summaryrefslogtreecommitdiffstats
path: root/src/aig/fra/fraClass.c
blob: 2d03e65dccd3a6a9a504c7fe7c3e9341f29661ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/**CFile****************************************************************

  FileName    [fraClass.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [New FRAIG package.]

  Synopsis    []

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 30, 2007.]

  Revision    [$Id: fraClass.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $]

***********************************************************************/

#include "fra.h"

/*
    The candidate equivalence classes are stored as a vector of pointers 
    to the array of pointers to the nodes in each class.
    The first node of the class is its representative node.
    The representative has the smallest topological order among the class nodes.
    The nodes inside each class are ordered according to their topological order.
    The classes are ordered according to the topological order of their representatives.
    The array of pointers to the class nodes is terminated with a NULL pointer.
    To enable dynamic addition of new classes (during class refinement),
    each array has at least as many NULLs in the end, as there are nodes in the class.
*/

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static inline Aig_Obj_t *  Fra_ObjNext( Aig_Obj_t ** ppNexts, Aig_Obj_t * pObj )                       { return ppNexts[pObj->Id];  }
static inline void         Fra_ObjSetNext( Aig_Obj_t ** ppNexts, Aig_Obj_t * pObj, Aig_Obj_t * pNext ) { ppNexts[pObj->Id] = pNext; }

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Starts representation of equivalence classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fra_Cla_t * Fra_ClassesStart( Aig_Man_t * pAig )
{
    Fra_Cla_t * p;
    p = ALLOC( Fra_Cla_t, 1 );
    memset( p, 0, sizeof(Fra_Cla_t) );
    p->pAig = pAig;
    p->pMemRepr  = ALLOC( Aig_Obj_t *, Aig_ManObjNumMax(pAig) );
    memset( p->pMemRepr, 0, sizeof(Aig_Obj_t *) * Aig_ManObjNumMax(pAig) );
    p->vClasses     = Vec_PtrAlloc( 100 );
    p->vClasses1    = Vec_PtrAlloc( 100 );
    p->vClassesTemp = Vec_PtrAlloc( 100 );
    p->vClassOld    = Vec_PtrAlloc( 100 );
    p->vClassNew    = Vec_PtrAlloc( 100 );
    p->pFuncNodeHash      = Fra_SmlNodeHash;
    p->pFuncNodeIsConst   = Fra_SmlNodeIsConst;
    p->pFuncNodesAreEqual = Fra_SmlNodesAreEqual;
    return p;
}

/**Function*************************************************************

  Synopsis    [Stop representation of equivalence classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ClassesStop( Fra_Cla_t * p )
{
    FREE( p->pMemClasses );
    FREE( p->pMemRepr );
    if ( p->vClassesTemp ) Vec_PtrFree( p->vClassesTemp );
    if ( p->vClassNew )    Vec_PtrFree( p->vClassNew );
    if ( p->vClassOld )    Vec_PtrFree( p->vClassOld );
    if ( p->vClasses1 )    Vec_PtrFree( p->vClasses1 );
    if ( p->vClasses )     Vec_PtrFree( p->vClasses );
    if ( p->vImps )        Vec_IntFree( p->vImps );
    free( p );
}

/**Function*************************************************************

  Synopsis    [Starts representation of equivalence classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ClassesCopyReprs( Fra_Cla_t * p, Vec_Ptr_t * vFailed )
{
    Aig_Obj_t * pObj;
    int i;
    Aig_ManReprStart( p->pAig, Aig_ManObjNumMax(p->pAig) );
    memmove( p->pAig->pReprs, p->pMemRepr, sizeof(Aig_Obj_t *) * Aig_ManObjNumMax(p->pAig) );
    if ( Vec_PtrSize(p->vClasses1) == 0 && Vec_PtrSize(p->vClasses) == 0 )
    {
        Aig_ManForEachObj( p->pAig, pObj, i )
        {
            if ( p->pAig->pReprs[i] != NULL )
                printf( "Classes are not cleared!\n" );
            assert( p->pAig->pReprs[i] == NULL );
        }
    }
    if ( vFailed )
        Vec_PtrForEachEntry( vFailed, pObj, i )
            p->pAig->pReprs[pObj->Id] = NULL;
}

/**Function*************************************************************

  Synopsis    [Prints simulation classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ClassCount( Aig_Obj_t ** pClass )
{
    Aig_Obj_t * pTemp;
    int i;
    for ( i = 0; (pTemp = pClass[i]); i++ );
    return i;
}

/**Function*************************************************************

  Synopsis    [Count the number of literals.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ClassesCountLits( Fra_Cla_t * p )
{
    Aig_Obj_t ** pClass;
    int i, nNodes, nLits = 0;
    nLits = Vec_PtrSize( p->vClasses1 );
    Vec_PtrForEachEntry( p->vClasses, pClass, i )
    {
        nNodes = Fra_ClassCount( pClass );
        assert( nNodes > 1 );
        nLits += nNodes - 1;
    }
    return nLits;
}

/**Function*************************************************************

  Synopsis    [Count the number of pairs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ClassesCountPairs( Fra_Cla_t * p )
{
    Aig_Obj_t ** pClass;
    int i, nNodes, nPairs = 0;
    Vec_PtrForEachEntry( p->vClasses, pClass, i )
    {
        nNodes = Fra_ClassCount( pClass );
        assert( nNodes > 1 );
        nPairs += nNodes * (nNodes - 1) / 2;
    }
    return nPairs;
}

/**Function*************************************************************

  Synopsis    [Prints simulation classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_PrintClass( Aig_Obj_t ** pClass )
{
    Aig_Obj_t * pTemp;
    int i;
    for ( i = 1; (pTemp = pClass[i]); i++ )
        assert( Fra_ClassObjRepr(pTemp) == pClass[0] );
    printf( "{ " );
    for ( i = 0; (pTemp = pClass[i]); i++ )
        printf( "%d(%d) ", pTemp->Id, pTemp->Level );
    printf( "}\n" );
}

/**Function*************************************************************

  Synopsis    [Prints simulation classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ClassesPrint( Fra_Cla_t * p, int fVeryVerbose )
{
    Aig_Obj_t ** pClass;
    Aig_Obj_t * pObj;
    int i;

    printf( "Const = %5d. Class = %5d. Lit = %5d. ", 
        Vec_PtrSize(p->vClasses1), Vec_PtrSize(p->vClasses), Fra_ClassesCountLits(p) );
    if ( p->vImps && Vec_IntSize(p->vImps) > 0 )
        printf( "Imp = %5d. ", Vec_IntSize(p->vImps) );
    printf( "\n" );

    if ( fVeryVerbose )
    {
        Vec_PtrForEachEntry( p->vClasses1, pObj, i )
            assert( Fra_ClassObjRepr(pObj) == Aig_ManConst1(p->pAig) );
        printf( "Constants { " );
        Vec_PtrForEachEntry( p->vClasses1, pObj, i )
            printf( "%d ", pObj->Id );
        printf( "}\n" );
        Vec_PtrForEachEntry( p->vClasses, pClass, i )
        {
            printf( "%3d (%3d) : ", i, Fra_ClassCount(pClass) );
            Fra_PrintClass( pClass );
        }
        printf( "\n" );
    }
}

/**Function*************************************************************

  Synopsis    [Creates initial simulation classes.]

  Description [Assumes that simulation info is assigned.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ClassesPrepare( Fra_Cla_t * p, int fLatchCorr, int nMaxLevs )
{
    Aig_Obj_t ** ppTable, ** ppNexts;
    Aig_Obj_t * pObj, * pTemp;
    int i, k, nTableSize, nEntries, nNodes, iEntry;

    // allocate the hash table hashing simulation info into nodes
    nTableSize = Aig_PrimeCudd( Aig_ManObjNumMax(p->pAig) );
    ppTable = ALLOC( Aig_Obj_t *, nTableSize ); 
    ppNexts = ALLOC( Aig_Obj_t *, nTableSize ); 
    memset( ppTable, 0, sizeof(Aig_Obj_t *) * nTableSize );

    // add all the nodes to the hash table
    Vec_PtrClear( p->vClasses1 );
    Aig_ManForEachObj( p->pAig, pObj, i )
    {
        if ( fLatchCorr )
        {
            if ( !Aig_ObjIsPi(pObj) )
                continue;
        }
        else
        {
            if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsPi(pObj) )
                continue;
            // skip the node with more that the given number of levels
            if ( nMaxLevs && (int)pObj->Level >= nMaxLevs )
                continue;
        }
        // hash the node by its simulation info
        iEntry = p->pFuncNodeHash( pObj, nTableSize );
        // check if the node belongs to the class of constant 1
        if ( p->pFuncNodeIsConst( pObj ) )
        {
            Vec_PtrPush( p->vClasses1, pObj );
            Fra_ClassObjSetRepr( pObj, Aig_ManConst1(p->pAig) );
            continue;
        }
        // add the node to the class
        if ( ppTable[iEntry] == NULL )
        {
            ppTable[iEntry] = pObj;
            Fra_ObjSetNext( ppNexts, pObj, pObj );
        }
        else
        {
            Fra_ObjSetNext( ppNexts, pObj, Fra_ObjNext(ppNexts,ppTable[iEntry]) );
            Fra_ObjSetNext( ppNexts, ppTable[iEntry], pObj );
        }
    }

    // count the total number of nodes in the non-trivial classes
    // mark the representative nodes of each equivalence class
    nEntries = 0;
    for ( i = 0; i < nTableSize; i++ )
        if ( ppTable[i] && ppTable[i] != Fra_ObjNext(ppNexts, ppTable[i]) )
        {
            for ( pTemp = Fra_ObjNext(ppNexts, ppTable[i]), k = 1; 
                  pTemp != ppTable[i]; 
                  pTemp = Fra_ObjNext(ppNexts, pTemp), k++ );
            assert( k > 1 );
            nEntries += k;
            // mark the node
            assert( ppTable[i]->fMarkA == 0 );
            ppTable[i]->fMarkA = 1;
        }

    // allocate room for classes
    p->pMemClasses = ALLOC( Aig_Obj_t *, 2*(nEntries + Vec_PtrSize(p->vClasses1)) );
    p->pMemClassesFree = p->pMemClasses + 2*nEntries;
 
    // copy the entries into storage in the topological order
    Vec_PtrClear( p->vClasses );
    nEntries = 0;
    Aig_ManForEachObj( p->pAig, pObj, i )
    {
        if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsPi(pObj) )
            continue;
        // skip the nodes that are not representatives of non-trivial classes
        if ( pObj->fMarkA == 0 )
            continue;
        pObj->fMarkA = 0;
        // add the class of nodes
        Vec_PtrPush( p->vClasses, p->pMemClasses + 2*nEntries );
        // count the number of entries in this class
        for ( pTemp = Fra_ObjNext(ppNexts, pObj), k = 1; 
              pTemp != pObj; 
              pTemp = Fra_ObjNext(ppNexts, pTemp), k++ );
        nNodes = k;
        assert( nNodes > 1 );
        // add the nodes to the class in the topological order
        p->pMemClasses[2*nEntries] = pObj;
        for ( pTemp = Fra_ObjNext(ppNexts, pObj), k = 1; 
              pTemp != pObj; 
              pTemp = Fra_ObjNext(ppNexts, pTemp), k++ )
        {
            p->pMemClasses[2*nEntries+nNodes-k] = pTemp;
            Fra_ClassObjSetRepr( pTemp, pObj );
        }
        // add as many empty entries
        p->pMemClasses[2*nEntries + nNodes] = NULL;
        // increment the number of entries
        nEntries += k;
    }
    free( ppTable );
    free( ppNexts );
    // now it is time to refine the classes
    Fra_ClassesRefine( p );
}

/**Function*************************************************************

  Synopsis    [Refines one class using simulation info.]

  Description [Returns the new class if refinement happened.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Obj_t ** Fra_RefineClassOne( Fra_Cla_t * p, Aig_Obj_t ** ppClass )
{
    Aig_Obj_t * pObj, ** ppThis;
    int i;
    assert( ppClass[0] != NULL && ppClass[1] != NULL );

    // check if the class is going to be refined
    for ( ppThis = ppClass + 1; (pObj = *ppThis); ppThis++ )        
        if ( !p->pFuncNodesAreEqual(ppClass[0], pObj) )
            break;
    if ( pObj == NULL )
        return NULL;
    // split the class
    Vec_PtrClear( p->vClassOld );
    Vec_PtrClear( p->vClassNew );
    Vec_PtrPush( p->vClassOld, ppClass[0] );
    for ( ppThis = ppClass + 1; (pObj = *ppThis); ppThis++ )        
        if ( p->pFuncNodesAreEqual(ppClass[0], pObj) )
            Vec_PtrPush( p->vClassOld, pObj );
        else
            Vec_PtrPush( p->vClassNew, pObj );
/*
    printf( "Refining class (" );
    Vec_PtrForEachEntry( p->vClassOld, pObj, i )
        printf( "%d,", pObj->Id );
    printf( ") + (" );
    Vec_PtrForEachEntry( p->vClassNew, pObj, i )
        printf( "%d,", pObj->Id );
    printf( ")\n" );
*/
    // put the nodes back into the class memory
    Vec_PtrForEachEntry( p->vClassOld, pObj, i )
    {
        ppClass[i] = pObj;
        ppClass[Vec_PtrSize(p->vClassOld)+i] = NULL;
        Fra_ClassObjSetRepr( pObj, i? ppClass[0] : NULL );
    }
    ppClass += 2*Vec_PtrSize(p->vClassOld);
    // put the new nodes into the class memory
    Vec_PtrForEachEntry( p->vClassNew, pObj, i )
    {
        ppClass[i] = pObj;
        ppClass[Vec_PtrSize(p->vClassNew)+i] = NULL;
        Fra_ClassObjSetRepr( pObj, i? ppClass[0] : NULL );
    }
    return ppClass;
}

/**Function*************************************************************

  Synopsis    [Iteratively refines the classes after simulation.]

  Description [Returns the number of refinements performed.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_RefineClassLastIter( Fra_Cla_t * p, Vec_Ptr_t * vClasses )
{
    Aig_Obj_t ** pClass, ** pClass2;
    int nRefis;
    pClass = Vec_PtrEntryLast( vClasses );
    for ( nRefis = 0; (pClass2 = Fra_RefineClassOne( p, pClass )); nRefis++ )
    {
        // if the original class is trivial, remove it
        if ( pClass[1] == NULL )
            Vec_PtrPop( vClasses );
        // if the new class is trivial, stop
        if ( pClass2[1] == NULL )
        {
            nRefis++;
            break;
        }
        // othewise, add the class and continue
        assert( pClass2[0] != NULL );
        Vec_PtrPush( vClasses, pClass2 );
        pClass = pClass2;
    }
    return nRefis;
}

/**Function*************************************************************

  Synopsis    [Refines the classes after simulation.]

  Description [Assumes that simulation info is assigned. Returns the
  number of classes refined.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ClassesRefine( Fra_Cla_t * p )
{
    Vec_Ptr_t * vTemp;
    Aig_Obj_t ** pClass;
    int i, nRefis;
    // refine the classes
    nRefis = 0;
    Vec_PtrClear( p->vClassesTemp );
    Vec_PtrForEachEntry( p->vClasses, pClass, i )
    {
        // add the class to the new array
        assert( pClass[0] != NULL );
        Vec_PtrPush( p->vClassesTemp, pClass );
        // refine the class iteratively
        nRefis += Fra_RefineClassLastIter( p, p->vClassesTemp );
    }
    // exchange the class representation
    vTemp = p->vClassesTemp;
    p->vClassesTemp = p->vClasses;
    p->vClasses = vTemp;
    return nRefis;
}

/**Function*************************************************************

  Synopsis    [Refines constant 1 equivalence class.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ClassesRefine1( Fra_Cla_t * p, int fRefineNewClass, int * pSkipped )
{
    Aig_Obj_t * pObj, ** ppClass;
    int i, k, nRefis = 1;
    // check if there is anything to refine
    if ( Vec_PtrSize(p->vClasses1) == 0 )
        return 0;
    // make sure constant 1 class contains only non-constant nodes
    assert( Vec_PtrEntry(p->vClasses1,0) != Aig_ManConst1(p->pAig) );
    // collect all the nodes to be refined
    k = 0;
    Vec_PtrClear( p->vClassNew );
    Vec_PtrForEachEntry( p->vClasses1, pObj, i )
    {
        if ( p->pFuncNodeIsConst( pObj ) )
            Vec_PtrWriteEntry( p->vClasses1, k++, pObj );
        else 
            Vec_PtrPush( p->vClassNew, pObj );
    }
    Vec_PtrShrink( p->vClasses1, k );
    if ( Vec_PtrSize(p->vClassNew) == 0 )
        return 0;
/*
    printf( "Refined const-1 class: {" );
    Vec_PtrForEachEntry( p->vClassNew, pObj, i )
        printf( " %d", pObj->Id );
    printf( " }\n" );
*/
    if ( Vec_PtrSize(p->vClassNew) == 1 )
    {
        Fra_ClassObjSetRepr( Vec_PtrEntry(p->vClassNew,0), NULL );
        return 1;
    }
    // create a new class composed of these nodes
    ppClass = p->pMemClassesFree;
    p->pMemClassesFree += 2 * Vec_PtrSize(p->vClassNew);
    Vec_PtrForEachEntry( p->vClassNew, pObj, i )
    {
        ppClass[i] = pObj;
        ppClass[Vec_PtrSize(p->vClassNew)+i] = NULL;
        Fra_ClassObjSetRepr( pObj, i? ppClass[0] : NULL );
    }
    assert( ppClass[0] != NULL );
    Vec_PtrPush( p->vClasses, ppClass );
    // iteratively refine this class
    if ( fRefineNewClass )
        nRefis += Fra_RefineClassLastIter( p, p->vClasses );
    else if ( pSkipped )
        (*pSkipped)++;
    return nRefis;
}

/**Function*************************************************************

  Synopsis    [Starts representation of equivalence classes with one class.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ClassesTest( Fra_Cla_t * p, int Id1, int Id2 )
{
    Aig_Obj_t ** pClass;
    p->pMemClasses = ALLOC( Aig_Obj_t *, 4 );
    pClass = p->pMemClasses;
    assert( Id1 < Id2 );
    pClass[0] = Aig_ManObj( p->pAig, Id1 );
    pClass[1] = Aig_ManObj( p->pAig, Id2 );
    pClass[2] = NULL;
    pClass[3] = NULL;
    Fra_ClassObjSetRepr( pClass[1], pClass[0] );
    Vec_PtrPush( p->vClasses, pClass );
}

/**Function*************************************************************

  Synopsis    [Creates latch correspondence classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ClassesLatchCorr( Fra_Man_t * p )
{
    Aig_Obj_t * pObj;
    int i, nEntries = 0;
    Vec_PtrClear( p->pCla->vClasses1 );
    Aig_ManForEachLoSeq( p->pManAig, pObj, i )
    {
        Vec_PtrPush( p->pCla->vClasses1, pObj );
        Fra_ClassObjSetRepr( pObj, Aig_ManConst1(p->pManAig) );
    }
    // allocate room for classes
    p->pCla->pMemClasses = ALLOC( Aig_Obj_t *, 2*(nEntries + Vec_PtrSize(p->pCla->vClasses1)) );
    p->pCla->pMemClassesFree = p->pCla->pMemClasses + 2*nEntries;
}

/**Function*************************************************************

  Synopsis    [Postprocesses the classes by removing half of the less useful.]

  Description []
               
  SideEffects [] 

  SeeAlso     []

***********************************************************************/
void Fra_ClassesPostprocess( Fra_Cla_t * p )
{
    int Ratio = 2;
    Fra_Sml_t * pComb;
    Aig_Obj_t * pObj, * pRepr, ** ppClass;
    int * pWeights, WeightMax = 0, i, k, c;
    // perform combinational simulation
    pComb = Fra_SmlSimulateComb( p->pAig, 32 );
    // compute the weight of each node in the classes
    pWeights = ALLOC( int, Aig_ManObjNumMax(p->pAig) );
    memset( pWeights, 0, sizeof(int) * Aig_ManObjNumMax(p->pAig) );
    Aig_ManForEachObj( p->pAig, pObj, i )
    { 
        pRepr = Fra_ClassObjRepr( pObj );
        if ( pRepr == NULL )
            continue;
        pWeights[i] = Fra_SmlNodeNotEquWeight( pComb, pRepr->Id, pObj->Id );
        WeightMax = AIG_MAX( WeightMax, pWeights[i] );
    }
    Fra_SmlStop( pComb );
    printf( "Before: Const = %6d. Class = %6d.  ", Vec_PtrSize(p->vClasses1), Vec_PtrSize(p->vClasses) );
    // remove nodes from classes whose weight is less than WeightMax/Ratio
    k = 0;
    Vec_PtrForEachEntry( p->vClasses1, pObj, i )
    {
        if ( pWeights[pObj->Id] >= WeightMax/Ratio )
            Vec_PtrWriteEntry( p->vClasses1, k++, pObj );
        else
            Fra_ClassObjSetRepr( pObj, NULL );
    }
    Vec_PtrShrink( p->vClasses1, k );
    // in each class, compact the nodes
    Vec_PtrForEachEntry( p->vClasses, ppClass, i )
    {
        k = 1;
        for ( c = 1; ppClass[c]; c++ )
        {
            if ( pWeights[ppClass[c]->Id] >= WeightMax/Ratio )
                ppClass[k++] = ppClass[c];
            else
                Fra_ClassObjSetRepr( ppClass[c], NULL );
        }
        ppClass[k] = NULL;
    }
    // remove classes with only repr
    k = 0;
    Vec_PtrForEachEntry( p->vClasses, ppClass, i )
        if ( ppClass[1] != NULL )
            Vec_PtrWriteEntry( p->vClasses, k++, ppClass );
    Vec_PtrShrink( p->vClasses, k );
    printf( "After: Const = %6d. Class = %6d. \n", Vec_PtrSize(p->vClasses1), Vec_PtrSize(p->vClasses) );
    free( pWeights );
}

/**Function*************************************************************

  Synopsis    [Postprocesses the classes by selecting representative lowest in top order.]

  Description []
               
  SideEffects [] 

  SeeAlso     []

***********************************************************************/
void Fra_ClassesSelectRepr( Fra_Cla_t * p )
{
    Aig_Obj_t ** pClass, * pNodeMin;
    int i, c, cMinSupp, nSuppSizeMin, nSuppSizeCur;
    // reassign representatives in each class
    Vec_PtrForEachEntry( p->vClasses, pClass, i )
    {
        // collect support sizes and find the min-support node
        cMinSupp = -1;
        pNodeMin = NULL;
        nSuppSizeMin = AIG_INFINITY;
        for ( c = 0; pClass[c]; c++ )
        {
            nSuppSizeCur = Aig_SupportSize( p->pAig, pClass[c] );
//            nSuppSizeCur = 1;
            if ( nSuppSizeMin > nSuppSizeCur || 
                (nSuppSizeMin == nSuppSizeCur && pNodeMin->Level > pClass[c]->Level) )
            {
                nSuppSizeMin = nSuppSizeCur;
                pNodeMin = pClass[c];
                cMinSupp = c; 
            }
        }
        // skip the case when the repr did not change
        if ( cMinSupp == 0 )
            continue;
        // make the new node the representative of the class
        pClass[cMinSupp] = pClass[0];
        pClass[0] = pNodeMin;
        // set the representative
        for ( c = 0; pClass[c]; c++ )
            Fra_ClassObjSetRepr( pClass[c], c? pClass[0] : NULL );
    }
}



static inline Aig_Obj_t * Fra_ObjEqu( Aig_Obj_t ** ppEquivs, Aig_Obj_t * pObj )                       { return ppEquivs[pObj->Id];  }
static inline void        Fra_ObjSetEqu( Aig_Obj_t ** ppEquivs, Aig_Obj_t * pObj, Aig_Obj_t * pNode ) { ppEquivs[pObj->Id] = pNode; }

static inline Aig_Obj_t * Fra_ObjChild0Equ( Aig_Obj_t ** ppEquivs, Aig_Obj_t * pObj ) { return Aig_NotCond(Fra_ObjEqu(ppEquivs,Aig_ObjFanin0(pObj)), Aig_ObjFaninC0(pObj));  }
static inline Aig_Obj_t * Fra_ObjChild1Equ( Aig_Obj_t ** ppEquivs, Aig_Obj_t * pObj ) { return Aig_NotCond(Fra_ObjEqu(ppEquivs,Aig_ObjFanin1(pObj)), Aig_ObjFaninC1(pObj));  }

/**Function*************************************************************

  Synopsis    [Add the node and its constraints to the new AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Fra_ClassesDeriveNode( Aig_Man_t * pManFraig, Aig_Obj_t * pObj, Aig_Obj_t ** ppEquivs )
{
    Aig_Obj_t * pObjNew, * pObjRepr, * pObjReprNew, * pMiter;//, * pObjNew2;
    // skip nodes without representative
    if ( (pObjRepr = Fra_ClassObjRepr(pObj)) == NULL )
        return;
    assert( pObjRepr->Id < pObj->Id );
    // get the new node 
    pObjNew = Fra_ObjEqu( ppEquivs, pObj );
    // get the new node of the representative
    pObjReprNew = Fra_ObjEqu( ppEquivs, pObjRepr );
    // if this is the same node, no need to add constraints
    if ( Aig_Regular(pObjNew) == Aig_Regular(pObjReprNew) )
        return;
    // these are different nodes - perform speculative reduction
//    pObjNew2 = Aig_NotCond( pObjReprNew, pObj->fPhase ^ pObjRepr->fPhase );
    // set the new node
//    Fra_ObjSetEqu( ppEquivs, pObj, pObjNew2 );
    // add the constraint
    pMiter = Aig_Exor( pManFraig, Aig_Regular(pObjNew), Aig_Regular(pObjReprNew) );
    pMiter = Aig_NotCond( pMiter, Aig_Regular(pMiter)->fPhase ^ Aig_IsComplement(pMiter) );
    pMiter = Aig_Not( pMiter );
    Aig_ObjCreatePo( pManFraig, pMiter );
}

/**Function*************************************************************

  Synopsis    [Derives AIG for the partitioned problem.]

  Description []
               
  SideEffects [] 

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Fra_ClassesDeriveAig( Fra_Cla_t * p, int nFramesK )
{
    Aig_Man_t * pManFraig;
    Aig_Obj_t * pObj, * pObjNew;
    Aig_Obj_t ** pLatches, ** ppEquivs;
    int i, k, f, nFramesAll = nFramesK + 1;
    assert( Aig_ManRegNum(p->pAig) > 0 );
    assert( Aig_ManRegNum(p->pAig) < Aig_ManPiNum(p->pAig) );
    assert( nFramesK > 0 );
    // start the fraig package
    pManFraig = Aig_ManStart( Aig_ManObjNumMax(p->pAig) * nFramesAll );
    pManFraig->pName = Aig_UtilStrsav( p->pAig->pName );
    // allocate place for the node mapping
    ppEquivs = ALLOC( Aig_Obj_t *, Aig_ManObjNumMax(p->pAig) );
    Fra_ObjSetEqu( ppEquivs, Aig_ManConst1(p->pAig), Aig_ManConst1(pManFraig) );
    // create latches for the first frame
    Aig_ManForEachLoSeq( p->pAig, pObj, i )
        Fra_ObjSetEqu( ppEquivs, pObj, Aig_ObjCreatePi(pManFraig) );
    // add timeframes
    pLatches = ALLOC( Aig_Obj_t *, Aig_ManRegNum(p->pAig) );
    for ( f = 0; f < nFramesAll; f++ )
    {
        // create PIs for this frame
        Aig_ManForEachPiSeq( p->pAig, pObj, i )
            Fra_ObjSetEqu( ppEquivs, pObj, Aig_ObjCreatePi(pManFraig) );
        // set the constraints on the latch outputs
        Aig_ManForEachLoSeq( p->pAig, pObj, i )
            Fra_ClassesDeriveNode( pManFraig, pObj, ppEquivs );
        // add internal nodes of this frame
        Aig_ManForEachNode( p->pAig, pObj, i )
        {
            pObjNew = Aig_And( pManFraig, Fra_ObjChild0Equ(ppEquivs, pObj), Fra_ObjChild1Equ(ppEquivs, pObj) );
            Fra_ObjSetEqu( ppEquivs, pObj, pObjNew );
            Fra_ClassesDeriveNode( pManFraig, pObj, ppEquivs );
        }
        if ( f == nFramesAll - 1 )
            break;
        if ( f == nFramesAll - 2 )
            pManFraig->nAsserts = Aig_ManPoNum(pManFraig);
        // save the latch input values
        k = 0;
        Aig_ManForEachLiSeq( p->pAig, pObj, i )
            pLatches[k++] = Fra_ObjChild0Equ( ppEquivs, pObj );
        // insert them to the latch output values
        k = 0;
        Aig_ManForEachLoSeq( p->pAig, pObj, i )
            Fra_ObjSetEqu( ppEquivs, pObj, pLatches[k++] );
    }
    free( pLatches );
    free( ppEquivs );
    // mark the asserts
    assert( Aig_ManPoNum(pManFraig) % nFramesAll == 0 );
printf( "Assert miters = %6d. Output miters = %6d.\n", 
       pManFraig->nAsserts, Aig_ManPoNum(pManFraig) - pManFraig->nAsserts );
    // remove dangling nodes
    Aig_ManCleanup( pManFraig );
    return pManFraig;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////