/************************************************************************************************** MiniSat -- Copyright (c) 2005, Niklas Sorensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ // Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko #include #include #include #include #include "satSolver2.h" ABC_NAMESPACE_IMPL_START #define SAT_USE_PROOF_LOGGING static int Time = 0; //================================================================================================= // Debug: //#define VERBOSEDEBUG // For derivation output (verbosity level 2) #define L_IND "%-*d" #define L_ind solver2_dlevel(s)*2+2,solver2_dlevel(s) #define L_LIT "%sx%d" #define L_lit(p) lit_sign(p)?"~":"", (lit_var(p)) static void printlits(lit* begin, lit* end) { int i; for (i = 0; i < end - begin; i++) Abc_Print(1,L_LIT" ",L_lit(begin[i])); } //================================================================================================= // Random numbers: // Returns a random float 0 <= x < 1. Seed must never be 0. static inline double drand(double* seed) { int q; *seed *= 1389796; q = (int)(*seed / 2147483647); *seed -= (double)q * 2147483647; return *seed / 2147483647; } // Returns a random integer 0 <= x < size. Seed must never be 0. static inline int irand(double* seed, int size) { return (int)(drand(seed) * size); } //================================================================================================= // Variable datatype + minor functions: static const int var0 = 1; static const int var1 = 0; static const int varX = 3; struct varinfo2_t { // unsigned val : 2; // variable value unsigned pol : 1; // last polarity unsigned partA : 1; // partA variable unsigned tag : 4; // conflict analysis tags // unsigned lev : 24; // variable level }; int var_is_partA (sat_solver2* s, int v) { return s->vi[v].partA; } void var_set_partA(sat_solver2* s, int v, int partA) { s->vi[v].partA = partA; } //static inline int var_level (sat_solver2* s, int v) { return s->vi[v].lev; } static inline int var_level (sat_solver2* s, int v) { return s->levels[v]; } //static inline int var_value (sat_solver2* s, int v) { return s->vi[v].val; } static inline int var_value (sat_solver2* s, int v) { return s->assigns[v]; } static inline int var_polar (sat_solver2* s, int v) { return s->vi[v].pol; } //static inline void var_set_level (sat_solver2* s, int v, int lev) { s->vi[v].lev = lev; } static inline void var_set_level (sat_solver2* s, int v, int lev) { s->levels[v] = lev; } //static inline void var_set_value (sat_solver2* s, int v, int val) { s->vi[v].val = val; } static inline void var_set_value (sat_solver2* s, int v, int val) { s->assigns[v] = val; } static inline void var_set_polar (sat_solver2* s, int v, int pol) { s->vi[v].pol = pol; } // variable tags static inline int var_tag (sat_solver2* s, int v) { return s->vi[v].tag; } static inline void var_set_tag (sat_solver2* s, int v, int tag) { assert( tag > 0 && tag < 16 ); if ( s->vi[v].tag == 0 ) veci_push( &s->tagged, v ); s->vi[v].tag = tag; } static inline void var_add_tag (sat_solver2* s, int v, int tag) { assert( tag > 0 && tag < 16 ); if ( s->vi[v].tag == 0 ) veci_push( &s->tagged, v ); s->vi[v].tag |= tag; } static inline void solver2_clear_tags(sat_solver2* s, int start) { int i, * tagged = veci_begin(&s->tagged); for (i = start; i < veci_size(&s->tagged); i++) s->vi[tagged[i]].tag = 0; veci_resize(&s->tagged,start); } // level marks static inline int var_lev_mark (sat_solver2* s, int v) { return (veci_begin(&s->trail_lim)[var_level(s,v)] & 0x80000000) > 0; } static inline void var_lev_set_mark (sat_solver2* s, int v) { int level = var_level(s,v); assert( level < veci_size(&s->trail_lim) ); veci_begin(&s->trail_lim)[level] |= 0x80000000; veci_push(&s->mark_levels, level); } static inline void solver2_clear_marks(sat_solver2* s) { int i, * mark_levels = veci_begin(&s->mark_levels); for (i = 0; i < veci_size(&s->mark_levels); i++) veci_begin(&s->trail_lim)[mark_levels[i]] &= 0x7FFFFFFF; veci_resize(&s->mark_levels,0); } //================================================================================================= // Clause datatype + minor functions: //static inline int var_reason (sat_solver2* s, int v) { return (s->reasons[v]&1) ? 0 : s->reasons[v] >> 1; } //static inline int lit_reason (sat_solver2* s, int l) { return (s->reasons[lit_var(l)&1]) ? 0 : s->reasons[lit_var(l)] >> 1; } //static inline clause* var_unit_clause(sat_solver2* s, int v) { return (s->reasons[v]&1) ? clause2_read(s, s->reasons[v] >> 1) : NULL; } //static inline void var_set_unit_clause(sat_solver2* s, int v, cla i){ assert(i && !s->reasons[v]); s->reasons[v] = (i << 1) | 1; } static inline int var_reason (sat_solver2* s, int v) { return s->reasons[v]; } static inline int lit_reason (sat_solver2* s, int l) { return s->reasons[lit_var(l)]; } static inline clause* var_unit_clause(sat_solver2* s, int v) { return clause2_read(s, s->units[v]); } static inline void var_set_unit_clause(sat_solver2* s, int v, cla i){ assert(v >= 0 && v < s->size && !s->units[v]); s->units[v] = i; s->nUnits++; } #define clause_foreach_var( p, var, i, start ) \ for ( i = start; (i < (int)(p)->size) && ((var) = lit_var((p)->lits[i])); i++ ) //================================================================================================= // Simple helpers: static inline int solver2_dlevel(sat_solver2* s) { return veci_size(&s->trail_lim); } static inline veci* solver2_wlist(sat_solver2* s, lit l) { return &s->wlists[l]; } //================================================================================================= // Proof logging: static inline void proof_chain_start( sat_solver2* s, clause* c ) { if ( s->fProofLogging ) { int ProofId = clause2_proofid(s, c, 0); assert( ProofId > 0 ); veci_resize( &s->temp_proof, 0 ); veci_push( &s->temp_proof, 0 ); veci_push( &s->temp_proof, 0 ); veci_push( &s->temp_proof, ProofId ); } } static inline void proof_chain_resolve( sat_solver2* s, clause* cls, int Var ) { if ( s->fProofLogging ) { clause* c = cls ? cls : var_unit_clause( s, Var ); int ProofId = clause2_proofid(s, c, var_is_partA(s,Var)); assert( ProofId > 0 ); veci_push( &s->temp_proof, ProofId ); } } static inline int proof_chain_stop( sat_solver2* s ) { if ( s->fProofLogging ) { extern void Proof_ClauseSetEnts( Vec_Set_t* p, int h, int nEnts ); int h = Vec_SetAppend( &s->Proofs, veci_begin(&s->temp_proof), veci_size(&s->temp_proof) ); Proof_ClauseSetEnts( &s->Proofs, h, veci_size(&s->temp_proof) - 2 ); return h; } return 0; } //================================================================================================= // Variable order functions: static inline void order_update(sat_solver2* s, int v) // updateorder { int* orderpos = s->orderpos; int* heap = veci_begin(&s->order); int i = orderpos[v]; int x = heap[i]; int parent = (i - 1) / 2; assert(s->orderpos[v] != -1); while (i != 0 && s->activity[x] > s->activity[heap[parent]]){ heap[i] = heap[parent]; orderpos[heap[i]] = i; i = parent; parent = (i - 1) / 2; } heap[i] = x; orderpos[x] = i; } static inline void order_assigned(sat_solver2* s, int v) { } static inline void order_unassigned(sat_solver2* s, int v) // undoorder { int* orderpos = s->orderpos; if (orderpos[v] == -1){ orderpos[v] = veci_size(&s->order); veci_push(&s->order,v); order_update(s,v); } } static inline int order_select(sat_solver2* s, float random_var_freq) // selectvar { int* heap = veci_begin(&s->order); int* orderpos = s->orderpos; // Random decision: if (drand(&s->random_seed) < random_var_freq){ int next = irand(&s->random_seed,s->size); assert(next >= 0 && next < s->size); if (var_value(s, next) == varX) return next; } // Activity based decision: while (veci_size(&s->order) > 0){ int next = heap[0]; int size = veci_size(&s->order)-1; int x = heap[size]; veci_resize(&s->order,size); orderpos[next] = -1; if (size > 0){ unsigned act = s->activity[x]; int i = 0; int child = 1; while (child < size){ if (child+1 < size && s->activity[heap[child]] < s->activity[heap[child+1]]) child++; assert(child < size); if (act >= s->activity[heap[child]]) break; heap[i] = heap[child]; orderpos[heap[i]] = i; i = child; child = 2 * child + 1; } heap[i] = x; orderpos[heap[i]] = i; } if (var_value(s, next) == varX) return next; } return var_Undef; } //================================================================================================= // Activity functions: #ifdef USE_FLOAT_ACTIVITY2 static inline void act_var_rescale(sat_solver2* s) { double* activity = s->activity; int i; for (i = 0; i < s->size; i++) activity[i] *= 1e-100; s->var_inc *= 1e-100; } static inline void act_clause2_rescale(sat_solver2* s) { static clock_t Total = 0; float * act_clas = (float *)veci_begin(&s->act_clas); int i; clock_t clk = clock(); for (i = 0; i < veci_size(&s->act_clas); i++) act_clas[i] *= (float)1e-20; s->cla_inc *= (float)1e-20; Total += clock() - clk; Abc_Print(1, "Rescaling... Cla inc = %10.3f Conf = %10d ", s->cla_inc, s->stats.conflicts ); Abc_PrintTime( 1, "Time", Total ); } static inline void act_var_bump(sat_solver2* s, int v) { s->activity[v] += s->var_inc; if (s->activity[v] > 1e100) act_var_rescale(s); if (s->orderpos[v] != -1) order_update(s,v); } static inline void act_clause2_bump(sat_solver2* s, clause*c) { float * act_clas = (float *)veci_begin(&s->act_clas); assert( c->Id < veci_size(&s->act_clas) ); act_clas[c->Id] += s->cla_inc; if (act_clas[c->Id] > (float)1e20) act_clause2_rescale(s); } static inline void act_var_decay(sat_solver2* s) { s->var_inc *= s->var_decay; } static inline void act_clause2_decay(sat_solver2* s) { s->cla_inc *= s->cla_decay; } #else static inline void act_var_rescale(sat_solver2* s) { unsigned* activity = s->activity; int i; for (i = 0; i < s->size; i++) activity[i] >>= 19; s->var_inc >>= 19; s->var_inc = Abc_MaxInt( s->var_inc, (1<<4) ); } static inline void act_clause2_rescale(sat_solver2* s) { // static clock_t Total = 0; // clock_t clk = clock(); int i; unsigned * act_clas = (unsigned *)veci_begin(&s->act_clas); for (i = 0; i < veci_size(&s->act_clas); i++) act_clas[i] >>= 14; s->cla_inc >>= 14; s->cla_inc = Abc_MaxInt( s->cla_inc, (1<<10) ); // Total += clock() - clk; // Abc_Print(1, "Rescaling... Cla inc = %5d Conf = %10d ", s->cla_inc, s->stats.conflicts ); // Abc_PrintTime( 1, "Time", Total ); } static inline void act_var_bump(sat_solver2* s, int v) { s->activity[v] += s->var_inc; if (s->activity[v] & 0x80000000) act_var_rescale(s); if (s->orderpos[v] != -1) order_update(s,v); } static inline void act_clause2_bump(sat_solver2* s, clause*c) { unsigned * act_clas = (unsigned *)veci_begin(&s->act_clas); int Id = clause_id(c); assert( Id >= 0 && Id < veci_size(&s->act_clas) ); act_clas[Id] += s->cla_inc; if (act_clas[Id] & 0x80000000) act_clause2_rescale(s); } static inline void act_var_decay(sat_solver2* s) { s->var_inc += (s->var_inc >> 4); } static inline void act_clause2_decay(sat_solver2* s) { s->cla_inc += (s->cla_inc >> 10); } #endif //================================================================================================= // Clause functions: static inline int sat_clause_compute_lbd( sat_solver2* s, clause* c ) { int i, lev, minl = 0, lbd = 0; for (i = 0; i < (int)c->size; i++) { lev = var_level(s, lit_var(c->lits[i])); if ( !(minl & (1 << (lev & 31))) ) { minl |= 1 << (lev & 31); lbd++; } } return lbd; } static int clause2_create_new(sat_solver2* s, lit* begin, lit* end, int learnt, int proof_id) { clause* c; int h, size = end - begin; assert(size < 1 || begin[0] >= 0); assert(size < 2 || begin[1] >= 0); assert(size < 1 || lit_var(begin[0]) < s->size); assert(size < 2 || lit_var(begin[1]) < s->size); // create new clause h = Sat_MemAppend( &s->Mem, begin, size, learnt, 1 ); assert( !(h & 1) ); c = clause2_read( s, h ); if (learnt) { if ( s->fProofLogging ) assert( proof_id ); c->lbd = sat_clause_compute_lbd( s, c ); assert( clause_id(c) == veci_size(&s->act_clas) ); if ( proof_id ) veci_push(&s->claProofs, proof_id); // veci_push(&s->act_clas, (1<<10)); veci_push(&s->act_clas, 0); if ( size > 2 ) act_clause2_bump( s,c ); s->stats.learnts++; s->stats.learnts_literals += size; // remember the last one s->hLearntLast = h; } else { assert( clause_id(c) == (int)s->stats.clauses ); s->stats.clauses++; s->stats.clauses_literals += size; } // watch the clause if ( size > 1 ) { veci_push(solver2_wlist(s,lit_neg(begin[0])),h); veci_push(solver2_wlist(s,lit_neg(begin[1])),h); } return h; } //================================================================================================= // Minor (solver) functions: static inline int solver2_enqueue(sat_solver2* s, lit l, cla from) { int v = lit_var(l); #ifdef VERBOSEDEBUG Abc_Print(1,L_IND"enqueue("L_LIT")\n", L_ind, L_lit(l)); #endif if (var_value(s, v) != varX) return var_value(s, v) == lit_sign(l); else { // New fact -- store it. #ifdef VERBOSEDEBUG Abc_Print(1,L_IND"bind("L_LIT")\n", L_ind, L_lit(l)); #endif var_set_value( s, v, lit_sign(l) ); var_set_level( s, v, solver2_dlevel(s) ); s->reasons[v] = from; // = from << 1; s->trail[s->qtail++] = l; order_assigned(s, v); return true; } } static inline int solver2_assume(sat_solver2* s, lit l) { assert(s->qtail == s->qhead); assert(var_value(s, lit_var(l)) == varX); #ifdef VERBOSEDEBUG Abc_Print(1,L_IND"assume("L_LIT") ", L_ind, L_lit(l)); Abc_Print(1, "act = %.20f\n", s->activity[lit_var(l)] ); #endif veci_push(&s->trail_lim,s->qtail); return solver2_enqueue(s,l,0); } static void solver2_canceluntil(sat_solver2* s, int level) { int bound; int lastLev; int c, x; if (solver2_dlevel(s) <= level) return; assert( solver2_dlevel(s) > 0 ); bound = (veci_begin(&s->trail_lim))[level]; lastLev = (veci_begin(&s->trail_lim))[veci_size(&s->trail_lim)-1]; for (c = s->qtail-1; c >= bound; c--) { x = lit_var(s->trail[c]); var_set_value(s, x, varX); s->reasons[x] = 0; s->units[x] = 0; // temporary? if ( c < lastLev ) var_set_polar(s, x, !lit_sign(s->trail[c])); } for (c = s->qhead-1; c >= bound; c--) order_unassigned(s,lit_var(s->trail[c])); s->qhead = s->qtail = bound; veci_resize(&s->trail_lim,level); } static void solver2_canceluntil_rollback(sat_solver2* s, int NewBound) { int c, x; assert( solver2_dlevel(s) == 0 ); assert( s->qtail == s->qhead ); assert( s->qtail >= NewBound ); for (c = s->qtail-1; c >= NewBound; c--) { x = lit_var(s->trail[c]); var_set_value(s, x, varX); s->reasons[x] = 0; s->units[x] = 0; // temporary? } for (c = s->qhead-1; c >= NewBound; c--) order_unassigned(s,lit_var(s->trail[c])); s->qhead = s->qtail = NewBound; } static void solver2_record(sat_solver2* s, veci* cls, int proof_id) { lit* begin = veci_begin(cls); lit* end = begin + veci_size(cls); cla Cid = clause2_create_new(s,begin,end,1, proof_id); assert(veci_size(cls) > 0); if ( veci_size(cls) == 1 ) { if ( s->fProofLogging ) var_set_unit_clause(s, lit_var(begin[0]), Cid); Cid = 0; } solver2_enqueue(s, begin[0], Cid); } static double solver2_progress(sat_solver2* s) { int i; double progress = 0.0, F = 1.0 / s->size; for (i = 0; i < s->size; i++) if (var_value(s, i) != varX) progress += pow(F, var_level(s, i)); return progress / s->size; } //================================================================================================= // Major methods: /*_________________________________________________________________________________________________ | | analyzeFinal : (p : Lit) -> [void] | | Description: | Specialized analysis procedure to express the final conflict in terms of assumptions. | Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and | stores the result in 'out_conflict'. |________________________________________________________________________________________________@*/ /* void Solver::analyzeFinal(clause* confl, bool skip_first) { // -- NOTE! This code is relatively untested. Please report bugs! conflict.clear(); if (root_level == 0) return; vec& seen = analyze_seen; for (int i = skip_first ? 1 : 0; i < confl->size(); i++){ Var x = var((*confl)[i]); if (level[x] > 0) seen[x] = 1; } int start = (root_level >= trail_lim.size()) ? trail.size()-1 : trail_lim[root_level]; for (int i = start; i >= trail_lim[0]; i--){ Var x = var(trail[i]); if (seen[x]){ GClause r = reason[x]; if (r == Gclause2_NULL){ assert(level[x] > 0); conflict.push(~trail[i]); }else{ if (r.isLit()){ Lit p = r.lit(); if (level[var(p)] > 0) seen[var(p)] = 1; }else{ Clause& c = *r.clause(); for (int j = 1; j < c.size(); j++) if (level[var(c[j])] > 0) seen[var(c[j])] = 1; } } seen[x] = 0; } } } */ static int solver2_analyze_final(sat_solver2* s, clause* conf, int skip_first) { int i, j, x;//, start; veci_resize(&s->conf_final,0); if ( s->root_level == 0 ) return s->hProofLast; proof_chain_start( s, conf ); assert( veci_size(&s->tagged) == 0 ); clause_foreach_var( conf, x, i, skip_first ){ if ( var_level(s,x) ) var_set_tag(s, x, 1); else proof_chain_resolve( s, NULL, x ); } assert( s->root_level >= veci_size(&s->trail_lim) ); // start = (s->root_level >= veci_size(&s->trail_lim))? s->qtail-1 : (veci_begin(&s->trail_lim))[s->root_level]; for (i = s->qtail-1; i >= (veci_begin(&s->trail_lim))[0]; i--){ x = lit_var(s->trail[i]); if (var_tag(s,x)){ clause* c = clause2_read(s, var_reason(s,x)); if (c){ proof_chain_resolve( s, c, x ); clause_foreach_var( c, x, j, 1 ){ if ( var_level(s,x) ) var_set_tag(s, x, 1); else proof_chain_resolve( s, NULL, x ); } }else { assert( var_level(s,x) ); veci_push(&s->conf_final,lit_neg(s->trail[i])); } } } solver2_clear_tags(s,0); return proof_chain_stop( s ); } static int solver2_lit_removable_rec(sat_solver2* s, int v) { // tag[0]: True if original conflict clause literal. // tag[1]: Processed by this procedure // tag[2]: 0=non-removable, 1=removable clause* c; int i, x; // skip visited if (var_tag(s,v) & 2) return (var_tag(s,v) & 4) > 0; // skip decisions on a wrong level c = clause2_read(s, var_reason(s,v)); if ( c == NULL ){ var_add_tag(s,v,2); return 0; } clause_foreach_var( c, x, i, 1 ){ if (var_tag(s,x) & 1) solver2_lit_removable_rec(s, x); else{ if (var_level(s,x) == 0 || var_tag(s,x) == 6) continue; // -- 'x' checked before, found to be removable (or belongs to the toplevel) if (var_tag(s,x) == 2 || !var_lev_mark(s,x) || !solver2_lit_removable_rec(s, x)) { // -- 'x' checked before, found NOT to be removable, or it belongs to a wrong level, or cannot be removed var_add_tag(s,v,2); return 0; } } } if ( s->fProofLogging && (var_tag(s,v) & 1) ) veci_push(&s->min_lit_order, v ); var_add_tag(s,v,6); return 1; } static int solver2_lit_removable(sat_solver2* s, int x) { clause* c; int i, top; if ( !var_reason(s,x) ) return 0; if ( var_tag(s,x) & 2 ) { assert( var_tag(s,x) & 1 ); return 1; } top = veci_size(&s->tagged); veci_resize(&s->stack,0); veci_push(&s->stack, x << 1); while (veci_size(&s->stack)) { x = veci_pop(&s->stack); if ( s->fProofLogging ){ if ( x & 1 ){ if ( var_tag(s,x >> 1) & 1 ) veci_push(&s->min_lit_order, x >> 1 ); continue; } veci_push(&s->stack, x ^ 1 ); } x >>= 1; c = clause2_read(s, var_reason(s,x)); clause_foreach_var( c, x, i, 1 ){ if (var_tag(s,x) || !var_level(s,x)) continue; if (!var_reason(s,x) || !var_lev_mark(s,x)){ solver2_clear_tags(s, top); return 0; } veci_push(&s->stack, x << 1); var_set_tag(s, x, 2); } } return 1; } static void solver2_logging_order(sat_solver2* s, int x) { clause* c; int i; if ( (var_tag(s,x) & 4) ) return; var_add_tag(s, x, 4); veci_resize(&s->stack,0); veci_push(&s->stack,x << 1); while (veci_size(&s->stack)) { x = veci_pop(&s->stack); if ( x & 1 ){ veci_push(&s->min_step_order, x >> 1 ); continue; } veci_push(&s->stack, x ^ 1 ); x >>= 1; c = clause2_read(s, var_reason(s,x)); // if ( !c ) // Abc_Print(1, "solver2_logging_order(): Error in conflict analysis!!!\n" ); clause_foreach_var( c, x, i, 1 ){ if ( !var_level(s,x) || (var_tag(s,x) & 1) ) continue; veci_push(&s->stack, x << 1); var_add_tag(s, x, 4); } } } static void solver2_logging_order_rec(sat_solver2* s, int x) { clause* c; int i, y; if ( (var_tag(s,x) & 8) ) return; c = clause2_read(s, var_reason(s,x)); clause_foreach_var( c, y, i, 1 ) if ( var_level(s,y) && (var_tag(s,y) & 1) == 0 ) solver2_logging_order_rec(s, y); var_add_tag(s, x, 8); veci_push(&s->min_step_order, x); } static int solver2_analyze(sat_solver2* s, clause* c, veci* learnt) { int cnt = 0; lit p = 0; int x, ind = s->qtail-1; int proof_id = 0; lit* lits,* vars, i, j, k; assert( veci_size(&s->tagged) == 0 ); // tag[0] - visited by conflict analysis (afterwards: literals of the learned clause) // tag[1] - visited by solver2_lit_removable() with success // tag[2] - visited by solver2_logging_order() proof_chain_start( s, c ); veci_push(learnt,lit_Undef); while ( 1 ){ assert(c != 0); if (c->lrn) act_clause2_bump(s,c); clause_foreach_var( c, x, j, (int)(p > 0) ){ assert(x >= 0 && x < s->size); if ( var_tag(s, x) ) continue; if ( var_level(s,x) == 0 ) { proof_chain_resolve( s, NULL, x ); continue; } var_set_tag(s, x, 1); act_var_bump(s,x); if (var_level(s,x) == solver2_dlevel(s)) cnt++; else veci_push(learnt,c->lits[j]); } while (!var_tag(s, lit_var(s->trail[ind--]))); p = s->trail[ind+1]; c = clause2_read(s, lit_reason(s,p)); cnt--; if ( cnt == 0 ) break; proof_chain_resolve( s, c, lit_var(p) ); } *veci_begin(learnt) = lit_neg(p); // mark levels assert( veci_size(&s->mark_levels) == 0 ); lits = veci_begin(learnt); for (i = 1; i < veci_size(learnt); i++) var_lev_set_mark(s, lit_var(lits[i])); // simplify (full) veci_resize(&s->min_lit_order, 0); for (i = j = 1; i < veci_size(learnt); i++){ // if (!solver2_lit_removable( s,lit_var(lits[i]))) if (!solver2_lit_removable_rec(s,lit_var(lits[i]))) // changed to vars!!! lits[j++] = lits[i]; } // record the proof if ( s->fProofLogging ) { // collect additional clauses to resolve veci_resize(&s->min_step_order, 0); vars = veci_begin(&s->min_lit_order); for (i = 0; i < veci_size(&s->min_lit_order); i++) // solver2_logging_order(s, vars[i]); solver2_logging_order_rec(s, vars[i]); // add them in the reverse order vars = veci_begin(&s->min_step_order); for (i = veci_size(&s->min_step_order); i > 0; ) { i--; c = clause2_read(s, var_reason(s,vars[i])); proof_chain_resolve( s, c, vars[i] ); clause_foreach_var(c, x, k, 1) if ( var_level(s,x) == 0 ) proof_chain_resolve( s, NULL, x ); } proof_id = proof_chain_stop( s ); } // unmark levels solver2_clear_marks( s ); // update size of learnt + statistics veci_resize(learnt,j); s->stats.tot_literals += j; // clear tags solver2_clear_tags(s,0); #ifdef DEBUG for (i = 0; i < s->size; i++) assert(!var_tag(s, i)); #endif #ifdef VERBOSEDEBUG Abc_Print(1,L_IND"Learnt {", L_ind); for (i = 0; i < veci_size(learnt); i++) Abc_Print(1," "L_LIT, L_lit(lits[i])); #endif if (veci_size(learnt) > 1){ lit tmp; int max_i = 1; int max = var_level(s, lit_var(lits[1])); for (i = 2; i < veci_size(learnt); i++) if (max < var_level(s, lit_var(lits[i]))) { max = var_level(s, lit_var(lits[i])); max_i = i; } tmp = lits[1]; lits[1] = lits[max_i]; lits[max_i] = tmp; } #ifdef VERBOSEDEBUG { int lev = veci_size(learnt) > 1 ? var_level(s, lit_var(lits[1])) : 0; Abc_Print(1," } at level %d\n", lev); } #endif return proof_id; } clause* solver2_propagate(sat_solver2* s) { clause* c, * confl = NULL; veci* ws; lit* lits, false_lit, p, * stop, * k; cla* begin,* end, *i, *j; int Lit; while (confl == 0 && s->qtail - s->qhead > 0){ p = s->trail[s->qhead++]; ws = solver2_wlist(s,p); begin = (cla*)veci_begin(ws); end = begin + veci_size(ws); s->stats.propagations++; for (i = j = begin; i < end; ){ c = clause2_read(s,*i); lits = c->lits; // Make sure the false literal is data[1]: false_lit = lit_neg(p); if (lits[0] == false_lit){ lits[0] = lits[1]; lits[1] = false_lit; } assert(lits[1] == false_lit); // If 0th watch is true, then clause is already satisfied. if (var_value(s, lit_var(lits[0])) == lit_sign(lits[0])) *j++ = *i; else{ // Look for new watch: stop = lits + c->size; for (k = lits + 2; k < stop; k++){ if (var_value(s, lit_var(*k)) != !lit_sign(*k)){ lits[1] = *k; *k = false_lit; veci_push(solver2_wlist(s,lit_neg(lits[1])),*i); goto WatchFound; } } // Did not find watch -- clause is unit under assignment: Lit = lits[0]; if (s->fProofLogging && solver2_dlevel(s) == 0){ int k, x, proof_id, Cid, Var = lit_var(Lit); int fLitIsFalse = (var_value(s, Var) == !lit_sign(Lit)); // Log production of top-level unit clause: proof_chain_start( s, c ); clause_foreach_var( c, x, k, 1 ){ assert( var_level(s, x) == 0 ); proof_chain_resolve( s, NULL, x ); } proof_id = proof_chain_stop( s ); // get a new clause Cid = clause2_create_new( s, &Lit, &Lit + 1, 1, proof_id ); assert( (var_unit_clause(s, Var) == NULL) != fLitIsFalse ); // if variable already has unit clause, it must be with the other polarity // in this case, we should derive the empty clause here if ( var_unit_clause(s, Var) == NULL ) var_set_unit_clause(s, Var, Cid); else{ // Empty clause derived: proof_chain_start( s, clause2_read(s,Cid) ); proof_chain_resolve( s, NULL, Var ); proof_id = proof_chain_stop( s ); s->hProofLast = proof_id; // clause2_create_new( s, &Lit, &Lit, 1, proof_id ); } } *j++ = *i; // Clause is unit under assignment: if ( c->lrn ) c->lbd = sat_clause_compute_lbd(s, c); if (!solver2_enqueue(s,Lit, *i)){ confl = clause2_read(s,*i++); // Copy the remaining watches: while (i < end) *j++ = *i++; } } WatchFound: i++; } s->stats.inspects += j - (int*)veci_begin(ws); veci_resize(ws,j - (int*)veci_begin(ws)); } return confl; } int sat_solver2_simplify(sat_solver2* s) { assert(solver2_dlevel(s) == 0); return (solver2_propagate(s) == NULL); } static lbool solver2_search(sat_solver2* s, ABC_INT64_T nof_conflicts) { double random_var_freq = s->fNotUseRandom ? 0.0 : 0.02; ABC_INT64_T conflictC = 0; veci learnt_clause; int proof_id; assert(s->root_level == solver2_dlevel(s)); s->stats.starts++; // s->var_decay = (float)(1 / 0.95 ); // s->cla_decay = (float)(1 / 0.999); veci_new(&learnt_clause); for (;;){ clause* confl = solver2_propagate(s); if (confl != 0){ // CONFLICT int blevel; #ifdef VERBOSEDEBUG Abc_Print(1,L_IND"**CONFLICT**\n", L_ind); #endif s->stats.conflicts++; conflictC++; if (solver2_dlevel(s) <= s->root_level){ proof_id = solver2_analyze_final(s, confl, 0); assert( proof_id > 0 ); s->hProofLast = proof_id; veci_delete(&learnt_clause); return l_False; } veci_resize(&learnt_clause,0); proof_id = solver2_analyze(s, confl, &learnt_clause); blevel = veci_size(&learnt_clause) > 1 ? var_level(s, lit_var(veci_begin(&learnt_clause)[1])) : s->root_level; blevel = s->root_level > blevel ? s->root_level : blevel; solver2_canceluntil(s,blevel); solver2_record(s,&learnt_clause, proof_id); // if (learnt_clause.size() == 1) level[var(learnt_clause[0])] = 0; // (this is ugly (but needed for 'analyzeFinal()') -- in future versions, we will backtrack past the 'root_level' and redo the assumptions) if ( learnt_clause.size == 1 ) var_set_level( s, lit_var(learnt_clause.ptr[0]), 0 ); act_var_decay(s); act_clause2_decay(s); }else{ // NO CONFLICT int next; if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: s->progress_estimate = solver2_progress(s); solver2_canceluntil(s,s->root_level); veci_delete(&learnt_clause); return l_Undef; } if ( (s->nConfLimit && s->stats.conflicts > s->nConfLimit) || // (s->nInsLimit && s->stats.inspects > s->nInsLimit) ) (s->nInsLimit && s->stats.propagations > s->nInsLimit) ) { // Reached bound on number of conflicts: s->progress_estimate = solver2_progress(s); solver2_canceluntil(s,s->root_level); veci_delete(&learnt_clause); return l_Undef; } // if (solver2_dlevel(s) == 0 && !s->fSkipSimplify) // Simplify the set of problem clauses: // sat_solver2_simplify(s); // Reduce the set of learnt clauses: // if (s->nLearntMax > 0 && s->stats.learnts >= (unsigned)s->nLearntMax) // sat_solver2_reducedb(s); // New variable decision: s->stats.decisions++; next = order_select(s,(float)random_var_freq); if (next == var_Undef){ // Model found: int i; for (i = 0; i < s->size; i++) { assert( var_value(s,i) != varX ); s->model[i] = (var_value(s,i)==var1 ? l_True : l_False); } solver2_canceluntil(s,s->root_level); veci_delete(&learnt_clause); return l_True; } if ( var_polar(s, next) ) // positive polarity solver2_assume(s,toLit(next)); else solver2_assume(s,lit_neg(toLit(next))); } } return l_Undef; // cannot happen } //================================================================================================= // External solver functions: sat_solver2* sat_solver2_new(void) { sat_solver2* s = (sat_solver2 *)ABC_CALLOC( char, sizeof(sat_solver2) ); #ifdef USE_FLOAT_ACTIVITY2 s->var_inc = 1; s->cla_inc = 1; s->var_decay = (float)(1 / 0.95 ); s->cla_decay = (float)(1 / 0.999 ); // s->cla_decay = 1; // s->var_decay = 1; #else s->var_inc = (1 << 5); s->cla_inc = (1 << 11); #endif s->random_seed = 91648253; #ifdef SAT_USE_PROOF_LOGGING s->fProofLogging = 1; #else s->fProofLogging = 0; #endif s->fSkipSimplify = 1; s->fNotUseRandom = 0; s->fVerbose = 0; s->nLearntStart = LEARNT_MAX_START_DEFAULT; // starting learned clause limit s->nLearntDelta = LEARNT_MAX_INCRE_DEFAULT; // delta of learned clause limit s->nLearntRatio = LEARNT_MAX_RATIO_DEFAULT; // ratio of learned clause limit s->nLearntMax = s->nLearntStart; // initialize vectors veci_new(&s->order); veci_new(&s->trail_lim); veci_new(&s->tagged); veci_new(&s->stack); veci_new(&s->temp_clause); veci_new(&s->temp_proof); veci_new(&s->conf_final); veci_new(&s->mark_levels); veci_new(&s->min_lit_order); veci_new(&s->min_step_order); // veci_new(&s->learnt_live); Sat_MemAlloc_( &s->Mem, 14 ); veci_new(&s->act_clas); veci_new(&s->claProofs); if ( s->fProofLogging ) Vec_SetAlloc_( &s->Proofs, 20 ); // initialize clause pointers s->hLearntLast = -1; // the last learnt clause s->hProofLast = -1; // the last proof ID // initialize rollback s->iVarPivot = 0; // the pivot for variables s->iTrailPivot = 0; // the pivot for trail s->hProofPivot = 1; // the pivot for proof records return s; } void sat_solver2_setnvars(sat_solver2* s,int n) { int var; if (s->cap < n){ int old_cap = s->cap; while (s->cap < n) s->cap = s->cap*2+1; s->wlists = ABC_REALLOC(veci, s->wlists, s->cap*2); s->vi = ABC_REALLOC(varinfo2, s->vi, s->cap); s->levels = ABC_REALLOC(int, s->levels, s->cap); s->assigns = ABC_REALLOC(char, s->assigns, s->cap); s->trail = ABC_REALLOC(lit, s->trail, s->cap); s->orderpos = ABC_REALLOC(int, s->orderpos, s->cap); s->reasons = ABC_REALLOC(cla, s->reasons, s->cap); if ( s->fProofLogging ) s->units = ABC_REALLOC(cla, s->units, s->cap); #ifdef USE_FLOAT_ACTIVITY2 s->activity = ABC_REALLOC(double, s->activity, s->cap); #else s->activity = ABC_REALLOC(unsigned, s->activity, s->cap); #endif s->model = ABC_REALLOC(int, s->model, s->cap); memset( s->wlists + 2*old_cap, 0, 2*(s->cap-old_cap)*sizeof(vecp) ); } for (var = s->size; var < n; var++){ assert(!s->wlists[2*var].size); assert(!s->wlists[2*var+1].size); if ( s->wlists[2*var].ptr == NULL ) veci_new(&s->wlists[2*var]); if ( s->wlists[2*var+1].ptr == NULL ) veci_new(&s->wlists[2*var+1]); *((int*)s->vi + var) = 0; //s->vi[var].val = varX; s->levels [var] = 0; s->assigns [var] = varX; s->reasons [var] = 0; if ( s->fProofLogging ) s->units [var] = 0; #ifdef USE_FLOAT_ACTIVITY2 s->activity[var] = 0; #else s->activity[var] = (1<<10); #endif s->model [var] = 0; // does not hold because variables enqueued at top level will not be reinserted in the heap // assert(veci_size(&s->order) == var); s->orderpos[var] = veci_size(&s->order); veci_push(&s->order,var); order_update(s, var); } s->size = n > s->size ? n : s->size; } void sat_solver2_delete(sat_solver2* s) { int fVerify = 0; if ( fVerify ) { veci * pCore = (veci *)Sat_ProofCore( s ); // Abc_Print(1, "UNSAT core contains %d clauses (%6.2f %%).\n", veci_size(pCore), 100.0*veci_size(pCore)/veci_size(&s->clauses) ); veci_delete( pCore ); ABC_FREE( pCore ); // if ( s->fProofLogging ) // Sat_ProofCheck( s ); } // report statistics // Abc_Print(1, "Used %6.2f MB for proof-logging. Unit clauses = %d.\n", 1.0 * Vec_ReportMemory(&s->Proofs) / (1<<20), s->nUnits ); // delete vectors veci_delete(&s->order); veci_delete(&s->trail_lim); veci_delete(&s->tagged); veci_delete(&s->stack); veci_delete(&s->temp_clause); veci_delete(&s->temp_proof); veci_delete(&s->conf_final); veci_delete(&s->mark_levels); veci_delete(&s->min_lit_order); veci_delete(&s->min_step_order); // veci_delete(&s->learnt_live); veci_delete(&s->act_clas); veci_delete(&s->claProofs); // veci_delete(&s->clauses); // veci_delete(&s->lrns); Sat_MemFree_( &s->Mem ); // veci_delete(&s->proofs); Vec_SetFree_( &s->Proofs ); // delete arrays if (s->vi != 0){ int i; if ( s->wlists ) for (i = 0; i < s->cap*2; i++) veci_delete(&s->wlists[i]); ABC_FREE(s->wlists ); ABC_FREE(s->vi ); ABC_FREE(s->levels ); ABC_FREE(s->assigns ); ABC_FREE(s->trail ); ABC_FREE(s->orderpos ); ABC_FREE(s->reasons ); ABC_FREE(s->units ); ABC_FREE(s->activity ); ABC_FREE(s->model ); } ABC_FREE(s); // Abc_PrintTime( 1, "Time", Time ); } int sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end) { cla Cid; lit *i,*j,*iFree = NULL; int maxvar, count, temp; assert( solver2_dlevel(s) == 0 ); assert( begin < end ); // copy clause into storage veci_resize( &s->temp_clause, 0 ); for ( i = begin; i < end; i++ ) veci_push( &s->temp_clause, *i ); begin = veci_begin( &s->temp_clause ); end = begin + veci_size( &s->temp_clause ); // insertion sort maxvar = lit_var(*begin); for (i = begin + 1; i < end; i++){ lit l = *i; maxvar = lit_var(l) > maxvar ? lit_var(l) : maxvar; for (j = i; j > begin && *(j-1) > l; j--) *j = *(j-1); *j = l; } sat_solver2_setnvars(s,maxvar+1); // coount the number of 0-literals count = 0; for ( i = begin; i < end; i++ ) { // make sure all literals are unique assert( i == begin || lit_var(*(i-1)) != lit_var(*i) ); // consider the value of this literal if ( var_value(s, lit_var(*i)) == lit_sign(*i) ) // this clause is always true return clause2_create_new( s, begin, end, 0, 0 ); // add it anyway, to preserve proper clause count if ( var_value(s, lit_var(*i)) == varX ) // unassigned literal iFree = i; else count++; // literal is 0 } assert( count < end-begin ); // the clause cannot be UNSAT // swap variables to make sure the clause is watched using unassigned variable temp = *iFree; *iFree = *begin; *begin = temp; // create a new clause Cid = clause2_create_new( s, begin, end, 0, 0 ); // handle unit clause if ( count+1 == end-begin ) { if ( s->fProofLogging ) { if ( count == 0 ) // original learned clause { var_set_unit_clause( s, lit_var(begin[0]), Cid ); if ( !solver2_enqueue(s,begin[0],0) ) assert( 0 ); } else { // Log production of top-level unit clause: int x, k, proof_id, CidNew; clause* c = clause2_read(s, Cid); proof_chain_start( s, c ); clause_foreach_var( c, x, k, 1 ) proof_chain_resolve( s, NULL, x ); proof_id = proof_chain_stop( s ); // generate a new clause CidNew = clause2_create_new( s, begin, begin+1, 1, proof_id ); var_set_unit_clause( s, lit_var(begin[0]), CidNew ); if ( !solver2_enqueue(s,begin[0],Cid) ) assert( 0 ); } } } return Cid; } double luby2(double y, int x) { int size, seq; for (size = 1, seq = 0; size < x+1; seq++, size = 2*size + 1); while (size-1 != x){ size = (size-1) >> 1; seq--; x = x % size; } return pow(y, (double)seq); } void luby2_test() { int i; for ( i = 0; i < 20; i++ ) Abc_Print(1, "%d ", (int)luby2(2,i) ); Abc_Print(1, "\n" ); } // updates clauses, watches, units, and proof void sat_solver2_reducedb(sat_solver2* s) { static clock_t TimeTotal = 0; Sat_Mem_t * pMem = &s->Mem; clause * c; int nLearnedOld = veci_size(&s->act_clas); int * act_clas = veci_begin(&s->act_clas); int * pPerm, * pSortValues, nCutoffValue, * pClaProofs; int i, j, k, Id, nSelected, LastSize = 0; int Counter, CounterStart; clock_t clk = clock(); static int Count = 0; Count++; assert( s->nLearntMax ); s->nDBreduces++; // printf( "Calling reduceDB with %d clause limit and parameters (%d %d %d).\n", s->nLearntMax, s->nLearntStart, s->nLearntDelta, s->nLearntRatio ); /* // find the new limit s->nLearntMax = s->nLearntMax * 11 / 10; // preserve 1/10 of last clauses CounterStart = s->stats.learnts - (s->nLearntMax / 10); // preserve 1/10 of most active clauses pSortValues = veci_begin(&s->act_clas); pPerm = Abc_MergeSortCost( pSortValues, nLearnedOld ); assert( pSortValues[pPerm[0]] <= pSortValues[pPerm[nLearnedOld-1]] ); nCutoffValue = pSortValues[pPerm[nLearnedOld*9/10]]; ABC_FREE( pPerm ); // nCutoffValue = ABC_INFINITY; */ // find the new limit s->nLearntMax = s->nLearntStart + s->nLearntDelta * s->nDBreduces; // preserve 1/20 of last clauses CounterStart = nLearnedOld - (s->nLearntMax / 20); // preserve 3/4 of most active clauses nSelected = nLearnedOld*s->nLearntRatio/100; // create sorting values pSortValues = ABC_ALLOC( int, nLearnedOld ); Sat_MemForEachLearned( pMem, c, i, k ) { Id = clause_id(c); pSortValues[Id] = (((7 - Abc_MinInt(c->lbd, 7)) << 28) | (act_clas[Id] >> 4)); // pSortValues[Id] = act_clas[Id]; assert( pSortValues[Id] >= 0 ); } // find non-decreasing permutation pPerm = Abc_MergeSortCost( pSortValues, nLearnedOld ); assert( pSortValues[pPerm[0]] <= pSortValues[pPerm[nLearnedOld-1]] ); nCutoffValue = pSortValues[pPerm[nLearnedOld-nSelected]]; ABC_FREE( pPerm ); // nCutoffValue = ABC_INFINITY; // count how many clauses satisfy the condition Counter = j = 0; Sat_MemForEachLearned( pMem, c, i, k ) { assert( c->mark == 0 ); if ( Counter++ > CounterStart || clause_size(c) < 2 || pSortValues[clause_id(c)] >= nCutoffValue || s->reasons[lit_var(c->lits[0])] == Sat_MemHand(pMem, i, k) ) { } else j++; if ( j >= nLearnedOld / 6 ) break; } if ( j < nLearnedOld / 6 ) return; // mark learned clauses to remove Counter = j = 0; pClaProofs = s->fProofLogging ? veci_begin(&s->claProofs) : NULL; Sat_MemForEachLearned( pMem, c, i, k ) { assert( c->mark == 0 ); if ( Counter++ > CounterStart || clause_size(c) < 2 || pSortValues[clause_id(c)] >= nCutoffValue || s->reasons[lit_var(c->lits[0])] == Sat_MemHand(pMem, i, k) ) { pSortValues[j] = pSortValues[clause_id(c)]; if ( pClaProofs ) pClaProofs[j] = pClaProofs[clause_id(c)]; j++; } else // delete { c->mark = 1; s->stats.learnts_literals -= clause_size(c); s->stats.learnts--; } } // if ( j == nLearnedOld ) // return; assert( s->stats.learnts == (unsigned)j ); assert( Counter == nLearnedOld ); veci_resize(&s->act_clas,j); if ( s->fProofLogging ) veci_resize(&s->claProofs,j); // update ID of each clause to be its new handle Counter = Sat_MemCompactLearned( pMem, 0 ); assert( Counter == (int)s->stats.learnts ); // update reasons for ( i = 0; i < s->size; i++ ) { if ( !s->reasons[i] ) // no reason continue; if ( clause_is_lit(s->reasons[i]) ) // 2-lit clause continue; if ( !clause_learnt_h(pMem, s->reasons[i]) ) // problem clause continue; c = clause2_read( s, s->reasons[i] ); assert( c->mark == 0 ); s->reasons[i] = clause_id(c); // updating handle here!!! } // update watches for ( i = 0; i < s->size*2; i++ ) { int * pArray = veci_begin(&s->wlists[i]); for ( j = k = 0; k < veci_size(&s->wlists[i]); k++ ) { if ( clause_is_lit(pArray[k]) ) // 2-lit clause pArray[j++] = pArray[k]; else if ( !clause_learnt_h(pMem, pArray[k]) ) // problem clause pArray[j++] = pArray[k]; else { c = clause2_read(s, pArray[k]); if ( !c->mark ) // useful learned clause pArray[j++] = clause_id(c); // updating handle here!!! } } veci_resize(&s->wlists[i],j); } // compact units if ( s->fProofLogging ) for ( i = 0; i < s->size; i++ ) if ( s->units[i] && clause_learnt_h(pMem, s->units[i]) ) { c = clause2_read( s, s->units[i] ); assert( c->mark == 0 ); s->units[i] = clause_id(c); } // perform final move of the clauses Counter = Sat_MemCompactLearned( pMem, 1 ); assert( Counter == (int)s->stats.learnts ); // compact proof (compacts 'proofs' and update 'claProofs') if ( s->fProofLogging ) s->hProofPivot = Sat_ProofReduce( &s->Proofs, &s->claProofs, s->hProofPivot ); // report the results TimeTotal += clock() - clk; if ( s->fVerbose ) { Abc_Print(1, "reduceDB: Keeping %7d out of %7d clauses (%5.2f %%) ", s->stats.learnts, nLearnedOld, 100.0 * s->stats.learnts / nLearnedOld ); Abc_PrintTime( 1, "Time", TimeTotal ); } } // reverses to the previously bookmarked point void sat_solver2_rollback( sat_solver2* s ) { Sat_Mem_t * pMem = &s->Mem; int i, k, j; static int Count = 0; Count++; assert( s->iVarPivot >= 0 && s->iVarPivot <= s->size ); assert( s->iTrailPivot >= 0 && s->iTrailPivot <= s->qtail ); assert( s->hProofPivot >= 1 && s->hProofPivot <= Vec_SetHandCurrent(&s->Proofs) ); // reset implication queue solver2_canceluntil_rollback( s, s->iTrailPivot ); // update order if ( s->iVarPivot < s->size ) { veci_resize(&s->order, 0); for ( i = 0; i < s->iVarPivot; i++ ) { if ( var_value(s, i) != varX ) continue; s->orderpos[i] = veci_size(&s->order); veci_push(&s->order,i); order_update(s, i); } } // compact watches for ( i = 0; i < s->iVarPivot*2; i++ ) { cla* pArray = veci_begin(&s->wlists[i]); for ( j = k = 0; k < veci_size(&s->wlists[i]); k++ ) if ( Sat_MemClauseUsed(pMem, pArray[k]) ) pArray[j++] = pArray[k]; veci_resize(&s->wlists[i],j); } // reset watcher lists for ( i = 2*s->iVarPivot; i < 2*s->size; i++ ) s->wlists[i].size = 0; // reset clause counts s->stats.clauses = pMem->BookMarkE[0]; s->stats.learnts = pMem->BookMarkE[1]; // rollback clauses Sat_MemRollBack( pMem ); // resize learned arrays veci_resize(&s->act_clas, s->stats.learnts); if ( s->fProofLogging ) { veci_resize(&s->claProofs, s->stats.learnts); Vec_SetShrink(&s->Proofs, s->hProofPivot); // past bug here // Sat_ProofReduce( &s->Proofs, &s->claProofs, s->hProofPivot ); } // initialize other vars s->size = s->iVarPivot; if ( s->size == 0 ) { // s->size = 0; // s->cap = 0; s->qhead = 0; s->qtail = 0; #ifdef USE_FLOAT_ACTIVITY s->var_inc = 1; s->cla_inc = 1; s->var_decay = (float)(1 / 0.95 ); s->cla_decay = (float)(1 / 0.999 ); #else s->var_inc = (1 << 5); s->cla_inc = (1 << 11); #endif s->root_level = 0; s->random_seed = 91648253; s->progress_estimate = 0; s->verbosity = 0; s->stats.starts = 0; s->stats.decisions = 0; s->stats.propagations = 0; s->stats.inspects = 0; s->stats.conflicts = 0; s->stats.clauses = 0; s->stats.clauses_literals = 0; s->stats.learnts = 0; s->stats.learnts_literals = 0; s->stats.tot_literals = 0; // initialize clause pointers s->hLearntLast = -1; // the last learnt clause s->hProofLast = -1; // the last proof ID // initialize rollback s->iVarPivot = 0; // the pivot for variables s->iTrailPivot = 0; // the pivot for trail s->hProofPivot = 1; // the pivot for proof records } } // returns memory in bytes used by the SAT solver double sat_solver2_memory( sat_solver2* s, int fAll ) { int i; double Mem = sizeof(sat_solver2); if ( fAll ) for (i = 0; i < s->cap*2; i++) Mem += s->wlists[i].cap * sizeof(int); Mem += s->cap * sizeof(veci); // ABC_FREE(s->wlists ); Mem += s->act_clas.cap * sizeof(int); Mem += s->claProofs.cap * sizeof(int); // Mem += s->cap * sizeof(char); // ABC_FREE(s->polarity ); // Mem += s->cap * sizeof(char); // ABC_FREE(s->tags ); Mem += s->cap * sizeof(varinfo2); // ABC_FREE(s->vi ); Mem += s->cap * sizeof(int); // ABC_FREE(s->levels ); Mem += s->cap * sizeof(char); // ABC_FREE(s->assigns ); #ifdef USE_FLOAT_ACTIVITY Mem += s->cap * sizeof(double); // ABC_FREE(s->activity ); #else Mem += s->cap * sizeof(unsigned); // ABC_FREE(s->activity ); #endif // if ( s->factors ) // Mem += s->cap * sizeof(double); // ABC_FREE(s->factors ); Mem += s->cap * sizeof(lit); // ABC_FREE(s->trail ); Mem += s->cap * sizeof(int); // ABC_FREE(s->orderpos ); Mem += s->cap * sizeof(int); // ABC_FREE(s->reasons ); Mem += s->cap * sizeof(int); // ABC_FREE(s->units ); Mem += s->cap * sizeof(int); // ABC_FREE(s->model ); Mem += s->tagged.cap * sizeof(int); Mem += s->stack.cap * sizeof(int); Mem += s->order.cap * sizeof(int); Mem += s->trail_lim.cap * sizeof(int); Mem += s->temp_clause.cap * sizeof(int); Mem += s->conf_final.cap * sizeof(int); Mem += s->mark_levels.cap * sizeof(int); Mem += s->min_lit_order.cap * sizeof(int); Mem += s->min_step_order.cap * sizeof(int); Mem += s->temp_proof.cap * sizeof(int); Mem += Sat_MemMemoryAll( &s->Mem ); // Mem += Vec_ReportMemory( &s->Proofs ); return Mem; } double sat_solver2_memory_proof( sat_solver2* s ) { return Vec_ReportMemory( &s->Proofs ); } // find the clause in the watcher lists /* int sat_solver2_find_clause( sat_solver2* s, int Hand, int fVerbose ) { int i, k, Found = 0; if ( Hand >= s->clauses.size ) return 1; for ( i = 0; i < s->size*2; i++ ) { cla* pArray = veci_begin(&s->wlists[i]); for ( k = 0; k < veci_size(&s->wlists[i]); k++ ) if ( (pArray[k] >> 1) == Hand ) { if ( fVerbose ) Abc_Print(1, "Clause found in list %d at position %d.\n", i, k ); Found = 1; break; } } if ( Found == 0 ) { if ( fVerbose ) Abc_Print(1, "Clause with handle %d is not found.\n", Hand ); } return Found; } */ /* // verify that all problem clauses are satisfied void sat_solver2_verify( sat_solver2* s ) { clause * c; int i, k, v, Counter = 0; clause_foreach_entry( &s->clauses, c, i, 1 ) { for ( k = 0; k < (int)c->size; k++ ) { v = lit_var(c->lits[k]); if ( sat_solver2_var_value(s, v) ^ lit_sign(c->lits[k]) ) break; } if ( k == (int)c->size ) { Abc_Print(1, "Clause %d is not satisfied. ", c->Id ); clause_print( c ); sat_solver2_find_clause( s, clause_handle(&s->clauses, c), 1 ); Counter++; } } if ( Counter != 0 ) Abc_Print(1, "Verification failed!\n" ); // else // Abc_Print(1, "Verification passed.\n" ); } */ int sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal) { int restart_iter = 0; ABC_INT64_T nof_conflicts; lbool status = l_Undef; int proof_id; lit * i; s->hLearntLast = -1; s->hProofLast = -1; // set the external limits // s->nCalls++; // s->nRestarts = 0; s->nConfLimit = 0; s->nInsLimit = 0; if ( nConfLimit ) s->nConfLimit = s->stats.conflicts + nConfLimit; if ( nInsLimit ) // s->nInsLimit = s->stats.inspects + nInsLimit; s->nInsLimit = s->stats.propagations + nInsLimit; if ( nConfLimitGlobal && (s->nConfLimit == 0 || s->nConfLimit > nConfLimitGlobal) ) s->nConfLimit = nConfLimitGlobal; if ( nInsLimitGlobal && (s->nInsLimit == 0 || s->nInsLimit > nInsLimitGlobal) ) s->nInsLimit = nInsLimitGlobal; /* // Perform assumptions: root_level = assumps.size(); for (int i = 0; i < assumps.size(); i++){ Lit p = assumps[i]; assert(var(p) < nVars()); if (!solver2_assume(p)){ GClause r = reason[var(p)]; if (r != Gclause2_NULL){ clause* confl; if (r.isLit()){ confl = propagate_tmpbin; (*confl)[1] = ~p; (*confl)[0] = r.lit(); }else confl = r.clause(); analyzeFinal(confl, true); conflict.push(~p); }else conflict.clear(), conflict.push(~p); cancelUntil(0); return false; } clause* confl = propagate(); if (confl != NULL){ analyzeFinal(confl), assert(conflict.size() > 0); cancelUntil(0); return false; } } assert(root_level == decisionLevel()); */ // Perform assumptions: s->root_level = end - begin; for ( i = begin; i < end; i++ ) { lit p = *i; assert(lit_var(p) < s->size); veci_push(&s->trail_lim,s->qtail); if (!solver2_enqueue(s,p,0)) { clause* r = clause2_read(s, lit_reason(s,p)); if (r != NULL) { clause* confl = r; proof_id = solver2_analyze_final(s, confl, 1); veci_push(&s->conf_final, lit_neg(p)); } else { assert( 0 ); proof_id = -1; // the only case when ProofId is not assigned (conflicting assumptions) veci_resize(&s->conf_final,0); veci_push(&s->conf_final, lit_neg(p)); // the two lines below are a bug fix by Siert Wieringa if (var_level(s, lit_var(p)) > 0) veci_push(&s->conf_final, p); } s->hProofLast = proof_id; solver2_canceluntil(s, 0); return l_False; } else { clause* confl = solver2_propagate(s); if (confl != NULL){ proof_id = solver2_analyze_final(s, confl, 0); assert(s->conf_final.size > 0); s->hProofLast = proof_id; solver2_canceluntil(s, 0); return l_False; } } } assert(s->root_level == solver2_dlevel(s)); if (s->verbosity >= 1){ Abc_Print(1,"==================================[MINISAT]===================================\n"); Abc_Print(1,"| Conflicts | ORIGINAL | LEARNT | Progress |\n"); Abc_Print(1,"| | Clauses Literals | Limit Clauses Literals Lit/Cl | |\n"); Abc_Print(1,"==============================================================================\n"); } while (status == l_Undef){ if (s->verbosity >= 1) { Abc_Print(1,"| %9.0f | %7.0f %8.0f | %7.0f %7.0f %8.0f %7.1f | %6.3f %% |\n", (double)s->stats.conflicts, (double)s->stats.clauses, (double)s->stats.clauses_literals, (double)s->nLearntMax, (double)s->stats.learnts, (double)s->stats.learnts_literals, (s->stats.learnts == 0)? 0.0 : (double)s->stats.learnts_literals / s->stats.learnts, s->progress_estimate*100); fflush(stdout); } if ( s->nRuntimeLimit && clock() > s->nRuntimeLimit ) break; // reduce the set of learnt clauses if ( s->nLearntMax && veci_size(&s->act_clas) >= s->nLearntMax ) sat_solver2_reducedb(s); // perform next run nof_conflicts = (ABC_INT64_T)( 100 * luby2(2, restart_iter++) ); status = solver2_search(s, nof_conflicts); // quit the loop if reached an external limit if ( s->nConfLimit && s->stats.conflicts > s->nConfLimit ) break; if ( s->nInsLimit && s->stats.propagations > s->nInsLimit ) break; } if (s->verbosity >= 1) Abc_Print(1,"==============================================================================\n"); solver2_canceluntil(s,0); // assert( s->qhead == s->qtail ); // if ( status == l_True ) // sat_solver2_verify( s ); return status; } void * Sat_ProofCore( sat_solver2 * s ) { extern void * Proof_DeriveCore( Vec_Set_t * vProof, int hRoot ); return Proof_DeriveCore( &s->Proofs, s->hProofLast ); } ABC_NAMESPACE_IMPL_END