1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
/**CFile****************************************************************
FileName [mfxSat.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [The good old minimization with complete don't-cares.]
Synopsis [Procedures to compute don't-cares using SAT.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: mfxSat.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "mfxInt.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Enumerates through the SAT assignments.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Mfx_SolveSat_iter( Mfx_Man_t * p )
{
int Lits[MFX_FANIN_MAX];
int RetValue, nBTLimit, iVar, b, Mint;
if ( p->nTotConfLim && p->nTotConfLim <= p->pSat->stats.conflicts )
return -1;
nBTLimit = p->nTotConfLim? p->nTotConfLim - p->pSat->stats.conflicts : 0;
RetValue = sat_solver_solve( p->pSat, NULL, NULL, (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
assert( RetValue == l_Undef || RetValue == l_True || RetValue == l_False );
if ( RetValue == l_Undef )
return -1;
if ( RetValue == l_False )
return 0;
p->nCares++;
// add SAT assignment to the solver
Mint = 0;
Vec_IntForEachEntry( p->vProjVars, iVar, b )
{
Lits[b] = toLit( iVar );
if ( sat_solver_var_value( p->pSat, iVar ) )
{
Mint |= (1 << b);
Lits[b] = lit_neg( Lits[b] );
}
}
assert( !Aig_InfoHasBit(p->uCare, Mint) );
Aig_InfoSetBit( p->uCare, Mint );
// add the blocking clause
RetValue = sat_solver_addclause( p->pSat, Lits, Lits + Vec_IntSize(p->vProjVars) );
if ( RetValue == 0 )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Enumerates through the SAT assignments.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Mfx_SolveSat( Mfx_Man_t * p, Nwk_Obj_t * pNode )
{
Aig_Obj_t * pObjPo;
int RetValue, i;
// collect projection variables
Vec_IntClear( p->vProjVars );
Vec_PtrForEachEntryStart( p->pAigWin->vPos, pObjPo, i, Aig_ManPoNum(p->pAigWin) - Nwk_ObjFaninNum(pNode) )
{
assert( p->pCnf->pVarNums[pObjPo->Id] >= 0 );
Vec_IntPush( p->vProjVars, p->pCnf->pVarNums[pObjPo->Id] );
}
// prepare the truth table of care set
p->nFanins = Vec_IntSize( p->vProjVars );
p->nWords = Aig_TruthWordNum( p->nFanins );
memset( p->uCare, 0, sizeof(unsigned) * p->nWords );
// iterate through the SAT assignments
p->nCares = 0;
p->nTotConfLim = p->pPars->nBTLimit;
while ( (RetValue = Mfx_SolveSat_iter(p)) == 1 );
if ( RetValue == -1 )
return 0;
// write statistics
p->nMintsCare += p->nCares;
p->nMintsTotal += (1<<p->nFanins);
if ( p->pPars->fVeryVerbose )
{
printf( "Node %4d : Care = %2d. Total = %2d. ", pNode->Id, p->nCares, (1<<p->nFanins) );
// Kit_TruthPrintBinary( stdout, p->uCare, (1<<p->nFanins) );
printf( "\n" );
}
// map the care
if ( p->nFanins > 4 )
return 1;
if ( p->nFanins == 4 )
p->uCare[0] = p->uCare[0] | (p->uCare[0] << 16);
if ( p->nFanins == 3 )
p->uCare[0] = p->uCare[0] | (p->uCare[0] << 8) | (p->uCare[0] << 16) | (p->uCare[0] << 24);
if ( p->nFanins == 2 )
p->uCare[0] = p->uCare[0] | (p->uCare[0] << 4) | (p->uCare[0] << 8) | (p->uCare[0] << 12) |
(p->uCare[0] << 16) | (p->uCare[0] << 20) | (p->uCare[0] << 24) | (p->uCare[0] << 28);
assert( p->nFanins != 1 );
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|