtkHaigTranfer( pNtk, pNtkAig );
    // perform balancing
    Abc_NtkBalancePerform( pNtk, pNtkAig, fDuplicate, fSelective, fUpdateLevel );
    Abc_NtkFinalize( pNtk, pNtkAig );
    // undo the required times
    if ( fSelective )
    {
        Abc_NtkStopReverseLevels( pNtk );
        Abc_NtkCleanMarkA( pNtk );
    }
    if ( pNtk->pExdc )
        pNtkAig->pExdc = Abc_NtkDup( pNtk->pExdc );
    // make sure everything is okay
    if ( !Abc_NtkCheck( pNtkAig ) )
    {
        printf( "Abc_NtkBalance: The network check has failed.\n" );
        Abc_NtkDelete( pNtkAig );
        return NULL;
    }
    return pNtkAig;
}

/**Function*************************************************************

  Synopsis    [Balances the AIG network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkBalancePerform( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkAig, bool fDuplicate, bool fSelective, bool fUpdateLevel )
{
    ProgressBar * pProgress;
    Vec_Vec_t * vStorage;
    Abc_Obj_t * pNode, * pDriver;
    int i;

    // set the level of PIs of AIG according to the arrival times of the old network
    Abc_NtkSetNodeLevelsArrival( pNtk );
    // allocate temporary storage for supergates
    vStorage = Vec_VecStart( 10 );
    // perform balancing of POs
    pProgress = Extra_ProgressBarStart( stdout, Abc_NtkCoNum(pNtk) );
    Abc_NtkForEachCo( pNtk, pNode, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        // strash the driver node
        pDriver = Abc_ObjFanin0(pNode);
        Abc_NodeBalance_rec( pNtkAig, pDriver, vStorage, 0, fDuplicate, fSelective, fUpdateLevel );
    }
    Extra_ProgressBarStop( pProgress );
    Vec_VecFree( vStorage );
}

/**Function*************************************************************

  Synopsis    [Finds the left bound on the next candidate to be paired.]

  Description [The nodes in the array are in the decreasing order of levels. 
  The last node in the array has the smallest level. By default it would be paired 
  with the next node on the left. However, it may be possible to pair it with some
  other node on the left, in such a way that the new node is shared. This procedure
  finds the index of the left-most node, which can be paired with the last node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NodeBalanceFindLeft( Vec_Ptr_t * vSuper )
{
    Abc_Obj_t * pNodeRight, * pNodeLeft;
    int Current;
    // if two or less nodes, pair with the first
    if ( Vec_PtrSize(vSuper) < 3 )
        return 0;
    // set the pointer to the one before the last
    Current = Vec_PtrSize(vSuper) - 2;
    pNodeRight = Vec_PtrEntry( vSuper, Current );
    // go through the nodes to the left of this one
    for ( Current--; Current >= 0; Current-- )
    {
        // get the next node on the left
        pNodeLeft = Vec_PtrEntry( vSuper, Current );
        // if the level of this node is different, quit the loop
        if ( Abc_ObjRegular(pNodeLeft)->Level != Abc_ObjRegular(pNodeRight)->Level )
            break;
    }
    Current++;    
    // get the node, for which the equality holds
    pNodeLeft = Vec_PtrEntry( vSuper, Current );
    assert( Abc_ObjRegular(pNodeLeft)->Level == Abc_ObjRegular(pNodeRight)->Level );
    return Current;
}

/**Function*************************************************************

  Synopsis    [Moves closer to the end the node that is best for sharing.]

  Description [If there is no node with sharing, randomly chooses one of 
  the legal nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NodeBalancePermute( Abc_Ntk_t * pNtkNew, Vec_Ptr_t * vSuper, int LeftBound )
{
    Abc_Obj_t * pNode1, * pNode2, * pNode3;
    int RightBound, i;
    // get the right bound
    RightBound = Vec_PtrSize(vSuper) - 2;
    assert( LeftBound <= RightBound );
    if ( LeftBound == RightBound )
        return;
    // get the two last nodes
    pNode1 = Vec_PtrEntry( vSuper, RightBound + 1 );
    pNode2 = Vec_PtrEntry( vSuper, RightBound     );
    // find the first node that can be shared
    for ( i = RightBound; i >= LeftBound; i-- )
    {
        pNode3 = Vec_PtrEntry( vSuper, i );
        if ( Abc_AigAndLookup( pNtkNew->pManFunc, pNode1, pNode3 ) )
        {
            if ( pNode3 == pNode2 )
                return;
            Vec_PtrWriteEntry( vSuper, i,          pNode2 );
            Vec_PtrWriteEntry( vSuper, RightBound, pNode3 );
            return;
        }
    }
/*
    // we did not find the node to share, randomize choice
    {
        int Choice = rand() % (RightBound - LeftBound + 1);
        pNode3 = Vec_PtrEntry( vSuper, LeftBound + Choice );
        if ( pNode3 == pNode2 )
            return;
        Vec_PtrWriteEntry( vSuper, LeftBound + Choice, pNode2 );
        Vec_PtrWriteEntry( vSuper, RightBound,         pNode3 );
    }
*/
}

/**Function*************************************************************

  Synopsis    [Rebalances the multi-input node rooted at pNodeOld.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Obj_t * Abc_NodeBalance_rec( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNodeOld, Vec_Vec_t * vStorage, int Level, bool fDuplicate, bool fSelective, bool fUpdateLevel )
{
    Abc_Aig_t * pMan = pNtkNew->pManFunc;
    Abc_Obj_t * pNodeNew, * pNode1, * pNode2;
    Vec_Ptr_t * vSuper;
    int i, LeftBound;
    assert( !Abc_ObjIsComplement(pNodeOld) );
    // return if the result if known
    if ( pNodeOld->pCopy )
        return pNodeOld->pCopy;
    assert( Abc_ObjIsNode(pNodeOld) );
    // get the implication supergate
//    Abc_NodeBalanceConeExor( pNodeOld );
    vSuper = Abc_NodeBalanceCone( pNodeOld, vStorage, Level, fDuplicate, fSelective );
    if ( vSuper->nSize == 0 )
    { // it means that the supergate contains two nodes in the opposite polarity
        pNodeOld->pCopy = Abc_ObjNot(Abc_AigConst1(pNtkNew));
        return pNodeOld->pCopy;
    }
    // for each old node, derive the new well-balanced node
    for ( i = 0; i < vSuper->nSize; i++ )
    {
        pNodeNew = Abc_NodeBalance_rec( pNtkNew, Abc_ObjRegular(vSuper->pArray[i]), vStorage, Level + 1, fDuplicate, fSelective, fUpdateLevel );
        vSuper->pArray[i] = Abc_ObjNotCond( pNodeNew, Abc_ObjIsComplement(vSuper->pArray[i]) );
    }
    if ( vSuper->nSize < 2 )
        printf( "BUG!\n" );
    // sort the new nodes by level in the decreasing order
    Vec_PtrSort( vSuper, Abc_NodeCompareLevelsDecrease );
    // balance the nodes
    assert( vSuper->nSize > 1 );
    while ( vSuper->nSize > 1 )
    {
        // find the left bound on the node to be paired
        LeftBound = (!fUpdateLevel)? 0 : Abc_NodeBalanceFindLeft( vSuper );
        // find the node that can be shared (if no such node, randomize choice)
        Abc_NodeBalancePermute( pNtkNew, vSuper, LeftBound );
        // pull out the last two nodes
        pNode1 = Vec_PtrPop(vSuper);
        pNode2 = Vec_PtrPop(vSuper);
        Abc_VecObjPushUniqueOrderByLevel( vSuper, Abc_AigAnd(pMan, pNode1, pNode2) );
    }
    // make sure the balanced node is not assigned
    assert( pNodeOld->pCopy == NULL );
    // mark the old node with the new node
    pNodeOld->pCopy = vSuper->pArray[0];
    vSuper->nSize = 0;
//    if ( Abc_ObjRegular(pNodeOld->pCopy) == Abc_AigConst1(pNtkNew) )
//        printf( "Constant node\n" );
//    assert( pNodeOld->Level >= Abc_ObjRegular(pNodeOld->pCopy)->Level );
    // update HAIG
    if ( Abc_ObjRegular(pNodeOld->pCopy)->pNtk->pHaig )
        Hop_ObjCreateChoice( pNodeOld->pEquiv, Abc_ObjRegular(pNodeOld->pCopy)->pEquiv );
    return pNodeOld->pCopy;
}

/**Function*************************************************************

  Synopsis    [Collects the nodes in the cone delimited by fMarkA==1.]

  Description [Returns -1 if the AND-cone has the same node in both polarities.
  Returns 1 if the AND-cone has the same node in the same polarity. Returns 0
  if the AND-cone has no repeated nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NodeBalanceCone( Abc_Obj_t * pNode, Vec_Vec_t * vStorage, int Level, int fDuplicate, bool fSelective )
{
    Vec_Ptr_t * vNodes;
    int RetValue, i;
    assert( !Abc_ObjIsComplement(pNode) );
    // extend the storage
    if ( Vec_VecSize( vStorage ) <= Level )
        Vec_VecPush( vStorage, Level, 0 );
    // get the temporary array of nodes
    vNodes = Vec_VecEntry( vStorage, Level );
    Vec_PtrClear( vNodes );
    // collect the nodes in the implication supergate
    RetValue = Abc_NodeBalanceCone_rec( pNode, vNodes, 1, fDuplicate, fSelective );
    assert( vNodes->nSize > 1 );
    // unmark the visited nodes
    for ( i = 0; i < vNodes->nSize; i++ )
        Abc_ObjRegular((Abc_Obj_t *)vNodes->pArray[i])->fMarkB = 0;
    // if we found the node and its complement in the same implication supergate, 
    // return empty set of nodes (meaning that we should use constant-0 node)
    if ( RetValue == -1 )
        vNodes->nSize = 0;
    return vNodes;
}


/**Function*************************************************************

  Synopsis    [Collects the nodes in the cone delimited by fMarkA==1.]

  Description [Returns -1 if the AND-cone has the same node in both polarities.
  Returns 1 if the AND-cone has the same node in the same polarity. Returns 0
  if the AND-cone has no repeated nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NodeBalanceCone_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, bool fFirst, bool fDuplicate, bool fSelective )
{
    int RetValue1, RetValue2, i;
    // check if the node is visited
    if ( Abc_ObjRegular(pNode)->fMarkB )
    {
        // check if the node occurs in the same polarity
        for ( i = 0; i < vSuper->nSize; i++ )
            if ( vSuper->pArray[i] == pNode )
                return 1;
        // check if the node is present in the opposite polarity
        for ( i = 0; i < vSuper->nSize; i++ )
            if ( vSuper->pArray[i] == Abc_ObjNot(pNode) )
                return -1;
        assert( 0 );
        return 0;
    }
    // if the new node is complemented or a PI, another gate begins
    if ( !fFirst && (Abc_ObjIsComplement(pNode) || !Abc_ObjIsNode(pNode) || (!fDuplicate && !fSelective && (Abc_ObjFanoutNum(pNode) > 1)) || Vec_PtrSize(vSuper) > 10000) )
    {
        Vec_PtrPush( vSuper, pNode );
        Abc_ObjRegular(pNode)->fMarkB = 1;
        return 0;
    }
    assert( !Abc_ObjIsComplement(pNode) );
    assert( Abc_ObjIsNode(pNode) );
    // go through the branches
    RetValue1 = Abc_NodeBalanceCone_rec( Abc_ObjChild0(pNode), vSuper, 0, fDuplicate, fSelective );
    RetValue2 = Abc_NodeBalanceCone_rec( Abc_ObjChild1(pNode), vSuper, 0, fDuplicate, fSelective );
    if ( RetValue1 == -1 || RetValue2 == -1 )
        return -1;
    // return 1 if at least one branch has a duplicate
    return RetValue1 || RetValue2;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NodeBalanceConeExor_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, bool fFirst )
{
    int RetValue1, RetValue2, i;
    // check if the node occurs in the same polarity
    for ( i = 0; i < vSuper->nSize; i++ )
        if ( vSuper->pArray[i] == pNode )
            return 1;
    // if the new node is complemented or a PI, another gate begins
    if ( !fFirst && (!pNode->fExor || !Abc_ObjIsNode(pNode)) )
    {
        Vec_PtrPush( vSuper, pNode );
        return 0;
    }
    assert( !Abc_ObjIsComplement(pNode) );
    assert( Abc_ObjIsNode(pNode) );
    assert( pNode->fExor );
    // go through the branches
    RetValue1 = Abc_NodeBalanceConeExor_rec( Abc_ObjFanin0(Abc_ObjFanin0(pNode)), vSuper, 0 );
    RetValue2 = Abc_NodeBalanceConeExor_rec( Abc_ObjFanin1(Abc_ObjFanin0(pNode)), vSuper, 0 );
    if ( RetValue1 == -1 || RetValue2 == -1 )
        return -1;
    // return 1 if at least one branch has a duplicate
    return RetValue1 || RetValue2;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NodeBalanceConeExor( Abc_Obj_t * pNode )
{
    Vec_Ptr_t * vSuper;
    if ( !pNode->fExor )
        return NULL;
    vSuper = Vec_PtrAlloc( 10 );
    Abc_NodeBalanceConeExor_rec( pNode, vSuper, 1 );
    printf( "%d ", Vec_PtrSize(vSuper) );
    Vec_PtrFree( vSuper );
    return NULL;
}



/**Function*************************************************************

  Synopsis    [Collects the nodes in the implication supergate.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NodeFindCone_rec( Abc_Obj_t * pNode )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pNodeC, * pNodeT, * pNodeE;
    int RetValue, i;
    assert( !Abc_ObjIsComplement(pNode) );
    if ( Abc_ObjIsCi(pNode) )
        return NULL;
    // start the new array
    vNodes = Vec_PtrAlloc( 4 );
    // if the node is the MUX collect its fanins
    if ( Abc_NodeIsMuxType(pNode) )
    {
        pNodeC = Abc_NodeRecognizeMux( pNode, &pNodeT, &pNodeE );
        Vec_PtrPush( vNodes, Abc_ObjRegular(pNodeC) );
        Vec_PtrPushUnique( vNodes, Abc_ObjRegular(pNodeT) );
        Vec_PtrPushUnique( vNodes, Abc_ObjRegular(pNodeE) );
    }
    else
    {
        // collect the nodes in the implication supergate
        RetValue = Abc_NodeBalanceCone_rec( pNode, vNodes, 1, 1, 0 );
        assert( vNodes->nSize > 1 );
        // unmark the visited nodes
        Vec_PtrForEachEntry( vNodes, pNode, i )
            Abc_ObjRegular(pNode)->fMarkB = 0;
        // if we found the node and its complement in the same implication supergate, 
        // return empty set of nodes (meaning that we should use constant-0 node)
        if ( RetValue == -1 )
            vNodes->nSize = 0;
    }
    // call for the fanin
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
        pNode = Abc_ObjRegular(pNode);
        if ( pNode->pCopy )
            continue;
        pNode->pCopy = (Abc_Obj_t *)Abc_NodeFindCone_rec( pNode );
    }
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Attaches the implication supergates to internal nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkBalanceAttach( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pNode;
    int i;
    Abc_NtkCleanCopy( pNtk );
    Abc_NtkForEachCo( pNtk, pNode, i )
    {
        pNode = Abc_ObjFanin0(pNode);
        if ( pNode->pCopy )
            continue;
        pNode->pCopy = (Abc_Obj_t *)Abc_NodeFindCone_rec( pNode );
    }
}

/**Function*************************************************************

  Synopsis    [Attaches the implication supergates to internal nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkBalanceDetach( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pNode;
    int i;
    Abc_NtkForEachNode( pNtk, pNode, i )
        if ( pNode->pCopy )
        {
            Vec_PtrFree( (Vec_Ptr_t *)pNode->pCopy );
            pNode->pCopy = NULL;
        }
}

/**Function*************************************************************

  Synopsis    [Compute levels of implication supergates.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkBalanceLevel_rec( Abc_Obj_t * pNode )
{
    Vec_Ptr_t * vSuper;
    Abc_Obj_t * pFanin;
    int i, LevelMax;
    assert( !Abc_ObjIsComplement(pNode) );
    if ( pNode->Level > 0 )
        return pNode->Level;
    if ( Abc_ObjIsCi(pNode) )
        return 0;
    vSuper = (Vec_Ptr_t *)pNode->pCopy;
    assert( vSuper != NULL );
    LevelMax = 0;
    Vec_PtrForEachEntry( vSuper, pFanin, i )
    {
        pFanin = Abc_ObjRegular(pFanin);
        Abc_NtkBalanceLevel_rec(pFanin);
        if ( LevelMax < (int)pFanin->Level )
            LevelMax = pFanin->Level;
    }
    pNode->Level = LevelMax + 1;
    return pNode->Level;
}


/**Function*************************************************************

  Synopsis    [Compute levels of implication supergates.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkBalanceLevel( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pNode;
    int i;
    Abc_NtkForEachObj( pNtk, pNode, i )
        pNode->Level = 0;
    Abc_NtkForEachCo( pNtk, pNode, i )
        Abc_NtkBalanceLevel_rec( Abc_ObjFanin0(pNode) );
}


/**Function*************************************************************

  Synopsis    [Marks the nodes on the critical and near critical paths.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkMarkCriticalNodes( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pNode;
    int i, Counter = 0;
    Abc_NtkForEachNode( pNtk, pNode, i )
        if ( Abc_ObjRequiredLevel(pNode) - pNode->Level <= 1 )
            pNode->fMarkA = 1, Counter++;
    printf( "The number of nodes on the critical paths = %6d  (%5.2f %%)\n", Counter, 100.0 * Counter / Abc_NtkNodeNum(pNtk) );
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////