summaryrefslogtreecommitdiffstats
path: root/src/aig/llb/llb3Image.c
blob: d040b34266066f136bef71e53661a2dcd2f56705 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/**CFile****************************************************************

  FileName    [llb3Image.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [BDD based reachability.]

  Synopsis    [Computes image using partitioned structure.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: llb3Image.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "llbInt.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Llb_Var_t_ Llb_Var_t;
struct Llb_Var_t_ 
{
    int           iVar;      // variable number
    int           nScore;    // variable score
    Vec_Int_t *   vParts;    // partitions
};

typedef struct Llb_Prt_t_ Llb_Prt_t;
struct Llb_Prt_t_ 
{
    int           iPart;     // partition number
    int           nSize;     // the number of BDD nodes
    DdNode *      bFunc;     // the partition
    Vec_Int_t *   vVars;     // support
};

typedef struct Llb_Mgr_t_ Llb_Mgr_t;
struct Llb_Mgr_t_
{
    Aig_Man_t *   pAig;      // AIG manager
    Vec_Ptr_t *   vLeaves;   // leaves in the AIG manager
    Vec_Ptr_t *   vRoots;    // roots in the AIG manager
    DdManager *   dd;        // working BDD manager
    DdNode *      bCurrent;  // current state functions in terms of vLeaves
    int *         pVars2Q;   // variables to quantify
    // internal
    Llb_Prt_t **  pParts;    // partitions
    Llb_Var_t **  pVars;     // variables
    int           iPartFree; // next free partition
    int           nVars;     // the number of BDD variables
    int           nSuppMax;  // maximum support size
    // temporary
    int *         pSupp;     // temporary support storage
};

static inline Llb_Var_t * Llb_MgrVar( Llb_Mgr_t * p, int i )   { return p->pVars[i];  }
static inline Llb_Prt_t * Llb_MgrPart( Llb_Mgr_t * p, int i )  { return p->pParts[i]; }

// iterator over vars
#define Llb_MgrForEachVar( p, pVar, i )     \
    for ( i = 0; (i < p->nVars) && (((pVar) = Llb_MgrVar(p, i)), 1); i++ ) if ( pVar == NULL ) {} else
// iterator over parts
#define Llb_MgrForEachPart( p, pPart, i )   \
    for ( i = 0; (i < p->iPartFree) && (((pPart) = Llb_MgrPart(p, i)), 1); i++ ) if ( pPart == NULL ) {} else

// iterator over vars of one partition
#define Llb_PartForEachVar( p, pPart, pVar, i )   \
    for ( i = 0; (i < Vec_IntSize(pPart->vVars)) && (((pVar) = Llb_MgrVar(p, Vec_IntEntry(pPart->vVars,i))), 1); i++ )
// iterator over parts of one variable
#define Llb_VarForEachPart( p, pVar, pPart, i )   \
    for ( i = 0; (i < Vec_IntSize(pVar->vParts)) && (((pPart) = Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,i))), 1); i++ )

// statistics
int timeBuild, timeAndEx, timeOther;
int nSuppMax;

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Removes one variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinRemoveVar( Llb_Mgr_t * p, Llb_Var_t * pVar )
{
    assert( p->pVars[pVar->iVar] == pVar );
    p->pVars[pVar->iVar] = NULL;
    Vec_IntFree( pVar->vParts );
    ABC_FREE( pVar );
}

/**Function*************************************************************

  Synopsis    [Removes one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinRemovePart( Llb_Mgr_t * p, Llb_Prt_t * pPart )
{
    assert( p->pParts[pPart->iPart] == pPart );
    p->pParts[pPart->iPart] = NULL;
    Vec_IntFree( pPart->vVars );
    Cudd_RecursiveDeref( p->dd, pPart->bFunc );
    ABC_FREE( pPart );
}

/**Function*************************************************************

  Synopsis    [Create cube with singleton variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinCreateCube1( Llb_Mgr_t * p, Llb_Prt_t * pPart )
{
    DdNode * bCube, * bTemp;
    Llb_Var_t * pVar;
    int i;
    bCube = Cudd_ReadOne(p->dd);   Cudd_Ref( bCube );
    Llb_PartForEachVar( p, pPart, pVar, i )
    {
        assert( Vec_IntSize(pVar->vParts) > 0 );
        if ( Vec_IntSize(pVar->vParts) != 1 )
            continue;
        assert( Vec_IntEntry(pVar->vParts, 0) == pPart->iPart );
        bCube = Cudd_bddAnd( p->dd, bTemp = bCube, Cudd_bddIthVar(p->dd, pVar->iVar) );    Cudd_Ref( bCube );
        Cudd_RecursiveDeref( p->dd, bTemp );
    }
    Cudd_Deref( bCube );
    return bCube;
}

/**Function*************************************************************

  Synopsis    [Create cube of variables appearing only in two partitions.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinCreateCube2( Llb_Mgr_t * p, Llb_Prt_t * pPart1, Llb_Prt_t * pPart2 )
{
    DdNode * bCube, * bTemp;
    Llb_Var_t * pVar;
    int i;
    bCube = Cudd_ReadOne(p->dd);   Cudd_Ref( bCube );
    Llb_PartForEachVar( p, pPart1, pVar, i )
    {
        assert( Vec_IntSize(pVar->vParts) > 0 );
        if ( Vec_IntSize(pVar->vParts) != 2 )
            continue;
        if ( (Vec_IntEntry(pVar->vParts, 0) == pPart1->iPart && Vec_IntEntry(pVar->vParts, 1) == pPart2->iPart) ||
             (Vec_IntEntry(pVar->vParts, 0) == pPart2->iPart && Vec_IntEntry(pVar->vParts, 1) == pPart1->iPart) )
        {
            bCube = Cudd_bddAnd( p->dd, bTemp = bCube, Cudd_bddIthVar(p->dd, pVar->iVar) );   Cudd_Ref( bCube );
            Cudd_RecursiveDeref( p->dd, bTemp );
        }
    }
    Cudd_Deref( bCube );
    return bCube;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if partition has singleton variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinHasSingletonVars( Llb_Mgr_t * p, Llb_Prt_t * pPart )
{
    Llb_Var_t * pVar;
    int i;
    Llb_PartForEachVar( p, pPart, pVar, i )
        if ( Vec_IntSize(pVar->vParts) == 1 )
            return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if partition has singleton variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinPrint( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i, k;
    printf( "\n" );
    Llb_MgrForEachVar( p, pVar, i )
    {
        printf( "Var %3d : ", i );
        Llb_VarForEachPart( p, pVar, pPart, k )
            printf( "%d ", pPart->iPart );
        printf( "\n" );
    }
    Llb_MgrForEachPart( p, pPart, i )
    {
        printf( "Part %3d : ", i );
        Llb_PartForEachVar( p, pPart, pVar, k )
            printf( "%d ", pVar->iVar );
        printf( "\n" );
    }
}

/**Function*************************************************************

  Synopsis    [Quantifies singles belonging to one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinQuantify1( Llb_Mgr_t * p, Llb_Prt_t * pPart, int fSubset )
{
    Llb_Var_t * pVar;
    Llb_Prt_t * pTemp;
    Vec_Ptr_t * vSingles;
    DdNode * bCube, * bTemp;
    int i, RetValue, nSizeNew;
    if ( fSubset )
    {        
        int Length;
//        int nSuppSize = Cudd_SupportSize( p->dd, pPart->bFunc );
//        pPart->bFunc = Cudd_SubsetHeavyBranch( p->dd, bTemp = pPart->bFunc, nSuppSize, 3*pPart->nSize/4 );  Cudd_Ref( pPart->bFunc );
        pPart->bFunc = Cudd_LargestCube( p->dd, bTemp = pPart->bFunc, &Length );  Cudd_Ref( pPart->bFunc );

        printf( "Subsetting %3d : ", pPart->iPart );
        printf( "(Supp =%3d  Node =%5d) -> ", Cudd_SupportSize(p->dd, bTemp),        Cudd_DagSize(bTemp) );
        printf( "(Supp =%3d  Node =%5d)\n",   Cudd_SupportSize(p->dd, pPart->bFunc), Cudd_DagSize(pPart->bFunc) );

        RetValue = (Cudd_DagSize(bTemp) == Cudd_DagSize(pPart->bFunc));

        Cudd_RecursiveDeref( p->dd, bTemp );

        if ( RetValue )
            return 1;
    }
    else
    {
        // create cube to be quantified
        bCube = Llb_NonlinCreateCube1( p, pPart );   Cudd_Ref( bCube );
//        assert( !Cudd_IsConstant(bCube) );
        // derive new function
        pPart->bFunc = Cudd_bddExistAbstract( p->dd, bTemp = pPart->bFunc, bCube );  Cudd_Ref( pPart->bFunc );
        Cudd_RecursiveDeref( p->dd, bTemp );
        Cudd_RecursiveDeref( p->dd, bCube );
    }
    // get support
    vSingles = Vec_PtrAlloc( 0 );
    nSizeNew = Cudd_DagSize(pPart->bFunc);
    Extra_SupportArray( p->dd, pPart->bFunc, p->pSupp );
    Llb_PartForEachVar( p, pPart, pVar, i )
        if ( p->pSupp[pVar->iVar] )
        {
            assert( Vec_IntSize(pVar->vParts) > 1 );
            pVar->nScore -= pPart->nSize - nSizeNew;
        }
        else
        {
            RetValue = Vec_IntRemove( pVar->vParts, pPart->iPart );
            assert( RetValue );
            pVar->nScore -= pPart->nSize;
            if ( Vec_IntSize(pVar->vParts) == 0 )
                Llb_NonlinRemoveVar( p, pVar );
            else if ( Vec_IntSize(pVar->vParts) == 1 )
                Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) );
        }

    // update partition
    pPart->nSize = nSizeNew;
    Vec_IntClear( pPart->vVars );
    for ( i = 0; i < p->nVars; i++ )
        if ( p->pSupp[i] && p->pVars2Q[i] )
            Vec_IntPush( pPart->vVars, i );
    // remove other variables
    Vec_PtrForEachEntry( Llb_Prt_t *, vSingles, pTemp, i )
        Llb_NonlinQuantify1( p, pTemp, 0 );
    Vec_PtrFree( vSingles );
    return 0;
}

/**Function*************************************************************

  Synopsis    [Quantifies singles belonging to one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinQuantify2( Llb_Mgr_t * p, Llb_Prt_t * pPart1, Llb_Prt_t * pPart2, int Limit )
{
    int fVerbose = 0;
    Llb_Var_t * pVar;
    Llb_Prt_t * pTemp;
    Vec_Ptr_t * vSingles;
    DdNode * bCube, * bFunc;
    int i, RetValue, nSuppSize;
    int iPart1 = pPart1->iPart;
    int iPart2 = pPart2->iPart;

    // create cube to be quantified
    bCube = Llb_NonlinCreateCube2( p, pPart1, pPart2 );   Cudd_Ref( bCube );
if ( fVerbose )
{
printf( "\n" );
printf( "\n" );
Llb_NonlinPrint( p );
printf( "Conjoining partitions %d and %d.\n", pPart1->iPart, pPart2->iPart );
Extra_bddPrintSupport( p->dd, bCube );  printf( "\n" );
}

    // derive new function
//    bFunc = Cudd_bddAndAbstract( p->dd, pPart1->bFunc, pPart2->bFunc, bCube );  Cudd_Ref( bFunc );
    bFunc = Cudd_bddAndAbstractLimit( p->dd, pPart1->bFunc, pPart2->bFunc, bCube, Limit );  
    if ( bFunc == NULL )
    {
/*
        int RetValue;
        Cudd_RecursiveDeref( p->dd, bCube );
        if ( pPart1->nSize < pPart2->nSize )
            RetValue = Llb_NonlinQuantify1( p, pPart1, 1 );
        else
            RetValue = Llb_NonlinQuantify1( p, pPart2, 1 );
        if ( RetValue )
            Limit = Limit + 1000;
        Llb_NonlinQuantify2( p, pPart1, pPart2, Limit );
*/
        return 1;
    }
    Cudd_Ref( bFunc );
    Cudd_RecursiveDeref( p->dd, bCube );
    // create new partition
    pTemp = p->pParts[p->iPartFree] = ABC_CALLOC( Llb_Prt_t, 1 );
    pTemp->iPart = p->iPartFree++;
    pTemp->nSize = Cudd_DagSize(bFunc);
    pTemp->bFunc = bFunc;
    pTemp->vVars = Vec_IntAlloc( 8 );
    // update variables
    Llb_PartForEachVar( p, pPart1, pVar, i )
    {
        RetValue = Vec_IntRemove( pVar->vParts, pPart1->iPart );
        assert( RetValue );
        pVar->nScore -= pPart1->nSize;
    }
    // update variables
    Llb_PartForEachVar( p, pPart2, pVar, i )
    {
        RetValue = Vec_IntRemove( pVar->vParts, pPart2->iPart );
        assert( RetValue );
        pVar->nScore -= pPart2->nSize;
    }
    // add variables to the new partition
    nSuppSize = 0;
    Extra_SupportArray( p->dd, bFunc, p->pSupp );
    for ( i = 0; i < p->nVars; i++ )
    {
        nSuppSize += p->pSupp[i];
        if ( p->pSupp[i] && p->pVars2Q[i] )
        {
            pVar = Llb_MgrVar( p, i );
            pVar->nScore += pTemp->nSize;
            Vec_IntPush( pVar->vParts, pTemp->iPart );
            Vec_IntPush( pTemp->vVars, i );
        }
    }
    p->nSuppMax = ABC_MAX( p->nSuppMax, nSuppSize ); 
    // remove variables and collect partitions with singleton variables
    vSingles = Vec_PtrAlloc( 0 );
    Llb_PartForEachVar( p, pPart1, pVar, i )
    {
        if ( Vec_IntSize(pVar->vParts) == 0 )
            Llb_NonlinRemoveVar( p, pVar );
        else if ( Vec_IntSize(pVar->vParts) == 1 )
        {
            if ( fVerbose )
                printf( "Adding partition %d because of var %d.\n", 
                    Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0))->iPart, pVar->iVar );
            Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) );
        }
    }
    Llb_PartForEachVar( p, pPart2, pVar, i )
    {
        if ( pVar == NULL )
            continue;
        if ( Vec_IntSize(pVar->vParts) == 0 )
            Llb_NonlinRemoveVar( p, pVar );
        else if ( Vec_IntSize(pVar->vParts) == 1 )
        {
            if ( fVerbose )
                printf( "Adding partition %d because of var %d.\n", 
                    Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0))->iPart, pVar->iVar );
            Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) );
        }
    }
    // remove partitions
    Llb_NonlinRemovePart( p, pPart1 );
    Llb_NonlinRemovePart( p, pPart2 );
    // remove other variables
if ( fVerbose )
Llb_NonlinPrint( p );
    Vec_PtrForEachEntry( Llb_Prt_t *, vSingles, pTemp, i )
    {
if ( fVerbose )
printf( "Updating partitiong %d with singlton vars.\n", pTemp->iPart );
        Llb_NonlinQuantify1( p, pTemp, 0 );
    }
if ( fVerbose )
Llb_NonlinPrint( p );
    Vec_PtrFree( vSingles );
    return 0;
}

/**Function*************************************************************

  Synopsis    [Computes volume of the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinCutNodes_rec( Aig_Man_t * p, Aig_Obj_t * pObj, Vec_Ptr_t * vNodes )
{
    if ( Aig_ObjIsTravIdCurrent(p, pObj) )
        return;
    Aig_ObjSetTravIdCurrent(p, pObj);
    if ( Saig_ObjIsLi(p, pObj) )
    {
        Llb_NonlinCutNodes_rec(p, Aig_ObjFanin0(pObj), vNodes);
        return;
    }
    if ( Aig_ObjIsConst1(pObj) )
        return;
    assert( Aig_ObjIsNode(pObj) );
    Llb_NonlinCutNodes_rec(p, Aig_ObjFanin0(pObj), vNodes);
    Llb_NonlinCutNodes_rec(p, Aig_ObjFanin1(pObj), vNodes);
    Vec_PtrPush( vNodes, pObj );
}

/**Function*************************************************************

  Synopsis    [Computes volume of the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Llb_NonlinCutNodes( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper )
{
    Vec_Ptr_t * vNodes;
    Aig_Obj_t * pObj;
    int i;
    // mark the lower cut with the traversal ID
    Aig_ManIncrementTravId(p);
    Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i )
        Aig_ObjSetTravIdCurrent( p, pObj );
    // count the upper cut
    vNodes = Vec_PtrAlloc( 100 );
    Vec_PtrForEachEntry( Aig_Obj_t *, vUpper, pObj, i )
        Llb_NonlinCutNodes_rec( p, pObj, vNodes );
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Returns array of BDDs for the roots in terms of the leaves.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Llb_NonlinBuildBdds( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper, DdManager * dd )
{
    Vec_Ptr_t * vNodes, * vResult;
    Aig_Obj_t * pObj;
    DdNode * bBdd0, * bBdd1, * bProd;
    int i;

    Aig_ManConst1(p)->pData = Cudd_ReadOne( dd );
    Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i )
        pObj->pData = Cudd_bddIthVar( dd, Aig_ObjId(pObj) );

    vNodes = Llb_NonlinCutNodes( p, vLower, vUpper );
    Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
    {
        bBdd0 = Cudd_NotCond( (DdNode *)Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
        bBdd1 = Cudd_NotCond( (DdNode *)Aig_ObjFanin1(pObj)->pData, Aig_ObjFaninC1(pObj) );
        pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 );   Cudd_Ref( (DdNode *)pObj->pData );
    }

    vResult = Vec_PtrAlloc( 100 );
    Vec_PtrForEachEntry( Aig_Obj_t *, vUpper, pObj, i )
    {
        if ( Aig_ObjIsNode(pObj) )
        {
            bProd = Cudd_bddXnor( dd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)), (DdNode *)pObj->pData );  Cudd_Ref( bProd );
        }
        else
        {
            assert( Saig_ObjIsLi(p, pObj) );
            bBdd0 = Cudd_NotCond( (DdNode *)Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
            bProd = Cudd_bddXnor( dd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)), bBdd0 );                  Cudd_Ref( bProd );
        }
        Vec_PtrPush( vResult, bProd );
    }
    Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
        Cudd_RecursiveDeref( dd, (DdNode *)pObj->pData );

    Vec_PtrFree( vNodes );
    return vResult;
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinAddPair( Llb_Mgr_t * p, DdNode * bFunc, int iPart, int iVar )
{
    if ( p->pVars[iVar] == NULL )
    {
        p->pVars[iVar] = ABC_CALLOC( Llb_Var_t, 1 );
        p->pVars[iVar]->iVar   = iVar;
        p->pVars[iVar]->nScore = 0;
        p->pVars[iVar]->vParts = Vec_IntAlloc( 8 );
    }
    Vec_IntPush( p->pVars[iVar]->vParts, iPart );
    Vec_IntPush( p->pParts[iPart]->vVars, iVar );
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinStart( Llb_Mgr_t * p )
{
    Vec_Ptr_t * vRootBdds;
    Llb_Prt_t * pPart;
    DdNode * bFunc;
    int i, k, nSuppSize;
    // create and collect BDDs
    vRootBdds = Llb_NonlinBuildBdds( p->pAig, p->vLeaves, p->vRoots, p->dd ); // come referenced
    Vec_PtrPush( vRootBdds, p->bCurrent );
    // add pairs (refs are consumed inside)
    Vec_PtrForEachEntry( DdNode *, vRootBdds, bFunc, i )
    {
        assert( !Cudd_IsConstant(bFunc) );
        // create partition
        p->pParts[i] = ABC_CALLOC( Llb_Prt_t, 1 );
        p->pParts[i]->iPart = i;
        p->pParts[i]->bFunc = bFunc;
        p->pParts[i]->vVars = Vec_IntAlloc( 8 );
        // add support dependencies
        nSuppSize = 0;
        Extra_SupportArray( p->dd, bFunc, p->pSupp );
        for ( k = 0; k < p->nVars; k++ )
        {
            nSuppSize += p->pSupp[k];
            if ( p->pSupp[k] && p->pVars2Q[k] )
                Llb_NonlinAddPair( p, bFunc, i, k );
        }
        p->nSuppMax = ABC_MAX( p->nSuppMax, nSuppSize ); 
    }
    Vec_PtrFree( vRootBdds );
    // remove singles
    Llb_MgrForEachPart( p, pPart, i )
        if ( Llb_NonlinHasSingletonVars(p, pPart) )
            Llb_NonlinQuantify1( p, pPart, 0 );
}

/**Function*************************************************************

  Synopsis    [Checks that each var appears in at least one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinCheckVars( Llb_Mgr_t * p )
{
    Llb_Var_t * pVar;
    int i;
    Llb_MgrForEachVar( p, pVar, i )
        assert( Vec_IntSize(pVar->vParts) > 1 );
}

/**Function*************************************************************

  Synopsis    [Find next partition to quantify]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinNextPartitions( Llb_Mgr_t * p, Llb_Prt_t ** ppPart1, Llb_Prt_t ** ppPart2 )
{
    Llb_Var_t * pVar, * pVarBest = NULL;
    Llb_Prt_t * pPart, * pPart1Best = NULL, * pPart2Best = NULL;
    int i;
    Llb_NonlinCheckVars( p );
    // find variable with minimum score
    Llb_MgrForEachVar( p, pVar, i )
        if ( pVarBest == NULL || pVarBest->nScore > pVar->nScore )
            pVarBest = pVar;
    if ( pVarBest == NULL )
        return 0;
    // find two partitions with minimum size
    Llb_VarForEachPart( p, pVarBest, pPart, i )
    {
        if ( pPart1Best == NULL )
            pPart1Best = pPart;
        else if ( pPart2Best == NULL )
            pPart2Best = pPart;
        else if ( pPart1Best->nSize > pPart->nSize || pPart2Best->nSize > pPart->nSize )
        {
            if ( pPart1Best->nSize > pPart2Best->nSize )
                pPart1Best = pPart;
            else
                pPart2Best = pPart;
        }
    }
    *ppPart1 = pPart1Best;
    *ppPart2 = pPart2Best;
    return 1; 
}

/**Function*************************************************************

  Synopsis    [Reorders BDDs in the working manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinReorder( DdManager * dd, int fVerbose )
{
    int clk = clock();
    if ( fVerbose )
        Abc_Print( 1, "Reordering... Before =%5d. ", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
    Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
    if ( fVerbose )
        Abc_Print( 1, "After =%5d. ", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
    Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
    if ( fVerbose )
        Abc_Print( 1, "After =%5d. ", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
    if ( fVerbose )
        Abc_PrintTime( 1, "Time", clock() - clk );
}

/**Function*************************************************************

  Synopsis    [Recomputes scores after variable reordering.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinRecomputeScores( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i, k;
    Llb_MgrForEachPart( p, pPart, i )
        pPart->nSize = Cudd_DagSize(pPart->bFunc);
    Llb_MgrForEachVar( p, pVar, i )
    {
        pVar->nScore = 0;
        Llb_VarForEachPart( p, pVar, pPart, k )
            pVar->nScore += pPart->nSize;
    }
}

/**Function*************************************************************

  Synopsis    [Recomputes scores after variable reordering.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinVerifyScores( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i, k, nScore;
    Llb_MgrForEachPart( p, pPart, i )
        assert( pPart->nSize == Cudd_DagSize(pPart->bFunc) );
    Llb_MgrForEachVar( p, pVar, i )
    {
        nScore = 0;
        Llb_VarForEachPart( p, pVar, pPart, k )
            nScore += pPart->nSize;
        assert( nScore == pVar->nScore );
    }
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Llb_Mgr_t * Llb_NonlinAlloc( Aig_Man_t * pAig, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int * pVars2Q, DdManager * dd, DdNode * bCurrent )
{
    Llb_Mgr_t * p;
    p = ABC_CALLOC( Llb_Mgr_t, 1 );
    p->pAig      = pAig;
    p->vLeaves   = vLeaves;
    p->vRoots    = vRoots;
    p->dd        = dd;
    p->bCurrent  = bCurrent;
    p->pVars2Q   = pVars2Q;
    p->nVars     = Cudd_ReadSize(dd);
    p->iPartFree = Vec_PtrSize(vRoots) + 1;
    p->pVars     = ABC_CALLOC( Llb_Var_t *, p->nVars );
    p->pParts    = ABC_CALLOC( Llb_Prt_t *, 2 * p->iPartFree );
    p->pSupp     = ABC_ALLOC( int, Cudd_ReadSize(dd) );
    return p;
}

/**Function*************************************************************

  Synopsis    [Stops non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinFree( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i;
    Llb_MgrForEachVar( p, pVar, i )
        Llb_NonlinRemoveVar( p, pVar );
    Llb_MgrForEachPart( p, pPart, i )
        Llb_NonlinRemovePart( p, pPart );
    ABC_FREE( p->pVars );
    ABC_FREE( p->pParts );
    ABC_FREE( p->pSupp );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    [Performs image computation.]

  Description [Computes image of BDDs (vFuncs).]
               
  SideEffects [BDDs in vFuncs are derefed inside. The result is refed.]

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinImage( Aig_Man_t * pAig, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int * pVars2Q, 
    DdManager * dd, DdNode * bCurrent, int fReorder, int fVerbose, int * pOrder, int Limit )
{
    Llb_Prt_t * pPart, * pPart1, * pPart2;
    Llb_Mgr_t * p;
    DdNode * bFunc, * bTemp;
    int i, nReorders, timeInside;
    int clk = clock(), clk2;
    // start the manager
    clk2 = clock();
    p = Llb_NonlinAlloc( pAig, vLeaves, vRoots, pVars2Q, dd, bCurrent );
    Llb_NonlinStart( p );
    timeBuild += clock() - clk2;
    timeInside = clock() - clk2;
    // compute scores
    Llb_NonlinRecomputeScores( p );
    // save permutation
    memcpy( pOrder, dd->invperm, sizeof(int) * dd->size );
    // iteratively quantify variables
    while ( Llb_NonlinNextPartitions(p, &pPart1, &pPart2) )
    {
        clk2 = clock();
        nReorders = Cudd_ReadReorderings(dd);
        if ( Llb_NonlinQuantify2( p, pPart1, pPart2, Limit ) )
        {
            Llb_NonlinFree( p );
            return NULL;
        }
        timeAndEx  += clock() - clk2;
        timeInside += clock() - clk2;
        if ( nReorders < Cudd_ReadReorderings(dd) )
            Llb_NonlinRecomputeScores( p );
//        else
//            Llb_NonlinVerifyScores( p );
    }
    // load partitions
    bFunc = Cudd_ReadOne(p->dd);   Cudd_Ref( bFunc );
    Llb_MgrForEachPart( p, pPart, i )
    {
        bFunc = Cudd_bddAnd( p->dd, bTemp = bFunc, pPart->bFunc );   Cudd_Ref( bFunc );
        Cudd_RecursiveDeref( p->dd, bTemp );
    }
    nSuppMax = p->nSuppMax;
    Llb_NonlinFree( p );
    // reorder variables
    if ( fReorder )
        Llb_NonlinReorder( dd, fVerbose );
    timeOther += clock() - clk - timeInside;
    // return
    Cudd_Deref( bFunc );
    return bFunc;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END