/************************************************************************************************** MiniSat -- Copyright (c) 2005, Niklas Sorensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ // Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko #ifndef ABC__sat__bsat__satSolver2_h #define ABC__sat__bsat__satSolver2_h #include #include #include #include #include "satVec.h" #include "satClause.h" #include "misc/vec/vecSet.h" ABC_NAMESPACE_HEADER_START //#define USE_FLOAT_ACTIVITY2 //================================================================================================= // Public interface: struct sat_solver2_t; typedef struct sat_solver2_t sat_solver2; extern sat_solver2* sat_solver2_new(void); extern void sat_solver2_delete(sat_solver2* s); extern int sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end); extern int sat_solver2_simplify(sat_solver2* s); extern int sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal); extern void sat_solver2_rollback(sat_solver2* s); extern void sat_solver2_reducedb(sat_solver2* s); extern double sat_solver2_memory( sat_solver2* s, int fAll ); extern double sat_solver2_memory_proof( sat_solver2* s ); extern void sat_solver2_setnvars(sat_solver2* s,int n); extern void Sat_Solver2WriteDimacs( sat_solver2 * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars ); extern void Sat_Solver2PrintStats( FILE * pFile, sat_solver2 * p ); extern int * Sat_Solver2GetModel( sat_solver2 * p, int * pVars, int nVars ); extern void Sat_Solver2DoubleClauses( sat_solver2 * p, int iVar ); // global variables extern int var_is_partA (sat_solver2* s, int v); extern void var_set_partA(sat_solver2* s, int v, int partA); // proof-based APIs extern void * Sat_ProofCore( sat_solver2 * s ); extern void * Sat_ProofInterpolant( sat_solver2 * s, void * pGloVars ); extern word * Sat_ProofInterpolantTruth( sat_solver2 * s, void * pGloVars ); extern int Sat_ProofReduce( Vec_Set_t * vProof, void * pRoots, int hProofPivot ); extern void Sat_ProofCheck( sat_solver2 * s ); //================================================================================================= // Solver representation: struct varinfo_t; typedef struct varinfo2_t varinfo2; struct sat_solver2_t { int size; // nof variables int cap; // size of varmaps int qhead; // Head index of queue. int qtail; // Tail index of queue. int root_level; // Level of first proper decision. double random_seed; double progress_estimate; int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything // activities #ifdef USE_FLOAT_ACTIVITY2 double var_inc; // Amount to bump next variable with. double var_decay; // INVERSE decay factor for variable activity: stores 1/decay. float cla_inc; // Amount to bump next clause with. float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay. double* activity; // A heuristic measurement of the activity of a variable. #else int var_inc; // Amount to bump next variable with. int cla_inc; // Amount to bump next clause with. unsigned* activity; // A heuristic measurement of the activity of a variable. #endif int nUnits; // the total number of unit clauses int nof_learnts; // the number of clauses to trigger reduceDB int nLearntMax; // enables using reduce DB method int nLearntStart; // starting learned clause limit int nLearntDelta; // delta of learned clause limit int nLearntRatio; // ratio percentage of learned clauses int nDBreduces; // number of DB reductions int fNotUseRandom; // do not allow random decisions with a fixed probability int fSkipSimplify; // set to one to skip simplification of the clause database int fProofLogging; // enable proof-logging int fVerbose; // clauses Sat_Mem_t Mem; veci* wlists; // watcher lists (for each literal) veci act_clas; // clause activities veci claProofs; // clause proofs // rollback int iVarPivot; // the pivot for variables int iTrailPivot; // the pivot for trail int hProofPivot; // the pivot for proof records // internal state varinfo2 * vi; // variable information int* levels; // char* assigns; // lit* trail; // sequence of assignment and implications int* orderpos; // Index in variable order. cla* reasons; // reason clauses cla* units; // unit clauses int* model; // If problem is solved, this vector contains the model (contains: lbool). veci tagged; // (contains: var) veci stack; // (contains: var) veci order; // Variable order. (heap) (contains: var) veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int) veci temp_clause; // temporary storage for a CNF clause veci conf_final; // If problem is unsatisfiable (possibly under assumptions), // this vector represent the final conflict clause expressed in the assumptions. veci mark_levels; // temporary storage for labeled levels veci min_lit_order; // ordering of removable literals veci min_step_order; // ordering of resolution steps veci learnt_live; // remaining clauses after reduce DB // proof logging Vec_Set_t Proofs; // sequence of proof records veci temp_proof; // temporary place to store proofs int hLearntLast; // in proof-logging mode, the ID of the final conflict clause (conf_final) int hProofLast; // in proof-logging mode, the ID of the final conflict clause (conf_final) // statistics stats_t stats; ABC_INT64_T nConfLimit; // external limit on the number of conflicts ABC_INT64_T nInsLimit; // external limit on the number of implications clock_t nRuntimeLimit; // external limit on runtime }; static inline clause * clause2_read( sat_solver2 * s, cla h ) { return Sat_MemClauseHand( &s->Mem, h ); } static inline int clause2_proofid(sat_solver2* s, clause* c, int partA) { return c->lrn ? (veci_begin(&s->claProofs)[clause_id(c)]<<2) | (partA<<1) : (clause_id(c)<<2) | (partA<<1) | 1; } // these two only work after creating a clause before the solver is called static inline int clause2_is_partA (sat_solver2* s, int h) { return clause2_read(s, h)->partA; } static inline void clause2_set_partA(sat_solver2* s, int h, int partA) { clause2_read(s, h)->partA = partA; } static inline int clause2_id(sat_solver2* s, int h) { return clause_id(clause2_read(s, h)); } //================================================================================================= // Public APIs: static inline int sat_solver2_nvars(sat_solver2* s) { return s->size; } static inline int sat_solver2_nclauses(sat_solver2* s) { return (int)s->stats.clauses; } static inline int sat_solver2_nlearnts(sat_solver2* s) { return (int)s->stats.learnts; } static inline int sat_solver2_nconflicts(sat_solver2* s) { return (int)s->stats.conflicts; } static inline int sat_solver2_var_value( sat_solver2* s, int v ) { assert( v >= 0 && v < s->size ); return (int)(s->model[v] == l_True); } static inline int sat_solver2_var_literal( sat_solver2* s, int v ) { assert( v >= 0 && v < s->size ); return toLitCond( v, s->model[v] != l_True ); } static inline void sat_solver2_act_var_clear(sat_solver2* s) { int i; for (i = 0; i < s->size; i++) s->activity[i] = 0;//.0; s->var_inc = 1.0; } static inline int sat_solver2_final(sat_solver2* s, int ** ppArray) { *ppArray = s->conf_final.ptr; return s->conf_final.size; } static inline clock_t sat_solver2_set_runtime_limit(sat_solver2* s, clock_t Limit) { clock_t temp = s->nRuntimeLimit; s->nRuntimeLimit = Limit; return temp; } static inline int sat_solver2_set_learntmax(sat_solver2* s, int nLearntMax) { int temp = s->nLearntMax; s->nLearntMax = nLearntMax; return temp; } static inline void sat_solver2_bookmark(sat_solver2* s) { assert( s->qhead == s->qtail ); s->iVarPivot = s->size; s->iTrailPivot = s->qhead; s->hProofPivot = Vec_SetHandCurrent(&s->Proofs); Sat_MemBookMark( &s->Mem ); } static inline int sat_solver2_add_const( sat_solver2 * pSat, int iVar, int fCompl, int fMark ) { lit Lits[1]; int Cid; assert( iVar >= 0 ); Lits[0] = toLitCond( iVar, fCompl ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 1 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); return 1; } static inline int sat_solver2_add_buffer( sat_solver2 * pSat, int iVarA, int iVarB, int fCompl, int fMark ) { lit Lits[2]; int Cid; assert( iVarA >= 0 && iVarB >= 0 ); Lits[0] = toLitCond( iVarA, 0 ); Lits[1] = toLitCond( iVarB, !fCompl ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, 1 ); Lits[1] = toLitCond( iVarB, fCompl ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); return 2; } static inline int sat_solver2_add_and( sat_solver2 * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fMark ) { lit Lits[3]; int Cid; Lits[0] = toLitCond( iVar, 1 ); Lits[1] = toLitCond( iVar0, fCompl0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVar, 1 ); Lits[1] = toLitCond( iVar1, fCompl1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVar, 0 ); Lits[1] = toLitCond( iVar0, !fCompl0 ); Lits[2] = toLitCond( iVar1, !fCompl1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); return 3; } static inline int sat_solver2_add_xor( sat_solver2 * pSat, int iVarA, int iVarB, int iVarC, int fCompl, int fMark ) { lit Lits[3]; int Cid; assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 ); Lits[0] = toLitCond( iVarA, !fCompl ); Lits[1] = toLitCond( iVarB, 1 ); Lits[2] = toLitCond( iVarC, 1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, !fCompl ); Lits[1] = toLitCond( iVarB, 0 ); Lits[2] = toLitCond( iVarC, 0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, fCompl ); Lits[1] = toLitCond( iVarB, 1 ); Lits[2] = toLitCond( iVarC, 0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, fCompl ); Lits[1] = toLitCond( iVarB, 0 ); Lits[2] = toLitCond( iVarC, 1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); return 4; } static inline int sat_solver2_add_constraint( sat_solver2 * pSat, int iVar, int iVar2, int fCompl, int fMark ) { lit Lits[2]; int Cid; assert( iVar >= 0 ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar2, 0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar2, 1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause2_set_partA( pSat, Cid, 1 ); return 2; } ABC_NAMESPACE_HEADER_END #endif