1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
/**CFile****************************************************************
FileName [saigAbs.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Sequential AIG package.]
Synopsis [Proof-based abstraction.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: saigAbs.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "saig.h"
#include "cnf.h"
#include "satSolver.h"
#include "satStore.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static inline Aig_Obj_t * Saig_ObjFrame( Aig_Obj_t ** ppMap, int nFrames, Aig_Obj_t * pObj, int i ) { return ppMap[nFrames*pObj->Id + i]; }
static inline void Saig_ObjSetFrame( Aig_Obj_t ** ppMap, int nFrames, Aig_Obj_t * pObj, int i, Aig_Obj_t * pNode ) { ppMap[nFrames*pObj->Id + i] = pNode; }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Create timeframes of the manager for BMC.]
Description [The resulting manager is combinational. The only PO is
the output of the last frame.]
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Saig_ManFramesBmcLast( Aig_Man_t * pAig, int nFrames, Aig_Obj_t *** pppMap )
{
Aig_Man_t * pFrames;
Aig_Obj_t ** ppMap;
Aig_Obj_t * pObj, * pObjLi, * pObjLo;
int i, f;
assert( Saig_ManRegNum(pAig) > 0 );
// start the mapping
ppMap = *pppMap = CALLOC( Aig_Obj_t *, Aig_ManObjNumMax(pAig) * nFrames );
// start the manager
pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
// create variables for register outputs
Saig_ManForEachLo( pAig, pObj, i )
{
pObj->pData = Aig_ManConst0( pFrames );
Saig_ObjSetFrame( ppMap, nFrames, pObj, 0, pObj->pData );
}
// add timeframes
for ( f = 0; f < nFrames; f++ )
{
// map the constant node
Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
Saig_ObjSetFrame( ppMap, nFrames, Aig_ManConst1(pAig), f, Aig_ManConst1(pAig)->pData );
// create PI nodes for this frame
Saig_ManForEachPi( pAig, pObj, i )
{
pObj->pData = Aig_ObjCreatePi( pFrames );
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
}
// add internal nodes of this frame
Aig_ManForEachNode( pAig, pObj, i )
{
pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
}
// create POs for this frame
if ( f == nFrames - 1 )
{
Saig_ManForEachPo( pAig, pObj, i )
{
pObj->pData = Aig_ObjCreatePo( pFrames, Aig_ObjChild0Copy(pObj) );
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
}
break;
}
// save register inputs
Saig_ManForEachLi( pAig, pObj, i )
{
pObj->pData = Aig_ObjChild0Copy(pObj);
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
}
// transfer to register outputs
Saig_ManForEachLiLo( pAig, pObjLi, pObjLo, i )
{
pObjLo->pData = pObjLi->pData;
Saig_ObjSetFrame( ppMap, nFrames, pObjLo, f, pObjLo->pData );
}
}
Aig_ManCleanup( pFrames );
// remove mapping for the nodes that are no longer there
for ( i = 0; i < Aig_ManObjNumMax(pAig) * nFrames; i++ )
if ( ppMap[i] && Aig_ObjIsNone( Aig_Regular(ppMap[i]) ) )
ppMap[i] = NULL;
return pFrames;
}
/**Function*************************************************************
Synopsis [Finds the set of variables involved in the UNSAT core.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int * Saig_ManFindUnsatVariables( Cnf_Dat_t * pCnf, int nConfMax, int fVerbose )
{
void * pSatCnf;
Intp_Man_t * pManProof;
sat_solver * pSat;
Vec_Int_t * vCore;
int * pClause1, * pClause2, * pLit, * pVars, iClause, nVars;
int i, RetValue;
// create the SAT solver
pSat = sat_solver_new();
sat_solver_store_alloc( pSat );
sat_solver_setnvars( pSat, pCnf->nVars );
for ( i = 0; i < pCnf->nClauses; i++ )
{
if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
{
printf( "The BMC problem is trivially UNSAT.\n" );
sat_solver_delete( pSat );
return NULL;
}
}
sat_solver_store_mark_roots( pSat );
// solve the problem
RetValue = sat_solver_solve( pSat, NULL, NULL, (sint64)nConfMax, (sint64)0, (sint64)0, (sint64)0 );
if ( RetValue == l_Undef )
{
printf( "Conflict limit is reached.\n" );
sat_solver_delete( pSat );
return NULL;
}
if ( RetValue == l_True )
{
printf( "The BMC problem is SAT.\n" );
sat_solver_delete( pSat );
return NULL;
}
printf( "SAT solver returned UNSAT after %d conflicts.\n", pSat->stats.conflicts );
assert( RetValue == l_False );
pSatCnf = sat_solver_store_release( pSat );
sat_solver_delete( pSat );
// derive the UNSAT core
pManProof = Intp_ManAlloc();
vCore = Intp_ManUnsatCore( pManProof, pSatCnf, fVerbose );
Intp_ManFree( pManProof );
Sto_ManFree( pSatCnf );
// derive the set of variables on which the core depends
// collect the variable numbers
nVars = 0;
pVars = ALLOC( int, pCnf->nVars );
memset( pVars, 0, sizeof(int) * pCnf->nVars );
Vec_IntForEachEntry( vCore, iClause, i )
{
pClause1 = pCnf->pClauses[iClause];
pClause2 = pCnf->pClauses[iClause+1];
for ( pLit = pClause1; pLit < pClause2; pLit++ )
{
if ( pVars[ (*pLit) >> 1 ] == 0 )
nVars++;
pVars[ (*pLit) >> 1 ] = 1;
if ( fVerbose )
printf( "%s%d ", ((*pLit) & 1)? "-" : "+", (*pLit) >> 1 );
}
if ( fVerbose )
printf( "\n" );
}
Vec_IntFree( vCore );
return pVars;
}
/**Function*************************************************************
Synopsis [Labels nodes with the given CNF variable.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Saig_ManMarkIntoPresentVars_rec( Aig_Obj_t * pObj, Cnf_Dat_t * pCnf, int iVar )
{
int iVarThis = pCnf->pVarNums[pObj->Id];
if ( iVarThis >= 0 && iVarThis != iVar )
return;
assert( Aig_ObjIsNode(pObj) );
Saig_ManMarkIntoPresentVars_rec( Aig_ObjFanin0(pObj), pCnf, iVar );
Saig_ManMarkIntoPresentVars_rec( Aig_ObjFanin1(pObj), pCnf, iVar );
pCnf->pVarNums[pObj->Id] = iVar;
}
/**Function*************************************************************
Synopsis [Performs proof-based abstraction using BMC of the given depth.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Saig_ManProofAbstraction( Aig_Man_t * p, int nFrames, int nConfMax, int fVerbose )
{
Cnf_Dat_t * pCnf;
Vec_Int_t * vFlops;
Aig_Man_t * pFrames, * pResult;
Aig_Obj_t ** ppAigToFrames;
Aig_Obj_t * pObj, * pObjFrame;
int f, i, * pUnsatCoreVars, clk = clock();
assert( Saig_ManPoNum(p) == 1 );
Aig_ManSetPioNumbers( p );
if ( fVerbose )
printf( "Performing proof-based abstraction with %d frames and %d max conflicts.\n", nFrames, nConfMax );
// create the timeframes
pFrames = Saig_ManFramesBmcLast( p, nFrames, &ppAigToFrames );
// convert them into CNF
// pCnf = Cnf_Derive( pFrames, 0 );
pCnf = Cnf_DeriveSimple( pFrames, 0 );
// collect CNF variables involved in UNSAT core
pUnsatCoreVars = Saig_ManFindUnsatVariables( pCnf, nConfMax, 0 );
if ( pUnsatCoreVars == NULL )
{
Aig_ManStop( pFrames );
Cnf_DataFree( pCnf );
return NULL;
}
if ( fVerbose )
{
int Counter = 0;
for ( i = 0; i < pCnf->nVars; i++ )
Counter += pUnsatCoreVars[i];
printf( "The number of variables in the UNSAT core is %d (out of %d).\n", Counter, pCnf->nVars );
}
// map other nodes into existing CNF variables
Aig_ManForEachNode( pFrames, pObj, i )
if ( pCnf->pVarNums[pObj->Id] >= 0 )
Saig_ManMarkIntoPresentVars_rec( pObj, pCnf, pCnf->pVarNums[pObj->Id] );
// collect relevant registers
for ( f = 0; f < nFrames; f++ )
{
Saig_ManForEachLo( p, pObj, i )
{
pObjFrame = Saig_ObjFrame( ppAigToFrames, nFrames, pObj, f );
if ( pObjFrame == NULL )
continue;
pObjFrame = Aig_Regular(pObjFrame);
if ( Aig_ObjIsConst1( pObjFrame ) )
continue;
assert( pCnf->pVarNums[pObjFrame->Id] >= 0 );
if ( pUnsatCoreVars[ pCnf->pVarNums[pObjFrame->Id] ] )
pObj->fMarkA = 1;
}
}
// collect the flops
vFlops = Vec_IntAlloc( 1000 );
Saig_ManForEachLo( p, pObj, i )
if ( pObj->fMarkA )
{
pObj->fMarkA = 0;
Vec_IntPush( vFlops, i );
}
if ( fVerbose )
{
printf( "The number of relevant registers is %d (out of %d).\n", Vec_IntSize(vFlops), Aig_ManRegNum(p) );
PRT( "Time", clock() - clk );
}
// create the resulting AIG
pResult = Saig_ManAbstraction( p, vFlops );
// cleanup
Aig_ManStop( pFrames );
Cnf_DataFree( pCnf );
free( ppAigToFrames );
free( pUnsatCoreVars );
Vec_IntFree( vFlops );
return pResult;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|