1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
/**CFile****************************************************************
FileName [fraSec.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [New FRAIG package.]
Synopsis [Performs SEC based on seq sweeping.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 30, 2007.]
Revision [$Id: fraSec.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $]
***********************************************************************/
#include "fra.h"
#include "ioa.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_FraigSec( Aig_Man_t * p, int nFramesMax, int fPhaseAbstract, int fRetimeFirst, int fRetimeRegs, int fFraiging, int fVerbose, int fVeryVerbose )
{
Fra_Ssw_t Pars, * pPars = &Pars;
Fra_Sml_t * pSml;
Aig_Man_t * pNew, * pTemp;
int nFrames, RetValue, nIter, clk, clkTotal = clock();
int fLatchCorr = 0;
// try the miter before solving
pNew = Aig_ManDup( p );
RetValue = Fra_FraigMiterStatus( pNew );
if ( RetValue >= 0 )
goto finish;
// prepare parameters
memset( pPars, 0, sizeof(Fra_Ssw_t) );
pPars->fLatchCorr = fLatchCorr;
pPars->fVerbose = fVeryVerbose;
if ( fVerbose )
{
printf( "Original miter: Latches = %5d. Nodes = %6d.\n",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
}
//Aig_ManDumpBlif( pNew, "after.blif", NULL, NULL );
// perform sequential cleanup
clk = clock();
if ( pNew->nRegs )
pNew = Aig_ManReduceLaches( pNew, 0 );
if ( pNew->nRegs )
pNew = Aig_ManConstReduce( pNew, 0 );
if ( fVerbose )
{
printf( "Sequential cleanup: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
RetValue = Fra_FraigMiterStatus( pNew );
if ( RetValue >= 0 )
goto finish;
// perform phase abstraction
clk = clock();
if ( fPhaseAbstract )
{
extern Aig_Man_t * Saig_ManPhaseAbstractAuto( Aig_Man_t * p, int fVerbose );
pNew->nTruePis = Aig_ManPiNum(pNew) - Aig_ManRegNum(pNew);
pNew->nTruePos = Aig_ManPoNum(pNew) - Aig_ManRegNum(pNew);
pNew = Saig_ManPhaseAbstractAuto( pTemp = pNew, 0 );
Aig_ManStop( pTemp );
if ( fVerbose )
{
printf( "Phase abstraction: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
}
// perform forward retiming
if ( fRetimeFirst && pNew->nRegs )
{
clk = clock();
pNew = Rtm_ManRetime( pTemp = pNew, 1, 1000, 0 );
Aig_ManStop( pTemp );
if ( fVerbose )
{
printf( "Forward retiming: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
}
// run latch correspondence
clk = clock();
if ( pNew->nRegs )
{
pNew = Aig_ManDupOrdered( pTemp = pNew );
// pNew = Aig_ManDupDfs( pTemp = pNew );
Aig_ManStop( pTemp );
pNew = Fra_FraigLatchCorrespondence( pTemp = pNew, 0, 100000, 1, fVeryVerbose, &nIter );
p->pSeqModel = pTemp->pSeqModel; pTemp->pSeqModel = NULL;
Aig_ManStop( pTemp );
if ( pNew == NULL )
{
RetValue = 0;
printf( "Networks are NOT EQUIVALENT after simulation. " );
PRT( "Time", clock() - clkTotal );
return RetValue;
}
if ( fVerbose )
{
printf( "Latch-corr (I=%3d): Latches = %5d. Nodes = %6d. ",
nIter, Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
}
// perform fraiging
if ( fFraiging )
{
clk = clock();
pNew = Fra_FraigEquivence( pTemp = pNew, 100, 0 );
Aig_ManStop( pTemp );
if ( fVerbose )
{
printf( "Fraiging: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
}
if ( pNew->nRegs == 0 )
RetValue = Fra_FraigCec( &pNew, 0 );
RetValue = Fra_FraigMiterStatus( pNew );
if ( RetValue >= 0 )
goto finish;
// perform min-area retiming
if ( fRetimeRegs && pNew->nRegs )
{
extern Aig_Man_t * Saig_ManRetimeMinArea( Aig_Man_t * p, int nMaxIters, int fForwardOnly, int fBackwardOnly, int fInitial, int fVerbose );
clk = clock();
pNew->nTruePis = Aig_ManPiNum(pNew) - Aig_ManRegNum(pNew);
pNew->nTruePos = Aig_ManPoNum(pNew) - Aig_ManRegNum(pNew);
// pNew = Rtm_ManRetime( pTemp = pNew, 1, 1000, 0 );
pNew = Saig_ManRetimeMinArea( pTemp = pNew, 1000, 0, 0, 1, 0 );
Aig_ManStop( pTemp );
pNew = Aig_ManDupOrdered( pTemp = pNew );
Aig_ManStop( pTemp );
if ( fVerbose )
{
printf( "Min-reg retiming: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
}
// perform seq sweeping while increasing the number of frames
RetValue = Fra_FraigMiterStatus( pNew );
if ( RetValue == -1 )
for ( nFrames = 1; nFrames <= nFramesMax; nFrames *= 2 )
{
clk = clock();
pPars->nFramesK = nFrames;
pNew = Fra_FraigInduction( pTemp = pNew, pPars );
Aig_ManStop( pTemp );
RetValue = Fra_FraigMiterStatus( pNew );
if ( fVerbose )
{
printf( "K-step (K=%2d,I=%3d): Latches = %5d. Nodes = %6d. ",
nFrames, pPars->nIters, Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
if ( RetValue != -1 )
break;
// perform retiming
// if ( fRetimeFirst && pNew->nRegs )
if ( pNew->nRegs )
{
extern Aig_Man_t * Saig_ManRetimeMinArea( Aig_Man_t * p, int nMaxIters, int fForwardOnly, int fBackwardOnly, int fInitial, int fVerbose );
clk = clock();
pNew->nTruePis = Aig_ManPiNum(pNew) - Aig_ManRegNum(pNew);
pNew->nTruePos = Aig_ManPoNum(pNew) - Aig_ManRegNum(pNew);
// pNew = Rtm_ManRetime( pTemp = pNew, 1, 1000, 0 );
pNew = Saig_ManRetimeMinArea( pTemp = pNew, 1000, 0, 0, 1, 0 );
Aig_ManStop( pTemp );
pNew = Aig_ManDupOrdered( pTemp = pNew );
Aig_ManStop( pTemp );
if ( fVerbose )
{
printf( "Min-reg retiming: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
}
if ( pNew->nRegs )
pNew = Aig_ManConstReduce( pNew, 0 );
// perform rewriting
clk = clock();
pNew = Aig_ManDupOrdered( pTemp = pNew );
Aig_ManStop( pTemp );
// pNew = Dar_ManRewriteDefault( pTemp = pNew );
pNew = Dar_ManCompress2( pTemp = pNew, 1, 0, 1, 0 );
Aig_ManStop( pTemp );
if ( fVerbose )
{
printf( "Rewriting: Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
// perform sequential simulation
if ( pNew->nRegs )
{
clk = clock();
pSml = Fra_SmlSimulateSeq( pNew, 0, 128 * nFrames, 1 + 16/(1+Aig_ManNodeNum(pNew)/1000) );
if ( fVerbose )
{
printf( "Seq simulation : Latches = %5d. Nodes = %6d. ",
Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
PRT( "Time", clock() - clk );
}
if ( pSml->fNonConstOut )
{
p->pSeqModel = Fra_SmlGetCounterExample( pSml );
Fra_SmlStop( pSml );
Aig_ManStop( pNew );
RetValue = 0;
printf( "Networks are NOT EQUIVALENT after simulation. " );
PRT( "Time", clock() - clkTotal );
return RetValue;
}
Fra_SmlStop( pSml );
}
}
// get the miter status
RetValue = Fra_FraigMiterStatus( pNew );
// try reachability analysis
if ( RetValue == -1 && Aig_ManRegNum(pNew) < 200 )
{
extern int Aig_ManVerifyUsingBdds( Aig_Man_t * p, int nBddMax, int nIterMax, int fPartition, int fReorder, int fVerbose );
assert( Aig_ManRegNum(pNew) > 0 );
pNew->nTruePis = Aig_ManPiNum(pNew) - Aig_ManRegNum(pNew);
pNew->nTruePos = Aig_ManPoNum(pNew) - Aig_ManRegNum(pNew);
RetValue = Aig_ManVerifyUsingBdds( pNew, 100000, 1000, 1, 1, 0 );
}
finish:
// report the miter
if ( RetValue == 1 )
{
printf( "Networks are equivalent. " );
PRT( "Time", clock() - clkTotal );
}
else if ( RetValue == 0 )
{
printf( "Networks are NOT EQUIVALENT. " );
PRT( "Time", clock() - clkTotal );
}
else
{
static int Counter = 1;
char pFileName[1000];
printf( "Networks are UNDECIDED. " );
PRT( "Time", clock() - clkTotal );
sprintf( pFileName, "sm%03d.aig", Counter++ );
Ioa_WriteAiger( pNew, pFileName, 0, 0 );
printf( "The unsolved reduced miter is written into file \"%s\".\n", pFileName );
}
Aig_ManStop( pNew );
return RetValue;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|