1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
/**CFile****************************************************************
FileName [fraSat.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [New FRAIG package.]
Synopsis []
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 30, 2007.]
Revision [$Id: fraSat.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $]
***********************************************************************/
#include <math.h>
#include "fra.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static int Fra_SetActivityFactors( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Runs equivalence test for the two nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_NodesAreEquiv( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
int pLits[4], RetValue, RetValue1, nBTLimit, clk;//, clk2 = clock();
int status;
// make sure the nodes are not complemented
assert( !Aig_IsComplement(pNew) );
assert( !Aig_IsComplement(pOld) );
assert( pNew != pOld );
// if at least one of the nodes is a failed node, perform adjustments:
// if the backtrack limit is small, simply skip this node
// if the backtrack limit is > 10, take the quare root of the limit
nBTLimit = p->pPars->nBTLimitNode;
if ( !p->pPars->fSpeculate && p->pPars->nFramesK == 0 && (nBTLimit > 0 && (pOld->fMarkB || pNew->fMarkB)) )
{
p->nSatFails++;
// fail immediately
// return -1;
if ( nBTLimit <= 10 )
return -1;
nBTLimit = (int)pow(nBTLimit, 0.7);
}
p->nSatCalls++;
p->nSatCallsRecent++;
// make sure the solver is allocated and has enough variables
if ( p->pSat == NULL )
{
p->pSat = sat_solver_new();
p->nSatVars = 1;
sat_solver_setnvars( p->pSat, 1000 );
// var 0 is reserved for const1 node - add the clause
pLits[0] = toLit( 0 );
sat_solver_addclause( p->pSat, pLits, pLits + 1 );
}
// if the nodes do not have SAT variables, allocate them
Fra_CnfNodeAddToSolver( p, pOld, pNew );
if ( p->pSat->qtail != p->pSat->qhead )
{
status = sat_solver_simplify(p->pSat);
assert( status != 0 );
assert( p->pSat->qtail == p->pSat->qhead );
}
// prepare variable activity
if ( p->pPars->fConeBias )
Fra_SetActivityFactors( p, pOld, pNew );
// solve under assumptions
// A = 1; B = 0 OR A = 1; B = 1
clk = clock();
pLits[0] = toLitCond( Fra_ObjSatNum(pOld), 0 );
pLits[1] = toLitCond( Fra_ObjSatNum(pNew), pOld->fPhase == pNew->fPhase );
//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 );
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2,
(sint64)nBTLimit, (sint64)0,
p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
if ( RetValue1 == l_False )
{
p->timeSatUnsat += clock() - clk;
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
// continue solving the other implication
p->nSatCallsUnsat++;
}
else if ( RetValue1 == l_True )
{
p->timeSatSat += clock() - clk;
Fra_SmlSavePattern( p );
p->nSatCallsSat++;
return 0;
}
else // if ( RetValue1 == l_Undef )
{
p->timeSatFail += clock() - clk;
// mark the node as the failed node
if ( pOld != p->pManFraig->pConst1 )
pOld->fMarkB = 1;
pNew->fMarkB = 1;
p->nSatFailsReal++;
return -1;
}
// if the old node was constant 0, we already know the answer
if ( pOld == p->pManFraig->pConst1 )
{
p->nSatProof++;
return 1;
}
// solve under assumptions
// A = 0; B = 1 OR A = 0; B = 0
clk = clock();
pLits[0] = toLitCond( Fra_ObjSatNum(pOld), 1 );
pLits[1] = toLitCond( Fra_ObjSatNum(pNew), pOld->fPhase ^ pNew->fPhase );
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2,
(sint64)nBTLimit, (sint64)0,
p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
if ( RetValue1 == l_False )
{
p->timeSatUnsat += clock() - clk;
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
p->nSatCallsUnsat++;
}
else if ( RetValue1 == l_True )
{
p->timeSatSat += clock() - clk;
Fra_SmlSavePattern( p );
p->nSatCallsSat++;
return 0;
}
else // if ( RetValue1 == l_Undef )
{
p->timeSatFail += clock() - clk;
// mark the node as the failed node
pOld->fMarkB = 1;
pNew->fMarkB = 1;
p->nSatFailsReal++;
return -1;
}
/*
// check BDD proof
{
int RetVal;
PRT( "Sat", clock() - clk2 );
clk2 = clock();
RetVal = Fra_NodesAreEquivBdd( pOld, pNew );
// printf( "%d ", RetVal );
assert( RetVal );
PRT( "Bdd", clock() - clk2 );
printf( "\n" );
}
*/
// return SAT proof
p->nSatProof++;
return 1;
}
/**Function*************************************************************
Synopsis [Runs the result of test for pObj => pNew.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_NodesAreImp( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew, int fComplL, int fComplR )
{
int pLits[4], RetValue, RetValue1, nBTLimit, clk;//, clk2 = clock();
int status;
// make sure the nodes are not complemented
assert( !Aig_IsComplement(pNew) );
assert( !Aig_IsComplement(pOld) );
assert( pNew != pOld );
// if at least one of the nodes is a failed node, perform adjustments:
// if the backtrack limit is small, simply skip this node
// if the backtrack limit is > 10, take the quare root of the limit
nBTLimit = p->pPars->nBTLimitNode;
/*
if ( !p->pPars->fSpeculate && p->pPars->nFramesK == 0 && (nBTLimit > 0 && (pOld->fMarkB || pNew->fMarkB)) )
{
p->nSatFails++;
// fail immediately
// return -1;
if ( nBTLimit <= 10 )
return -1;
nBTLimit = (int)pow(nBTLimit, 0.7);
}
*/
p->nSatCalls++;
// make sure the solver is allocated and has enough variables
if ( p->pSat == NULL )
{
p->pSat = sat_solver_new();
p->nSatVars = 1;
sat_solver_setnvars( p->pSat, 1000 );
// var 0 is reserved for const1 node - add the clause
pLits[0] = toLit( 0 );
sat_solver_addclause( p->pSat, pLits, pLits + 1 );
}
// if the nodes do not have SAT variables, allocate them
Fra_CnfNodeAddToSolver( p, pOld, pNew );
if ( p->pSat->qtail != p->pSat->qhead )
{
status = sat_solver_simplify(p->pSat);
assert( status != 0 );
assert( p->pSat->qtail == p->pSat->qhead );
}
// prepare variable activity
if ( p->pPars->fConeBias )
Fra_SetActivityFactors( p, pOld, pNew );
// solve under assumptions
// A = 1; B = 0 OR A = 1; B = 1
clk = clock();
// pLits[0] = toLitCond( Fra_ObjSatNum(pOld), 0 );
// pLits[1] = toLitCond( Fra_ObjSatNum(pNew), pOld->fPhase == pNew->fPhase );
pLits[0] = toLitCond( Fra_ObjSatNum(pOld), fComplL );
pLits[1] = toLitCond( Fra_ObjSatNum(pNew), !fComplR );
//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 );
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2,
(sint64)nBTLimit, (sint64)0,
p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
if ( RetValue1 == l_False )
{
p->timeSatUnsat += clock() - clk;
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
// continue solving the other implication
p->nSatCallsUnsat++;
}
else if ( RetValue1 == l_True )
{
p->timeSatSat += clock() - clk;
Fra_SmlSavePattern( p );
p->nSatCallsSat++;
return 0;
}
else // if ( RetValue1 == l_Undef )
{
p->timeSatFail += clock() - clk;
// mark the node as the failed node
if ( pOld != p->pManFraig->pConst1 )
pOld->fMarkB = 1;
pNew->fMarkB = 1;
p->nSatFailsReal++;
return -1;
}
// return SAT proof
p->nSatProof++;
return 1;
}
/**Function*************************************************************
Synopsis [Runs equivalence test for one node.]
Description [Returns the fraiged node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_NodeIsConst( Fra_Man_t * p, Aig_Obj_t * pNew )
{
int pLits[2], RetValue1, RetValue, clk;
// make sure the nodes are not complemented
assert( !Aig_IsComplement(pNew) );
assert( pNew != p->pManFraig->pConst1 );
p->nSatCalls++;
// make sure the solver is allocated and has enough variables
if ( p->pSat == NULL )
{
p->pSat = sat_solver_new();
p->nSatVars = 1;
sat_solver_setnvars( p->pSat, 1000 );
// var 0 is reserved for const1 node - add the clause
pLits[0] = toLit( 0 );
sat_solver_addclause( p->pSat, pLits, pLits + 1 );
}
// if the nodes do not have SAT variables, allocate them
Fra_CnfNodeAddToSolver( p, NULL, pNew );
// prepare variable activity
if ( p->pPars->fConeBias )
Fra_SetActivityFactors( p, NULL, pNew );
// solve under assumptions
clk = clock();
pLits[0] = toLitCond( Fra_ObjSatNum(pNew), pNew->fPhase );
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 1,
(sint64)p->pPars->nBTLimitMiter, (sint64)0,
p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
if ( RetValue1 == l_False )
{
p->timeSatUnsat += clock() - clk;
pLits[0] = lit_neg( pLits[0] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 1 );
assert( RetValue );
// continue solving the other implication
p->nSatCallsUnsat++;
}
else if ( RetValue1 == l_True )
{
p->timeSatSat += clock() - clk;
if ( p->pPatWords )
Fra_SmlSavePattern( p );
p->nSatCallsSat++;
return 0;
}
else // if ( RetValue1 == l_Undef )
{
p->timeSatFail += clock() - clk;
// mark the node as the failed node
pNew->fMarkB = 1;
p->nSatFailsReal++;
return -1;
}
// return SAT proof
p->nSatProof++;
return 1;
}
/**Function*************************************************************
Synopsis [Sets variable activities in the cone.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_SetActivityFactors_rec( Fra_Man_t * p, Aig_Obj_t * pObj, int LevelMin, int LevelMax )
{
Vec_Ptr_t * vFanins;
Aig_Obj_t * pFanin;
int i, Counter = 0;
assert( !Aig_IsComplement(pObj) );
assert( Fra_ObjSatNum(pObj) );
// skip visited variables
if ( Aig_ObjIsTravIdCurrent(p->pManFraig, pObj) )
return 0;
Aig_ObjSetTravIdCurrent(p->pManFraig, pObj);
// add the PI to the list
if ( pObj->Level <= (unsigned)LevelMin || Aig_ObjIsPi(pObj) )
return 0;
// set the factor of this variable
// (LevelMax-LevelMin) / (pObj->Level-LevelMin) = p->pPars->dActConeBumpMax / ThisBump
p->pSat->factors[Fra_ObjSatNum(pObj)] = p->pPars->dActConeBumpMax * (pObj->Level - LevelMin)/(LevelMax - LevelMin);
veci_push(&p->pSat->act_vars, Fra_ObjSatNum(pObj));
// explore the fanins
vFanins = Fra_ObjFaninVec( pObj );
Vec_PtrForEachEntry( vFanins, pFanin, i )
Counter += Fra_SetActivityFactors_rec( p, Aig_Regular(pFanin), LevelMin, LevelMax );
return 1 + Counter;
}
/**Function*************************************************************
Synopsis [Sets variable activities in the cone.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_SetActivityFactors( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
int clk, LevelMin, LevelMax;
assert( pOld || pNew );
clk = clock();
// reset the active variables
veci_resize(&p->pSat->act_vars, 0);
// prepare for traversal
Aig_ManIncrementTravId( p->pManFraig );
// determine the min and max level to visit
assert( p->pPars->dActConeRatio > 0 && p->pPars->dActConeRatio < 1 );
LevelMax = AIG_MAX( (pNew ? pNew->Level : 0), (pOld ? pOld->Level : 0) );
LevelMin = (int)(LevelMax * (1.0 - p->pPars->dActConeRatio));
// traverse
if ( pOld && !Aig_ObjIsConst1(pOld) )
Fra_SetActivityFactors_rec( p, pOld, LevelMin, LevelMax );
if ( pNew && !Aig_ObjIsConst1(pNew) )
Fra_SetActivityFactors_rec( p, pNew, LevelMin, LevelMax );
//Fra_PrintActivity( p );
p->timeTrav += clock() - clk;
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|