1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
|
/**CFile****************************************************************
FileName [ndr.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Format for word-level design representation.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 22, 2014.]
Revision [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__base__ndr__ndr_h
#define ABC__base__ndr__ndr_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "abcOper.h"
ABC_NAMESPACE_HEADER_START
#ifdef _WIN32
#define inline __inline
#endif
/*
For the lack of a better name, this format is called New Data Representation (NDR).
NDR is designed as an interchange format to pass hierarchical word-level designs between the tools.
It is relatively simple, uses little memory, and can be easily converted into other ABC data-structures.
This tutorial discusses how to construct the NDR representation of a hierarchical word-level design.
First, all names used in the design (including the design name, module names, port names, net names,
instance names, etc) are hashed into 1-based integers called "name IDs". Nets are not explicitly represented.
The connectivity of a design object is established by specifying name IDs of the nets connected to the object.
Object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets.
The design is initialized using procedure Ndr_Create(), which takes the design name as an argument.
A module in the design is initialized using procedure Ndr_AddModule(), which takes the design and
the module name as arguments. Objects are added to a module in any order using procedure Ndr_AddObject().
Primary input and primary output objects should be explicitly created, as shown in the examples below.
Instances of known operators listed in file "abcOper.h" are assumed to have one output. The only known
issue due to this restriction concerns the adder, which produces the sum and the carry-out. To make sure the
adder instance has only one output, the carry-out has to be concatenated with the sum before the adder
instance is created in the NDR format.
Instances of hierarchical modules defined by the user can have multiple outputs.
Bit-slice and concatenation operators should be represented as separate objects.
If the ordering of inputs/outputs/flops of a module is not provided as a separate record in NDR format,
their ordering is determined by the order of their appearance in the NDR description of the module.
If left limit and right limit of a bit-range are equal, it is assumed that the range contains one bit
Word-level constants are represented as char-strings given in the same way as they would appear in a Verilog
file. For example, the 16-bit constant 10 is represented as a string "4'b1010" and is given as an argument
(char * pFunction) to the procedure Ndr_AddObject().
Currently two types of flops are supported: a simple flop with implicit clock and two fanins (data and init)
and a complex flop with 8 fanins (clock, data, reset, set, enable, async, sre, init), as shown in the examples below.
The initial value of a flop is represented by input "init", which can be driven by a constant or by a primary
input of the module. If it is a primary input, is it assumed that the flop is not initialized. If the input
"init" is not driven, it is assumed that the flop is initialized to 0.
Memory read and write ports are supported, as shown in the example below.
(to be continued)
*/
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
// record types
typedef enum {
NDR_NONE = 0, // 0: unused
NDR_DESIGN, // 1: design (or library of modules)
NDR_MODULE, // 2: one module
NDR_OBJECT, // 3: object
NDR_INPUT, // 4: input
NDR_OUTPUT, // 5: output
NDR_OPERTYPE, // 6: operator type (buffer, shifter, adder, etc)
NDR_NAME, // 7: name
NDR_RANGE, // 8: bit range
NDR_FUNCTION, // 9: specified for some operators (PLAs, etc)
NDR_TARGET, // 10: target
NDR_UNKNOWN // 11: unknown
} Ndr_RecordType_t;
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
// this is an internal procedure, which is not seen by the user
typedef struct Ndr_Data_t_ Ndr_Data_t;
struct Ndr_Data_t_
{
int nSize;
int nCap;
unsigned char * pHead;
unsigned int * pBody;
};
static inline int Ndr_DataType( Ndr_Data_t * p, int i ) { assert( p->pHead[i] ); return (int)p->pHead[i]; }
static inline int Ndr_DataSize( Ndr_Data_t * p, int i ) { return Ndr_DataType(p, i) > NDR_OBJECT ? 1 : p->pBody[i]; }
static inline int Ndr_DataEntry( Ndr_Data_t * p, int i ) { return (int)p->pBody[i]; }
static inline int * Ndr_DataEntryP( Ndr_Data_t * p, int i ) { return (int *)p->pBody + i; }
static inline int Ndr_DataEnd( Ndr_Data_t * p, int i ) { return i + p->pBody[i]; }
static inline void Ndr_DataAddTo( Ndr_Data_t * p, int i, int Add ) { assert(Ndr_DataType(p, i) <= NDR_OBJECT); p->pBody[i] += Add; }
static inline void Ndr_DataPush( Ndr_Data_t * p, int Type, int Entry ) { p->pHead[p->nSize] = Type; p->pBody[p->nSize++] = Entry; }
#define NDR_ALLOC(type, num) ((type *) malloc(sizeof(type) * (size_t)(num)))
////////////////////////////////////////////////////////////////////////
/// ITERATORS ///
////////////////////////////////////////////////////////////////////////
// iterates over modules in the design
#define Ndr_DesForEachMod( p, Mod ) \
for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else
// iterates over objects in a module
#define Ndr_ModForEachObj( p, Mod, Obj ) \
for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else
// iterates over records in an object
#define Ndr_ObjForEachEntry( p, Obj, Ent ) \
for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) )
// iterates over primary inputs of a module
#define Ndr_ModForEachPi( p, Mod, Obj ) \
Ndr_ModForEachObj( p, Mod, Obj ) if ( !Ndr_ObjIsType(p, Obj, ABC_OPER_CI) ) {} else
// iteraots over primary outputs of a module
#define Ndr_ModForEachPo( p, Mod, Obj ) \
Ndr_ModForEachObj( p, Mod, Obj ) if ( !Ndr_ObjIsType(p, Obj, ABC_OPER_CO) ) {} else
// iterates over internal nodes of a module
#define Ndr_ModForEachNode( p, Mod, Obj ) \
Ndr_ModForEachObj( p, Mod, Obj ) if ( Ndr_ObjIsType(p, Obj, ABC_OPER_CI) || Ndr_ObjIsType(p, Obj, ABC_OPER_CO) ) {} else
// iterates over target signals of a module
#define Ndr_ModForEachTarget( p, Mod, Obj ) \
for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_TARGET) {} else
////////////////////////////////////////////////////////////////////////
/// INTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
static inline void Ndr_DataResize( Ndr_Data_t * p, int Add )
{
if ( p->nSize + Add <= p->nCap )
return;
p->nCap = 2 * p->nCap > p->nSize + Add ? 2 * p->nCap : p->nSize + Add;
p->pHead = (unsigned char*)realloc( p->pHead, p->nCap );
p->pBody = (unsigned int *)realloc( p->pBody, 4*p->nCap );
}
static inline void Ndr_DataPushRange( Ndr_Data_t * p, int RangeLeft, int RangeRight, int fSignedness )
{
if ( fSignedness )
{
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
Ndr_DataPush( p, NDR_RANGE, RangeRight );
Ndr_DataPush( p, NDR_RANGE, fSignedness );
return;
}
if ( !RangeLeft && !RangeRight )
return;
if ( RangeLeft == RangeRight )
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
else
{
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
Ndr_DataPush( p, NDR_RANGE, RangeRight );
}
}
static inline void Ndr_DataPushArray( Ndr_Data_t * p, int Type, int nArray, int * pArray )
{
if ( !nArray )
return;
assert( nArray > 0 );
Ndr_DataResize( p, nArray );
memset( p->pHead + p->nSize, Type, (size_t)nArray );
memcpy( p->pBody + p->nSize, pArray, (size_t)4*nArray );
p->nSize += nArray;
}
static inline void Ndr_DataPushString( Ndr_Data_t * p, int ObjType, int Type, char * pFunc )
{
int nBuffInts;
int * pBuff;
if ( !pFunc )
return;
if ( ObjType == ABC_OPER_LUT )
{
word Truth = (word)pFunc;
Ndr_DataPushArray( p, Type, 2, (int *)&Truth );
}
else
{
nBuffInts = ((int)strlen(pFunc) + 4) / 4;
pBuff = (int *)calloc( 1, 4*nBuffInts );
memcpy( pBuff, pFunc, strlen(pFunc) );
Ndr_DataPushArray( p, Type, nBuffInts, pBuff );
free( pBuff );
}
}
////////////////////////////////////////////////////////////////////////
/// VERILOG WRITING ///
////////////////////////////////////////////////////////////////////////
static inline int Ndr_ObjReadEntry( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntry(p, Ent);
return -1;
}
static inline int Ndr_ObjReadArray( Ndr_Data_t * p, int Obj, int Type, int ** ppStart )
{
int Ent, Counter = 0; *ppStart = NULL;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
{
Counter++;
if ( *ppStart == NULL )
*ppStart = (int *)p->pBody + Ent;
}
else if ( *ppStart )
return Counter;
return Counter;
}
static inline int Ndr_ObjIsType( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == NDR_OPERTYPE )
return (int)(Ndr_DataEntry(p, Ent) == Type);
return -1;
}
static inline int Ndr_ObjReadBody( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntry(p, Ent);
return -1;
}
static inline int * Ndr_ObjReadBodyP( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntryP(p, Ent);
return NULL;
}
static inline void Ndr_ObjWriteRange( Ndr_Data_t * p, int Obj, FILE * pFile, int fSkipBin )
{
int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray );
if ( (nArray == 0 || nArray == 1) && fSkipBin )
return;
if ( nArray == 3 && fSkipBin )
fprintf( pFile, "signed " );
else if ( nArray == 1 )
{
if ( fSkipBin )
fprintf( pFile, "[%d:%d]", pArray[0], pArray[0] );
else
fprintf( pFile, "[%d]", pArray[0] );
}
else if ( nArray == 0 )
{
if ( fSkipBin )
fprintf( pFile, "[%d:%d]", 0, 0 );
else
fprintf( pFile, "[%d]", 0 );
}
else
fprintf( pFile, "[%d:%d]", pArray[0], pArray[1] );
}
static inline char * Ndr_ObjReadOutName( Ndr_Data_t * p, int Obj, char ** pNames )
{
return pNames[Ndr_ObjReadBody(p, Obj, NDR_OUTPUT)];
}
static inline char * Ndr_ObjReadInName( Ndr_Data_t * p, int Obj, char ** pNames )
{
return pNames[Ndr_ObjReadBody(p, Obj, NDR_INPUT)];
}
static inline int Ndr_DataCiNum( Ndr_Data_t * p, int Mod )
{
int Obj, Count = 0;
Ndr_ModForEachPi( p, Mod, Obj )
Count++;
return Count;
}
static inline int Ndr_DataCoNum( Ndr_Data_t * p, int Mod )
{
int Obj, Count = 0;
Ndr_ModForEachPo( p, Mod, Obj )
Count++;
return Count;
}
static inline int Ndr_DataObjNum( Ndr_Data_t * p, int Mod )
{
int Obj, Count = 0;
Ndr_ModForEachObj( p, Mod, Obj )
Count++;
return Count;
}
// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_WriteVerilogModule( FILE * pFile, void * pDesign, int Mod, char ** pNames, int fSimple )
{
Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
int * pOuts = NDR_ALLOC( int, Ndr_DataCoNum(p, Mod) );
int i, k, Obj, nArray, * pArray, fFirst = 1;
fprintf( pFile, "\nmodule %s (\n ", pNames[Ndr_ObjReadEntry(p, Mod, NDR_NAME)] );
Ndr_ModForEachPi( p, Mod, Obj )
fprintf( pFile, "%s, ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, "\n " );
Ndr_ModForEachPo( p, Mod, Obj )
fprintf( pFile, "%s%s", fFirst ? "":", ", Ndr_ObjReadInName(p, Obj, pNames) ), fFirst = 0;
fprintf( pFile, "\n);\n\n" );
Ndr_ModForEachPi( p, Mod, Obj )
{
fprintf( pFile, " input " );
Ndr_ObjWriteRange( p, Obj, pFile, 1 );
fprintf( pFile, " %s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
}
i = 0;
Ndr_ModForEachPo( p, Mod, Obj )
{
fprintf( pFile, " output " );
Ndr_ObjWriteRange( p, Obj, pFile, 1 );
fprintf( pFile, " %s;\n", Ndr_ObjReadInName(p, Obj, pNames) );
pOuts[i++] = Ndr_ObjReadBody(p, Obj, NDR_INPUT);
}
fprintf( pFile, "\n" );
Ndr_ModForEachNode( p, Mod, Obj )
{
for ( k = 0; k < i; k++ )
if ( pOuts[k] == Ndr_ObjReadBody(p, Obj, NDR_OUTPUT) )
break;
if ( k < i )
continue;
if ( Ndr_ObjReadOutName(p, Obj, pNames)[0] == '1' )
continue;
fprintf( pFile, " wire " );
Ndr_ObjWriteRange( p, Obj, pFile, 1 );
fprintf( pFile, " %s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
}
free( pOuts );
fprintf( pFile, "\n" );
Ndr_ModForEachNode( p, Mod, Obj )
{
int i, Type = Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE);
if ( Type >= 256 )
{
fprintf( pFile, " %s ", pNames[Ndr_ObjReadEntry(p, Type-256, NDR_NAME)] );
if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
fprintf( pFile, "( " );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
for ( i = 0; i < nArray; i++ )
fprintf( pFile, "%s%s ", pNames[pArray[i]], i==nArray-1 ? "":"," );
fprintf( pFile, ");\n" );
continue;
}
if ( Type == ABC_OPER_DFF )
{
fprintf( pFile, " %s ", "ABC_DFF" );
if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
fprintf( pFile, "( " );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
fprintf( pFile, ".q(%s), ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, ".d(%s), ", pNames[pArray[0]] );
fprintf( pFile, ".init(%s) ", pNames[pArray[1]] );
fprintf( pFile, ");\n" );
continue;
}
if ( Type == ABC_OPER_DFFRSE )
{
fprintf( pFile, " %s ", "ABC_DFFRSE" );
if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
fprintf( pFile, "( " );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
fprintf( pFile, ".q(%s), ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, ".d(%s), ", pNames[pArray[0]] );
fprintf( pFile, ".clk(%s), ", pNames[pArray[1]] );
fprintf( pFile, ".reset(%s), ", pNames[pArray[2]] );
fprintf( pFile, ".set(%s), ", pNames[pArray[3]] );
fprintf( pFile, ".enable(%s), ", pNames[pArray[4]] );
fprintf( pFile, ".async(%s), ", pNames[pArray[5]] );
fprintf( pFile, ".sre(%s), ", pNames[pArray[6]] );
fprintf( pFile, ".init(%s) ", pNames[pArray[7]] );
fprintf( pFile, ");\n" );
continue;
}
if ( Type == ABC_OPER_RAMR )
{
fprintf( pFile, " %s ", "ABC_READ" );
if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
fprintf( pFile, "( " );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
fprintf( pFile, ".data(%s), ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, ".mem_in(%s), ", pNames[pArray[0]] );
fprintf( pFile, ".addr(%s) ", pNames[pArray[1]] );
fprintf( pFile, ");\n" );
continue;
}
if ( Type == ABC_OPER_RAMW )
{
fprintf( pFile, " %s ", "ABC_WRITE" );
if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
fprintf( pFile, "( " );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
fprintf( pFile, ".mem_out(%s), ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, ".mem_in(%s), ", pNames[pArray[0]] );
fprintf( pFile, ".addr(%s), ", pNames[pArray[1]] );
fprintf( pFile, ".data(%s) ", pNames[pArray[2]] );
fprintf( pFile, ");\n" );
continue;
}
if ( fSimple )
{
if ( Ndr_ObjReadOutName(p, Obj, pNames)[0] == '1' )
continue;
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
fprintf( pFile, " %s ( %s", Abc_OperNameSimple(Type), Ndr_ObjReadOutName(p, Obj, pNames) );
if ( nArray == 0 )
fprintf( pFile, ", %s );\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == ABC_OPER_BIT_BUF )
fprintf( pFile, ", %s );\n", pNames[pArray[0]] );
else
{
for ( i = 0; i < nArray; i++ )
fprintf( pFile, ", %s", pNames[pArray[i]] );
fprintf( pFile, " );\n" );
}
continue;
}
fprintf( pFile, " assign %s = ", Ndr_ObjReadOutName(p, Obj, pNames) );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
if ( nArray == 0 )
fprintf( pFile, "%s;\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == ABC_OPER_BIT_BUF )
fprintf( pFile, "%s;\n", pNames[pArray[0]] );
else if ( Type == ABC_OPER_SLICE )
fprintf( pFile, "%s", pNames[pArray[0]] ),
Ndr_ObjWriteRange( p, Obj, pFile, 0 ),
fprintf( pFile, ";\n" );
else if ( Type == ABC_OPER_CONCAT )
{
fprintf( pFile, "{" );
for ( i = 0; i < nArray; i++ )
fprintf( pFile, "%s%s", pNames[pArray[i]], i==nArray-1 ? "":", " );
fprintf( pFile, "};\n" );
}
else if ( nArray == 1 )
fprintf( pFile, "%s %s;\n", Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[0]] );
else if ( nArray == 2 )
fprintf( pFile, "%s %s %s;\n", pNames[pArray[0]], Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[1]] );
else if ( nArray == 3 && Type == ABC_OPER_ARI_ADD )
fprintf( pFile, "%s + %s + %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
else if ( Type == ABC_OPER_BIT_MUX )
fprintf( pFile, "%s ? %s : %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
else
fprintf( pFile, "<cannot write operation %s>;\n", Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)) );
}
fprintf( pFile, "\nendmodule\n\n" );
}
// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_WriteVerilog( char * pFileName, void * pDesign, char ** pNames, int fSimple )
{
Ndr_Data_t * p = (Ndr_Data_t *)pDesign; int Mod;
FILE * pFile = pFileName ? fopen( pFileName, "wb" ) : stdout;
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ? pFileName : "stdout" ); return; }
Ndr_DesForEachMod( p, Mod )
Ndr_WriteVerilogModule( pFile, p, Mod, pNames, fSimple );
if ( pFileName ) fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// EXTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
// creating a new module (returns pointer to the memory buffer storing the module info)
static inline void * Ndr_Create( int Name )
{
Ndr_Data_t * p = NDR_ALLOC( Ndr_Data_t, 1 );
p->nSize = 0;
p->nCap = 16;
p->pHead = NDR_ALLOC( unsigned char, p->nCap );
p->pBody = NDR_ALLOC( unsigned int, p->nCap * 4 );
Ndr_DataPush( p, NDR_DESIGN, 0 );
Ndr_DataPush( p, NDR_NAME, Name );
Ndr_DataAddTo( p, 0, p->nSize );
assert( p->nSize == 2 );
assert( Name );
return p;
}
// creating a new module in an already started design
// returns module ID to be used when adding objects to the module
static inline int Ndr_AddModule( void * pDesign, int Name )
{
Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
int Mod = p->nSize;
Ndr_DataResize( p, 6 );
Ndr_DataPush( p, NDR_MODULE, 0 );
Ndr_DataPush( p, NDR_NAME, Name );
Ndr_DataAddTo( p, Mod, p->nSize - Mod );
Ndr_DataAddTo( p, 0, p->nSize - Mod );
assert( (int)p->pBody[0] == p->nSize );
return Mod + 256;
}
// adding a new object (input/output/flop/intenal node) to an already started module
// this procedure takes the design, the module ID, and the parameters of the boject
// (please note that all objects should be added to a given module before starting a new module)
static inline void Ndr_AddObject( void * pDesign, int ModuleId,
int ObjType, int InstName,
int RangeLeft, int RangeRight, int fSignedness,
int nInputs, int * pInputs,
int nOutputs, int * pOutputs,
char * pFunction )
{
Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
int Mod = ModuleId - 256;
int Obj = p->nSize; assert( ObjType != 0 );
Ndr_DataResize( p, 6 );
Ndr_DataPush( p, NDR_OBJECT, 0 );
Ndr_DataPush( p, NDR_OPERTYPE, ObjType );
Ndr_DataPushRange( p, RangeLeft, RangeRight, fSignedness );
if ( InstName )
Ndr_DataPush( p, NDR_NAME, InstName );
Ndr_DataPushArray( p, NDR_INPUT, nInputs, pInputs );
Ndr_DataPushArray( p, NDR_OUTPUT, nOutputs, pOutputs );
Ndr_DataPushString( p, ObjType, NDR_FUNCTION, pFunction );
Ndr_DataAddTo( p, Obj, p->nSize - Obj );
Ndr_DataAddTo( p, Mod, p->nSize - Obj );
Ndr_DataAddTo( p, 0, p->nSize - Obj );
assert( (int)p->pBody[0] == p->nSize );
}
// deallocate the memory buffer
static inline void Ndr_Delete( void * pDesign )
{
Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
if ( !p ) return;
free( p->pHead );
free( p->pBody );
free( p );
}
////////////////////////////////////////////////////////////////////////
/// FILE READING AND WRITING ///
////////////////////////////////////////////////////////////////////////
// file reading/writing
static inline void * Ndr_Read( char * pFileName )
{
Ndr_Data_t * p; int nFileSize, RetValue;
FILE * pFile = fopen( pFileName, "rb" );
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for reading.\n", pFileName ); return NULL; }
// check file size
fseek( pFile, 0, SEEK_END );
nFileSize = ftell( pFile );
if ( nFileSize % 5 != 0 )
return NULL;
assert( nFileSize % 5 == 0 );
rewind( pFile );
// create structure
p = NDR_ALLOC( Ndr_Data_t, 1 );
p->nSize = p->nCap = nFileSize / 5;
p->pHead = NDR_ALLOC( unsigned char, p->nCap );
p->pBody = NDR_ALLOC( unsigned int, p->nCap * 4 );
RetValue = (int)fread( p->pBody, 4, p->nCap, pFile );
RetValue = (int)fread( p->pHead, 1, p->nCap, pFile );
assert( p->nSize == (int)p->pBody[0] );
fclose( pFile );
//printf( "Read the design from file \"%s\".\n", pFileName );
return p;
}
static inline void Ndr_Write( char * pFileName, void * pDesign )
{
Ndr_Data_t * p = (Ndr_Data_t *)pDesign; int RetValue;
FILE * pFile = fopen( pFileName, "wb" );
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ? pFileName : "stdout" ); return; }
RetValue = (int)fwrite( p->pBody, 4, p->pBody[0], pFile );
RetValue = (int)fwrite( p->pHead, 1, p->pBody[0], pFile );
fclose( pFile );
//printf( "Dumped the design into file \"%s\".\n", pFileName );
}
////////////////////////////////////////////////////////////////////////
/// TESTING PROCEDURE ///
////////////////////////////////////////////////////////////////////////
// This testing procedure creates and writes into a Verilog file
// the following design composed of one module
// module add10 ( input [3:0] a, output [3:0] s );
// wire [3:0] const10 = 4'b1010;
// assign s = a + const10;
// endmodule
static inline void Ndr_ModuleTest()
{
// name IDs
int NameIdA = 2;
int NameIdS = 3;
int NameIdC = 4;
// array of fanins of node s
int Fanins[2] = { NameIdA, NameIdC };
// map name IDs into char strings
char * ppNames[5] = { NULL, "add10", "a", "s", "const10" };
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModuleID = Ndr_AddModule( pDesign, 1 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 3, 0, 0, 0, NULL, 1, &NameIdA, NULL ); // no fanins
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CONST, 0, 3, 0, 0, 0, NULL, 1, &NameIdC, "4'b1010" ); // no fanins
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD, 0, 3, 0, 0, 2, Fanins, 1, &NameIdS, NULL ); // fanins are a and const10
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 3, 0, 0, 1, &NameIdS, 0, NULL, NULL ); // fanin is a
// write Verilog for verification
Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "add4.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design composed of one adder divided into two
// module add8 ( input [7:0] a, input [7:0] b, output [7:0] s, output co );
// wire [3:0] a0 = a[3:0];
// wire [3:0] b0 = b[3:0];
// wire [7:4] a1 = a[7:4];
// wire [7:4] b1 = b[7:4];
// wire [4:0] r0 = a0 + b0;
// wire [3:0] s0 = r0[3:0];
// wire rco = r0[4];
// wire [4:0] r1 = a1 + b1 + rco;
// wire [3:0] s1 = r1[3:0];
// assign co = r1[4];
// assign s = {s1, s0};
// endmodule
static inline void Ndr_ModuleTestAdder()
{
// map name IDs into char strings
char * ppNames[20] = { NULL,
"a", "b", "s", "co", // 1, 2, 3, 4
"a0", "a1", "b0", "b1", // 5, 6, 7, 8
"r0", "s0", "rco", // 9, 10, 11
"r1", "s1", "add8" // 12, 13, 14
};
// fanins
int FaninA = 1;
int FaninB = 2;
int FaninS = 3;
int FaninCO = 4;
int FaninA0 = 5;
int FaninA1 = 6;
int FaninB0 = 7;
int FaninB1 = 8;
int FaninR0 = 9;
int FaninS0 = 10;
int FaninRCO = 11;
int FaninR1 = 12;
int FaninS1 = 13;
int Fanins1[2] = { FaninA0, FaninB0 };
int Fanins2[3] = { FaninA1, FaninB1, FaninRCO };
int Fanins3[4] = { FaninS1, FaninS0 };
// create a new module
void * pDesign = Ndr_Create( 14 );
int ModuleID = Ndr_AddModule( pDesign, 14 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 7, 0, 0, 0, NULL, 1, &FaninA, NULL ); // no fanins
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 7, 0, 0, 0, NULL, 1, &FaninB, NULL ); // no fanins
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 3, 0, 0, 1, &FaninA, 1, &FaninA0, NULL ); // wire [3:0] a0 = a[3:0];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 3, 0, 0, 1, &FaninB, 1, &FaninB0, NULL ); // wire [3:0] b0 = a[3:0];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 7, 4, 0, 1, &FaninA, 1, &FaninA1, NULL ); // wire [7:4] a1 = a[7:4];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 7, 4, 0, 1, &FaninB, 1, &FaninB1, NULL ); // wire [7:4] b1 = b[7:4];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD, 0, 4, 0, 0, 2, Fanins1, 1, &FaninR0, NULL ); // wire [4:0] r0 = a0 + b0;
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 3, 0, 0, 1, &FaninR0, 1, &FaninS0, NULL ); // wire [3:0] s0 = r0[3:0];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 4, 4, 0, 1, &FaninR0, 1, &FaninRCO, NULL ); // wire rco = r0[4];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD, 0, 4, 0, 0, 3, Fanins2, 1, &FaninR1, NULL ); // wire [4:0] r1 = a1 + b1 + rco;
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 3, 0, 0, 1, &FaninR1, 1, &FaninS1, NULL ); // wire [3:0] s1 = r1[3:0];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE, 0, 4, 4, 0, 1, &FaninR1, 1, &FaninCO, NULL ); // assign co = r1[4];
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CONCAT, 0, 7, 0, 0, 2, Fanins3, 1, &FaninS, NULL ); // s = {s1, s0};
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 7, 0, 0, 1, &FaninS, 0, NULL, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 0, 0, 0, 1, &FaninCO, 0, NULL, NULL );
// write Verilog for verification
Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "add8.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following hierarchical design composed of two modules
// module mux21w ( input sel, input [3:0] d1, input [3:0] d0, output [3:0] out );
// assign out = sel ? d1 : d0;
// endmodule
// module mux41w ( input [1:0] sel, input [15:0] d, output [3:0] out );
// wire [3:0] t0, t1;
// wire [3:0] d0 = d[3:0];
// wire [3:0] d1 = d[7:4];
// wire [3:0] d2 = d[11:8];
// wire [3:0] d3 = d[15:12];
// wire sel0 = sel[0];
// wire sel1 = sel[1];
// mux21w i0 ( sel0, d1, d0, t0 );
// mux21w i1 ( sel0, d3, d2, t1 );
// mux21w i2 ( sel1, t1, t0, out );
// endmodule
static inline void Ndr_ModuleTestHierarchy()
{
// map name IDs into char strings
char * ppNames[20] = { NULL,
"mux21w", "mux41w", // 1, 2
"sel", "d", "out", // 3, 4, 5
"d0", "d1", "d2", "d3", // 6, 7, 8, 9
"sel0", "sel1", // 10, 11,
"t0", "t1", // 12, 13
"i0", "i1", "i2" // 14, 15, 16
};
// fanins
int FaninSel = 3;
int FaninSel0 = 10;
int FaninSel1 = 11;
int FaninD = 4;
int FaninD0 = 6;
int FaninD1 = 7;
int FaninD2 = 8;
int FaninD3 = 9;
int FaninT0 = 12;
int FaninT1 = 13;
int FaninOut = 5;
int Fanins1[3] = { FaninSel, FaninD1, FaninD0 };
int Fanins3[3][3] = { {FaninSel0, FaninD1, FaninD0 },
{FaninSel0, FaninD3, FaninD2 },
{FaninSel1, FaninT1, FaninT0 } };
// create a new module
void * pDesign = Ndr_Create( 2 );
int Module21, Module41;
Module21 = Ndr_AddModule( pDesign, 1 );
Ndr_AddObject( pDesign, Module21, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &FaninSel, NULL );
Ndr_AddObject( pDesign, Module21, ABC_OPER_CI, 0, 3, 0, 0, 0, NULL, 1, &FaninD1, NULL );
Ndr_AddObject( pDesign, Module21, ABC_OPER_CI, 0, 3, 0, 0, 0, NULL, 1, &FaninD0, NULL );
Ndr_AddObject( pDesign, Module21, ABC_OPER_BIT_MUX, 0, 3, 0, 0, 3, Fanins1, 1, &FaninOut, NULL );
Ndr_AddObject( pDesign, Module21, ABC_OPER_CO, 0, 3, 0, 0, 1, &FaninOut, 0, NULL, NULL );
Module41 = Ndr_AddModule( pDesign, 2 );
Ndr_AddObject( pDesign, Module41, ABC_OPER_CI, 0, 1, 0, 0, 0, NULL, 1, &FaninSel, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_CI, 0, 15,0, 0, 0, NULL, 1, &FaninD, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE, 0, 3, 0, 0, 1, &FaninD, 1, &FaninD0, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE, 0, 7, 4, 0, 1, &FaninD, 1, &FaninD1, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE, 0, 11,8, 0, 1, &FaninD, 1, &FaninD2, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE, 0, 15,12,0, 1, &FaninD, 1, &FaninD3, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE, 0, 0, 0, 0, 1, &FaninSel, 1, &FaninSel0, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE, 0, 1, 1, 0, 1, &FaninSel, 1, &FaninSel1, NULL );
Ndr_AddObject( pDesign, Module41, Module21, 14, 3, 0, 0, 3, Fanins3[0], 1, &FaninT0, NULL );
Ndr_AddObject( pDesign, Module41, Module21, 15, 3, 0, 0, 3, Fanins3[1], 1, &FaninT1, NULL );
Ndr_AddObject( pDesign, Module41, Module21, 16, 3, 0, 0, 3, Fanins3[2], 1, &FaninOut, NULL );
Ndr_AddObject( pDesign, Module41, ABC_OPER_CO, 0, 3, 0, 0, 1, &FaninOut, 0, NULL, NULL );
// write Verilog for verification
Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "mux41w.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design with read/write memory ports
// module test ( input clk, input [8:0] raddr, input [8:0] waddr, input [31:0] data, input [16383:0] mem_init, output out );
//
// wire [31:0] read1, read2;
//
// wire [16383:0] mem_fo1, mem_fo2, mem_fi1, mem_fi2;
//
// ABC_FF i_reg1 ( .q(mem_fo1), .d(mem_fi1), .init(mem_init) );
// ABC_FF i_reg2 ( .q(mem_fo2), .d(mem_fi2), .init(mem_init) );
//
// ABC_WRITE i_write1 ( .mem_out(mem_fi1), .mem_in(mem_fo1), .addr(waddr), .data(data) );
// ABC_WRITE i_write2 ( .mem_out(mem_fi2), .mem_in(mem_fo2), .addr(waddr), .data(data) );
//
// ABC_READ i_read1 ( .data(read1), .mem_in(mem_fi1), .addr(raddr) );
// ABC_READ i_read2 ( .data(read2), .mem_in(mem_fi2), .addr(raddr) );
//
// assign out = read1 != read2;
//endmodule
static inline void Ndr_ModuleTestMemory()
{
// map name IDs into char strings
char * ppNames[20] = { NULL,
"clk", "raddr", "waddr", "data", "mem_init", "out", // 1, 2, 3, 4, 5, 6
"read1", "read2", // 7. 8
"mem_fo1", "mem_fo2", "mem_fi1", "mem_fi2", // 9, 10, 11, 12
"i_reg1", "i_reg2", // 13, 14
"i_read1", "i_read2", // 15, 16
"i_write1", "i_write2", "memtest" // 17, 18, 19
};
// inputs
int NameIdClk = 1;
int NameIdRaddr = 2;
int NameIdWaddr = 3;
int NameIdData = 4;
int NameIdMemInit = 5;
// flops
int NameIdFF1 = 9;
int NameIdFF2 = 10;
int FaninsFF1[2] = { 11, 5 };
int FaninsFF2[2] = { 12, 5 };
// writes
int NameIdWrite1 = 11;
int NameIdWrite2 = 12;
int FaninsWrite1[3] = { 9, 3, 4 };
int FaninsWrite2[3] = { 10, 3, 4 };
// reads
int NameIdRead1 = 7;
int NameIdRead2 = 8;
int FaninsRead1[2] = { 11, 2 };
int FaninsRead2[2] = { 12, 2 };
// compare
int NameIdComp = 6;
int FaninsComp[2] = { 7, 8 };
// create a new module
void * pDesign = Ndr_Create( 19 ); // create design named "memtest"
int ModuleID = Ndr_AddModule( pDesign, 19 ); // create module named "memtest"
// add objects to the module
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdClk, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 8, 0, 0, 0, NULL, 1, &NameIdRaddr, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 8, 0, 0, 0, NULL, 1, &NameIdWaddr, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 31, 0, 0, 0, NULL, 1, &NameIdData, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 16383, 0, 0, 0, NULL, 1, &NameIdMemInit, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 0, 0, 0, 1, &NameIdComp, 0, NULL, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_DFF, 13, 16383, 0, 0, 2, FaninsFF1, 1, &NameIdFF1, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_DFF, 14, 16383, 0, 0, 2, FaninsFF2, 1, &NameIdFF2, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMW, 17, 16383, 0, 0, 3, FaninsWrite1, 1, &NameIdWrite1, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMW, 18, 16383, 0, 0, 3, FaninsWrite2, 1, &NameIdWrite2, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMR, 15, 31, 0, 0, 2, FaninsRead1, 1, &NameIdRead1, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMR, 16, 31, 0, 0, 2, FaninsRead2, 1, &NameIdRead2, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_COMP_NOTEQU, 0, 0, 0, 0, 2, FaninsComp, 1, &NameIdComp, NULL );
// write Verilog for verification
Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "memtest.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design composed of one word-level flop
// module flop ( input [3:0] data, input clk, input reset, input set, input enable, input async, input sre, input [3:0] init, output [3:0] q );
// ABC_DFFRSE reg1 ( .d(data), .clk(clk), .reset(reset), .set(set), .enable(enable), .async(async), .sre(sre), .init(init), .q(q) ) ;
// endmodule
static inline void Ndr_ModuleTestFlop()
{
// map name IDs into char strings
char * ppNames[12] = { NULL, "flop", "data", "clk", "reset", "set", "enable", "async", "sre", "init", "q" };
// name IDs
int NameIdData = 2;
int NameIdClk = 3;
int NameIdReset = 4;
int NameIdSet = 5;
int NameIdEnable = 6;
int NameIdAsync = 7;
int NameIdSre = 8;
int NameIdInit = 9;
int NameIdQ = 10;
// array of fanins of node s
int Fanins[8] = { NameIdData, NameIdClk, NameIdReset, NameIdSet, NameIdEnable, NameIdAsync, NameIdSre, NameIdInit };
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModuleID = Ndr_AddModule( pDesign, 1 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 3, 0, 0, 0, NULL, 1, &NameIdData, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdClk, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdReset, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdSet, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdEnable, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdAsync, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdSre, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 3, 0, 0, 0, NULL, 1, &NameIdInit, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_DFFRSE, 0, 3, 0, 0, 8, Fanins, 1, &NameIdQ, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 3, 0, 0, 1, &NameIdQ, 0, NULL, NULL );
// write Verilog for verification
Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "flop.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design composed of one selector
// module sel ( input [3:0] c, input [2:0] d0, input [2:0] d1, input [2:0] d2, input [2:0] d3, input [2:0] out );
// wire [2:0] s7 ;
// always @( c or d0 or d1 or d2 or d3 )
// begin
// case ( c )
// 4'b0001 : s7 = d0 ;
// 4'b0010 : s7 = d1 ;
// 4'b0100 : s7 = d2 ;
// 4'b1000 : s7 = d3 ;
// endcase
// end
// assign out = s7 ;
// endmodule
static inline void Ndr_ModuleTestSelSel()
{
// map name IDs into char strings
//char * ppNames[12] = { NULL, "sel", "c", "d0", "d1", "d2", "d3", "out" };
// name IDs
int NameIdC = 2;
int NameIdD0 = 3;
int NameIdD1 = 4;
int NameIdD2 = 5;
int NameIdD3 = 6;
int NameIdOut = 7;
// array of fanins of node s
int Fanins[8] = { NameIdC, NameIdD0, NameIdD1, NameIdD2, NameIdD3 };
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModuleID = Ndr_AddModule( pDesign, 1 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 3, 0, 0, 0, NULL, 1, &NameIdC, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 2, 0, 0, 0, NULL, 1, &NameIdD0, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 2, 0, 0, 0, NULL, 1, &NameIdD1, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 2, 0, 0, 0, NULL, 1, &NameIdD2, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 2, 0, 0, 0, NULL, 1, &NameIdD3, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SEL_SEL, 0, 2, 0, 0, 5, Fanins, 1, &NameIdOut, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 2, 0, 0, 1, &NameIdOut,0, NULL, NULL );
// write Verilog for verification
//Ndr_WriteVerilog( NULL, pDesign, ppNames, 0 );
Ndr_Write( "sel.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design composed of one decoder
// module dec ( input [1:0] in, output [3:0] out );
// wire out0 = ~in[1] & ~in[0] ;
// wire out1 = ~in[1] & in[0] ;
// wire out2 = in[1] & ~in[0] ;
// wire out3 = in[1] & in[0] ;
// assign out = { out3, out2, out1, out0 } ;
// endmodule
static inline void Ndr_ModuleTestDec()
{
// map name IDs into char strings
//char * ppNames[12] = { NULL, "dec", "in", "out" };
// name IDs
int NameIdIn = 2;
int NameIdOut = 3;
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModuleID = Ndr_AddModule( pDesign, 1 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 1, 0, 0, 0, NULL, 1, &NameIdIn, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SEL_DEC, 0, 3, 0, 0, 1, &NameIdIn, 1, &NameIdOut, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 3, 0, 0, 1, &NameIdOut, 0, NULL, NULL );
Ndr_Write( "dec.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design composed of one adder/subtractor
// module addsub ( input mode, input cin, input [2:0] a, input [2:0] b, output [3:0] out );
// assign out = mode ? a+b+cin : a-b-cin ;
// endmodule
static inline void Ndr_ModuleTestAddSub()
{
// map name IDs into char strings
//char * ppNames[12] = { NULL, "addsub", "mode", "cin", "a", "b", "out" };
// name IDs
int NameIdInMode = 2;
int NameIdInCin = 3;
int NameIdInA = 4;
int NameIdInB = 5;
int NameIdOut = 6;
int Fanins[8] = { 2, 3, 4, 5 };
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModuleID = Ndr_AddModule( pDesign, 1 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdInMode, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 0, 0, 0, 0, NULL, 1, &NameIdInCin, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 2, 0, 0, 0, NULL, 1, &NameIdInA, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 2, 0, 0, 0, NULL, 1, &NameIdInB, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADDSUB, 0, 3, 0, 0, 4, Fanins, 1, &NameIdOut, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 3, 0, 0, 1, &NameIdOut, 0, NULL, NULL );
Ndr_Write( "addsub.ndr", pDesign );
Ndr_Delete( pDesign );
}
// This testing procedure creates and writes into a Verilog file
// the following design composed of one lookup table with function of AND2
// module lut_test ( input [1:0] in, output out );
// assign out = LUT #(TT=4'h8) lut_inst { in[0], in[1], out } ;
// endmodule
static inline void Ndr_ModuleTestLut()
{
// map name IDs into char strings
//char * ppNames[12] = { NULL, "lut_test", "in", "out" };
// name IDs
int NameIdIn = 2;
int NameIdOut = 3;
// create a new module
void * pDesign = Ndr_Create( 1 );
int ModuleID = Ndr_AddModule( pDesign, 1 );
// add objects to the modele
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI, 0, 1, 0, 0, 0, NULL, 1, &NameIdIn, NULL );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_LUT, 0, 0, 0, 0, 1, &NameIdIn, 1, &NameIdOut, (char *)(ABC_CONST(0x8)) );
Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO, 0, 0, 0, 0, 1, &NameIdOut, 0, NULL, NULL );
Ndr_Write( "lut_test.ndr", pDesign );
Ndr_Delete( pDesign );
}
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|